The present disclosure relates generally to clip appliers, and more particularly, to clip appliers with a stabilizing member biased into engagement with a surgical chip.
Ligation of tissue (e.g., blood vessels, lymph nodes, nerves, fallopian tubes, and cardiac tissue) is a common practice for many surgical procedures. This can be performed by closing the vessel with a surgical clip or by suturing the vessel with the surgical thread. The use of surgical thread requires complex manipulations of a needle and surgical thread to form knots required to secure the vessel. Such complex manipulations are time consuming and difficult to perform, particularly in endoscopic surgical procedures characterized by limited space and/or visibility. In contrast surgical clips are relatively quick and easy to apply. Accordingly, the use of surgical clips in endoscopic and open surgical procedures has grown dramatically.
The present inventor recognizes that there is a need to improve one or more features of the clip appliers and/or surgical clips, such as stability of the surgical clip in a clip applier. Surgical clips are often applied by clip appliers with a pair of opposing jaws. Currently available clip appliers often secure the clip with two points of contact, for example, the opposing jaws may engage bosses on distal ends of the surgical clip. However, the two points of contact do not provide sufficient stability to the surgical clip, which may cause the surgical clip to become misaligned relative to the clip applier during a surgical procedure, or even fall out. The disclosed methods and systems are directed to mitigating or overcoming one or more of the problems set forth above and/or other problems in the prior art.
A first aspect of the present invention is directed to a clip applier configured to apply a surgical clip to tissue. The clip applier may include a first jaw member, a second jaw member, and a stabilizing member, each configured to engage the surgical clip. The stabilizing member may be configured to move longitudinally with respect to the clip applier from a first position at least partially between the first and second jaw members to a second position at least partially between the first and second jaw members. The longitudinal movement of the stabilizing member may be constrained to longitudinal movement between the first and second positions.
In some embodiments, the stabilizing member may include first and second sidewalls on a distal portion, the first and second sidewalls being configured to stabilize the surgical clip in a lateral direction. In some embodiments, the clip applier may include a hinge pin configured to pivotably secure the first and second jaw members, where the stabilizing member may have a longitudinal channel configured to receive the hinge pin, and the hinge pin may be configured to constrain the longitudinal movement of the stabilizing member between the first and second positions. In some embodiments, the stabilizing member may include a tubular portion proximal of the elongate slot and a shaft portion distal of the tubular portion. A width of a distal portion of the stabilizing member may be greater than a width of the shaft portion. In some embodiments, the clip applier may include a spring positioned on a proximal end of the stabilizing member, where the spring is configured to bias the stabilizing member to the first position, and the first position is distal of the second position. In some embodiments, the clip applier may include a shaft secured to proximal ends of the first and second jaw members, the shaft having at least one elongated slot along its length, and the spring being visible through the at least one elongated slot of the shaft. In sonic embodiments, the clip applier may include a tubular member abutting a proximal end of the spring, where a distal portion of the spring abuts a tubular portion on a proximal portion of the stabilizing member. In some embodiments, the stabilizing member may include a plurality of protrusions on the distal portion, the plurality of protrusions being configured to stabilize the surgical clip in a vertical direction. In some embodiments, the first jaw member may be configured to engage a distal portion of a first leg member of the surgical clip, the second jaw member may be configured to engage a distal portion of a second leg member of the surgical clip, and the stabilizing member may be configured to engage a proximal portion of the surgical clip. In sonic embodiments, the first jaw member may be configured to engage a first substantially flat surface on the distal portion of the first leg member, and the second jaw member may be configured to engage a second substantially flat surface on the distal portion of the second leg member.
A second aspect of the present invention is directed to a method of loading a clip applier with a surgical clip. The method may include receiving a proximal portion of the surgical clip between first and second jaw members of the clip applier, and then engaging a stabilizing member with the proximal portion of the surgical clip with the stabilizing member in a first position at least partially between the first and second jaw members. The method may include retracting the stabilizing member to a second position at least partially between the first and second jaw members. The method may further include stabilizing the surgical clip between the stabilizing member and the first and second jaw members.
In some embodiments, the longitudinal movement of the stabilizing member may be constrained to longitudinal movement between the first position and the second position. In some embodiments, stabilizing the surgical clip may include stabilizing the surgical clip in a lateral direction with first and second walls extending from a distal end of the stabilizing member. In some embodiments, stabilizing the surgical clip may include stabilizing the surgical clip in a vertical direction with a plurality of protrusions on a distal surface of the stabilizing member. In some embodiments, the method may include picking the surgical clip up from a cartridge.
A third aspect of the present invention is directed to a stabilizing member for a clip applier. The stabilizing member may include an elongated body having a proximal portion and a distal portion. The stabilizing member may include first and second sidewalls on the distal portion of the elongated body that may be configured to stabilize a proximal portion of a surgical clip in a lateral direction. The stabilizing member may further include a shaft portion of the elongated body extending from the distal portion, where a width of the distal portion including the first and second walls is greater than a width of the shaft portion.
In sonic embodiments, the stabilizing member may further include a longitudinal channel extending through the elongated body. In some embodiments, the shaft portion may have a substantially rectangular cross-section. In some embodiments, the stabilizing member may include a tubular portion of the elongated body forming the proximal portion. In some embodiments, the stabilizing member may include a plurality of protrusions on the distal portion that may be configured to stabilize the proximal portion of the surgical clip in a vertical direction.
In order that the disclosure may be readily understood, aspects of this disclosure are illustrated by way of examples in the accompanying drawings,
The same or similar reference numbers are used in the drawings and the following detailed description to refer to the same or similar parts.
The invention will now be described with reference to the figures, in which like reference numerals refer to like parts throughout, in accordance with conventional practice, as used herein, and unless otherwise indicated herein, the term “proximal portion” refers to the specified portion of a device or its component which is generally closer to the medical personnel handling or manipulating the device as it is intended to be used, and the term “distal portion” shall refer to the specified portion of a device or its component which is opposite of the proximal portion.
The present invention is generally directed to a clip applier configured to increase stability of surgical clips during a medical procedure. The clip applier may include a stabilizing member disposed between first and second jaw members. The stabilizing member and the first and second jaw members may provide at least three points of contact with the surgical clip to prevent relative movement of the surgical clip during the medical procedure. The stabilizing member may have vertical walls extending from a distal portion. The vertical walls may be positioned on opposing sides of a proximal portion of the surgical clip to reduce lateral movement of the surgical clip. A distal portion of the stabilizing member with the vertical walls may have width greater than a shaft extending from the distal portion. The increased width of the distal portion may increase stability of the surgical clip between the jaw members, and prevent retraction of the distal portion through the shaft of the clip applier. The stabilizing member may further have lateral protrusions extending between the vertical walls and being configured to reduce vertical movement.
The stabilizing member may be biased into a first, distal position at least partially between the first and second jaw members to facilitate front-loading of the clip applier. The stabilizing member may engage the surgical clip as it is loaded between the first and second jaw members. The stabilizing member may also retract as the surgical clip is fed between the first and second jaw members to a second, proximal position. The second, proximal position may be at least partially positioned between the first and second jaw members. The stabilizing member may be longitudinally constrained between the first and second positions, for example, through a pin and channel configuration and/or the greater width of the distal portion. The pin may be a pivot pin of the first and second jaw members, and the channel may extend longitudinally through a shall of the stabilizing member. The stabilizing member may move from the first position to the second position and from the second position to the first position, but the stabilizing member cannot move distally of the first position or proximally of the second position. The stabilizing member may therefore be configured to apply a sufficient distal stabilizing force when the surgical clip is received between the first and second jaw members of the clip applier during front-loading of the surgical clip from a cartridge. The clip applier may also be configured hold the surgical clip without any bosses. The clip applier may stabilizing the surgical clip while being applied to tissue (e.g., to ligate blood vessel) preventing the surgical clip from fish-tailing,
The jaw structure 106 may include a first jaw member 108 and a second jaw member 110 pivotally coupled at a hinge mechanism 112 having a pivot pin 114. The jaw structure 106 may receive the surgical clip 200 between the first and second jaw members 108, 110, and the first and second jaw members 108, 110 may stabilize the surgical clip 200 at points of contact on distal portions of first and second leg members 202, 204. The jaw members 108, 110 may have engaging surfaces 111 at distal portions. The engaging surfaces 111 may be substantially flat and/or hook shaped and may be configured to releasably engage distal portions of leg members 202, 204 of the surgical clip 200 without bosses.
The jaw structure 106 may also be configured to compress the surgical clip 200 by applying opposing forces on the first and second leg members 202, 204, The jaw structure 106 may be actuated by an actuator 140 advanced and retracted by the handle mechanism 102, as illustrated in
The clip applier 100 may further include a stabilizing member 116 configured to be received between the first and second jaw members 108, 110 and to provide additional stability to the surgical clip 200. The stabilizing member 116 may be spring-loaded to apply a distal force on a proximal portion of the surgical clip 200, pushing the surgical clip 200 against the first and second jaw members 108, 110. The stabilizing member 116 may be configured to move longitudinally between a first, distal position at least partially between the first and second jaw members 108, 110 and a second, proximal position at least partially between the first and second jaw members 108, 110. The stabilizing member 116 may be constrained to longitudinal movement between the first and second positions to ensure that suitable pressure is applied by the stabilizing member 116 to the surgical clip 200. The stabilizing member 116 may be positioned symmetrically between the first and second jaw members 108, 110. The positioning of the stabilizing member 116 may allow a user to pick up the surgical clip 200 from a cartridge 400 with the clip applier 100 in either of two opposite orientations. For example, the first jaw member 108 may engage with either of the first leg member 202 or the second leg member 204 of the surgical clip 200, while the second jaw member 110 engages with the other of the first leg member 202 and the second leg member 204. The clip applier 100 may also pick up the surgical clip 200 without bosses, rather the surgical clip 200 may be engaged between the stabilizing member 116 and the engaging surfaces 111.
The stabilizing member 116 may be biased distally by a spring member 118 disposed between the stabilizing member 116 and a tubular member 120. The spring member 118 may be compressed as the stabilizing member 116 is retracted when the surgical clip 200 is received within the first and second jaw members 108, 110. The spring member 118 may provide a distal force to the stabilizing member 116 to engage the surgical clip 200. The spring member 118 may also be further compressed as the surgical clip 200 is compressed, allowing lengthening of the leg members 202, 204 when latching in a closed configuration. As depicted in
As further depicted in
The shaft portion 126 may have a longitudinal channel 130 that receives the pivot pin 114. The interaction between the pivot pin 114 and the longitudinal channel 130 may constrain the longitudinal movement of the stabilizing member 116 to longitudinal movement between the first and second positions. For example, the pivot pin 114 may contact a proximal surface of the longitudinal channel 130 when the stabilizing member 116 is in the first, distal position, and the pivot pin 114 may contact a distal surface of the longitudinal channel 130 when the stabilizing member 116 is in the second, proximal position. The pivot pin 114 may also prevent rotation of the stabilizing member 116. The longitudinal channel 130 may be in communication with the lumen of the tubular portion 124. The shaft portion 126 may have a neck region with a height less than a height of proximal and distal portions of the shaft portion 126.
As further depicted in
Each of the first and second leg members 202, 204 may also include an engaging surface 228, 230 configured to engage the first and second jaw members 108, 110 of the clip applier 100. As depicted in
The first leg member 202 may include a tip member 232, and the second leg member 204 may include a hook member 234. As the surgical clip 200 is closed, the hook member 234 may deflect around the tip member 232 to secure the surgical clip 200 in a latched configuration. The first and/or second leg members 202, 204 may straighten and/or elongate during the latching process. The engaging surface 228 of the first leg member 202 may be positioned immediately proximal of the tip member 232, and the engaging surface 230 of the second leg member 204 may be positioned immediately proximal of the hook member 234.
Each of the first and second leg members 302, 304 may also include an engaging surface 328, 330 configured to engage the first and second jaw members 108, 110 of the clip applier 100. As depicted in
The first leg member 302 may include a tip member 332, and the second leg member 304 may include a hook member 334. As the surgical clip 300 is closed, the hook member 334 may deflect around the tip member 332 to secure the surgical clip 300 in a latched configuration. The first and/or second leg members 302, 304 may straighten and/or elongate during the latching process. The engaging surface 328 of the first leg member 302 may be positioned immediately proximal of the tip member 332, and the engaging surface 330 of the second leg member 304 may be positioned immediately proximal of the hook member 334.
The various embodiments of the surgical clips 200, 300 of the present invention may be made of any suitable size and may be applied to any number of tissues, such as blood vessels, lymph nodes, nerves, fallopian tubes, or cardiac tissue. The various embodiments of the surgical clips 200, 300 may be constructed from any suitable biocompatible material, such as metals and polymers. However, the present invention is particularly suitable for practice with polymeric clips. Thus, the various embodiments of the surgical clips 200, 300 preferably consist of a one-piece integral polymeric body formed from a suitable strong biocompatible engineering plastic such as the type commonly used for surgical implants. Exemplary materials include homopolymer or co-polymer polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyoxymethylene, or other thermoplastic materials having similar properties that can be injection-molded, extruded, or otherwise processed into like articles.
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application is a continuation of U.S. application Ser. No. 15/927,408, filed Mar. 21, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/474,523, filed on Mar. 21, 2017, the entirety of each disclosure is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
929868 | Mueller | Aug 1909 | A |
1482290 | Elzi | Jan 1924 | A |
1728322 | Badrian | Sep 1929 | A |
2384697 | Riccardi | Sep 1945 | A |
2594102 | Vollmer | Apr 1952 | A |
2598901 | Garland | Jun 1952 | A |
2626608 | Garland | Jan 1953 | A |
2635238 | Garland | Apr 1953 | A |
2744251 | Vollmer | May 1956 | A |
2813269 | Bay | Nov 1957 | A |
2814222 | Sanders | Nov 1957 | A |
2881762 | Lowrie | Apr 1959 | A |
2890519 | Storz, Jr. | Jun 1959 | A |
3032039 | Beaty | May 1962 | A |
3150379 | Brown | Sep 1964 | A |
3172133 | Rizzo | Mar 1965 | A |
3446212 | Le Roy | May 1969 | A |
3463156 | Mcdermott et al. | Aug 1969 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3503397 | Fogarty et al. | Mar 1970 | A |
3503398 | Fogarty et al. | Mar 1970 | A |
3766925 | Rubricius | Oct 1973 | A |
3825012 | Nicoll | Jul 1974 | A |
3827438 | Kees | Aug 1974 | A |
3867944 | Samuels | Feb 1975 | A |
3874042 | Eddleman et al. | Apr 1975 | A |
3954108 | Davis | May 1976 | A |
4120302 | Ziegler | Oct 1978 | A |
4274415 | Kanamoto et al. | Jun 1981 | A |
4316468 | Klieman et al. | Feb 1982 | A |
4325376 | Klieman et al. | Apr 1982 | A |
4337774 | Perlin | Jul 1982 | A |
4344531 | Giersch | Aug 1982 | A |
4345600 | Rothfuss | Aug 1982 | A |
4346869 | Macneill | Aug 1982 | A |
4390019 | Leveen et al. | Jun 1983 | A |
4394864 | Sandhaus | Jul 1983 | A |
4414721 | Hufnagel | Nov 1983 | A |
4418694 | Beroff et al. | Dec 1983 | A |
4428374 | Auburn | Jan 1984 | A |
4444187 | Perlin | Apr 1984 | A |
4450840 | Mericle et al. | May 1984 | A |
4458682 | Cerwin | Jul 1984 | A |
4471780 | Menges et al. | Sep 1984 | A |
4476865 | Failla et al. | Oct 1984 | A |
4487204 | Hrouda | Dec 1984 | A |
4487205 | Di et al. | Dec 1984 | A |
4492232 | Green | Jan 1985 | A |
4519392 | Lingua | May 1985 | A |
4527562 | Mericle | Jul 1985 | A |
4534351 | Rothfuss et al. | Aug 1985 | A |
4550729 | Cerwin et al. | Nov 1985 | A |
4570633 | Golden | Feb 1986 | A |
4579118 | Failla | Apr 1986 | A |
4588160 | Flynn et al. | May 1986 | A |
4589626 | Kurtz et al. | May 1986 | A |
4616651 | Golden | Oct 1986 | A |
4638804 | Jewusiak | Jan 1987 | A |
4671281 | Beroff et al. | Jun 1987 | A |
4686983 | Leisman et al. | Aug 1987 | A |
4712549 | Peters et al. | Dec 1987 | A |
4716886 | Schulman et al. | Jan 1988 | A |
4726372 | Perlin | Feb 1988 | A |
4807622 | Ohkaka et al. | Feb 1989 | A |
4822348 | Casey | Apr 1989 | A |
4834090 | Moore | May 1989 | A |
4834096 | Oh et al. | May 1989 | A |
4854317 | Braun | Aug 1989 | A |
4870965 | Jahanger | Oct 1989 | A |
4919152 | Ger | Apr 1990 | A |
4924864 | Danzig | May 1990 | A |
4934364 | Green | Jun 1990 | A |
4936447 | Peiffer | Jun 1990 | A |
4938764 | Glaberson | Jul 1990 | A |
4938765 | Rasmusson | Jul 1990 | A |
4942886 | Timmons | Jul 1990 | A |
4950275 | Donini | Aug 1990 | A |
4961499 | Kulp | Oct 1990 | A |
4972949 | Peiffer | Nov 1990 | A |
4976722 | Failla | Dec 1990 | A |
5002552 | Casey | Mar 1991 | A |
5009657 | Cotey et al. | Apr 1991 | A |
5026382 | Peiffer | Jun 1991 | A |
5046611 | Oh | Sep 1991 | A |
5047038 | Peters et al. | Sep 1991 | A |
5053045 | Schmidt et al. | Oct 1991 | A |
5062846 | Oh et al. | Nov 1991 | A |
5078731 | Hayhurst | Jan 1992 | A |
5100416 | Oh et al. | Mar 1992 | A |
5104395 | Thornton et al. | Apr 1992 | A |
5112343 | Thornton | May 1992 | A |
5127915 | Mattson | Jul 1992 | A |
5141514 | Van Amelsfort | Aug 1992 | A |
5160339 | Chen et al. | Nov 1992 | A |
5163945 | Ortiz et al. | Nov 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5201416 | Taylor | Apr 1993 | A |
5207692 | Kraus et al. | May 1993 | A |
5234449 | Bruker et al. | Aug 1993 | A |
5246450 | Thornton et al. | Sep 1993 | A |
5259405 | Hua-Chou | Nov 1993 | A |
5279416 | Malec et al. | Jan 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5330487 | Thornton et al. | Jul 1994 | A |
5366458 | Korthoff et al. | Nov 1994 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5431668 | Burbank et al. | Jul 1995 | A |
5462555 | Bolanos et al. | Oct 1995 | A |
5464416 | Steckel | Nov 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5501693 | Gravener | Mar 1996 | A |
5509920 | Phillips et al. | Apr 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5575796 | King et al. | Nov 1996 | A |
5575802 | Mcquilkin et al. | Nov 1996 | A |
5591178 | Green et al. | Jan 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5626585 | Mittelstadt et al. | May 1997 | A |
5667516 | Allen | Sep 1997 | A |
5697938 | Jensen et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5713912 | Porter | Feb 1998 | A |
5722982 | Ferreira et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5797922 | Hessel et al. | Aug 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5843097 | Mayenberger et al. | Dec 1998 | A |
5846255 | Casey | Dec 1998 | A |
5908430 | Appleby | Jun 1999 | A |
5921991 | Whitehead et al. | Jul 1999 | A |
5925052 | Simmons | Jul 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5972003 | Rousseau et al. | Oct 1999 | A |
5997548 | Jahanger | Dec 1999 | A |
6010516 | Hulka | Jan 2000 | A |
6013088 | Karavidas | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6131576 | Davis | Oct 2000 | A |
6158583 | Forster | Dec 2000 | A |
6210419 | Mayenberger et al. | Apr 2001 | B1 |
6217590 | Levinson | Apr 2001 | B1 |
6228104 | Fogarty et al. | May 2001 | B1 |
6258105 | Hart et al. | Jul 2001 | B1 |
6261303 | Mayenberger et al. | Jul 2001 | B1 |
6273253 | Forster et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6273902 | Fogarty et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6349727 | Stewart, Jr. | Feb 2002 | B1 |
6352541 | Kienzle et al. | Mar 2002 | B1 |
6387112 | Fogarty et al. | May 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6419682 | Appleby et al. | Jul 2002 | B1 |
6537289 | Kayan et al. | Mar 2003 | B1 |
6558408 | Fogarty et al. | May 2003 | B1 |
6599298 | Forster | Jul 2003 | B1 |
6695854 | Kayan et al. | Feb 2004 | B1 |
6699258 | Sadler et al. | Mar 2004 | B1 |
6719766 | Buelna et al. | Apr 2004 | B1 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6780195 | Porat | Aug 2004 | B2 |
6814742 | Kimura et al. | Nov 2004 | B2 |
6824547 | Wilson et al. | Nov 2004 | B2 |
6837895 | Mayenberger | Jan 2005 | B2 |
6843253 | Parkes | Jan 2005 | B2 |
6863675 | Wilson, Jr. | Mar 2005 | B2 |
6880699 | Gallagher | Apr 2005 | B2 |
6926712 | Phan | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6989017 | Howell et al. | Jan 2006 | B2 |
7001412 | Gallagher et al. | Feb 2006 | B2 |
7052504 | Hughett | May 2006 | B2 |
7094245 | Adams et al. | Aug 2006 | B2 |
7108699 | Kobayashi | Sep 2006 | B2 |
7131977 | Fowler | Nov 2006 | B2 |
7179265 | Manetakis et al. | Feb 2007 | B2 |
7211091 | Fowler et al. | May 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7261724 | Molitor et al. | Aug 2007 | B2 |
7316696 | Wilson et al. | Jan 2008 | B2 |
7326223 | Wilson, Jr. | Feb 2008 | B2 |
7329266 | Royse et al. | Feb 2008 | B2 |
7357805 | Masuda et al. | Apr 2008 | B2 |
7402164 | Watson et al. | Jul 2008 | B2 |
7572266 | Young et al. | Aug 2009 | B2 |
7585304 | Hughett | Sep 2009 | B2 |
7635374 | Monassevitch et al. | Dec 2009 | B2 |
7645285 | Cosgrove et al. | Jan 2010 | B2 |
7648514 | Nakao | Jan 2010 | B1 |
7727231 | Swanson | Jun 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7785324 | Eberl | Aug 2010 | B2 |
7963964 | Santilli et al. | Jun 2011 | B2 |
7992757 | Wheeler et al. | Aug 2011 | B2 |
8137368 | Kayan et al. | Mar 2012 | B2 |
8142451 | Boulnois et al. | Mar 2012 | B2 |
8262639 | Mathias | Sep 2012 | B2 |
8403138 | Weisshaupt et al. | Mar 2013 | B2 |
8425412 | Rucker | Apr 2013 | B2 |
8465507 | Cosgrove et al. | Jun 2013 | B2 |
8512357 | Viola | Aug 2013 | B2 |
8585718 | Disch et al. | Nov 2013 | B2 |
8764774 | Sigmon, Jr. | Jul 2014 | B2 |
8839954 | Disch | Sep 2014 | B2 |
8852216 | Cropper et al. | Oct 2014 | B2 |
8894666 | Schulz et al. | Nov 2014 | B2 |
8900253 | Aranyi et al. | Dec 2014 | B2 |
8945151 | Salas | Feb 2015 | B2 |
8992566 | Baldwin | Mar 2015 | B2 |
9084596 | Stanley et al. | Jul 2015 | B2 |
9119627 | Cosgrove et al. | Sep 2015 | B2 |
9220507 | Patel et al. | Dec 2015 | B1 |
9271737 | Castro et al. | Mar 2016 | B2 |
9282972 | Patel et al. | Mar 2016 | B1 |
9445820 | Whiting | Sep 2016 | B2 |
9456824 | Willett et al. | Oct 2016 | B2 |
9737309 | Ad | Aug 2017 | B1 |
9775635 | Takei | Oct 2017 | B2 |
9855053 | Bagaoisan et al. | Jan 2018 | B2 |
9901352 | Fago et al. | Feb 2018 | B2 |
9955977 | Martinez et al. | May 2018 | B2 |
10064623 | Soutorine et al. | Sep 2018 | B2 |
10136898 | Schmidt et al. | Nov 2018 | B2 |
10285712 | Cosgrove et al. | May 2019 | B2 |
10292712 | Shankarsetty | May 2019 | B2 |
10307166 | Willett et al. | Jun 2019 | B2 |
10383637 | Castro | Aug 2019 | B2 |
10548609 | Ramsey et al. | Feb 2020 | B2 |
10758243 | Salas | Sep 2020 | B2 |
10925616 | Shellenberger et al. | Feb 2021 | B2 |
11160559 | Shellenberger | Nov 2021 | B2 |
11266408 | Shellenberger | Mar 2022 | B2 |
11534177 | Shellenberger et al. | Dec 2022 | B2 |
11576680 | Ramsey et al. | Feb 2023 | B2 |
11607227 | Shellenberger | Mar 2023 | B2 |
20020046961 | Levinson et al. | Apr 2002 | A1 |
20020068946 | Kortenbach et al. | Jun 2002 | A1 |
20020111640 | Krause et al. | Aug 2002 | A1 |
20020169459 | Porat | Nov 2002 | A1 |
20030014060 | Wilson et al. | Jan 2003 | A1 |
20030074009 | Ramsey et al. | Apr 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20040010272 | Manetakis | Jan 2004 | A1 |
20040040875 | Gallagher | Mar 2004 | A1 |
20040044352 | Fowler et al. | Mar 2004 | A1 |
20040059359 | Wilson | Mar 2004 | A1 |
20040097970 | Hughett | May 2004 | A1 |
20040172043 | Watson et al. | Sep 2004 | A1 |
20050090838 | Sixto et al. | Apr 2005 | A1 |
20050149063 | Young et al. | Jul 2005 | A1 |
20050149068 | Williams et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050165421 | Wilson et al. | Jul 2005 | A1 |
20050165422 | Wilson, Jr. | Jul 2005 | A1 |
20050165423 | Gallagher et al. | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171560 | Hughett | Aug 2005 | A1 |
20050234478 | Wixey et al. | Oct 2005 | A1 |
20050240219 | Kahle et al. | Oct 2005 | A1 |
20050277959 | Cosgrove et al. | Dec 2005 | A1 |
20060217749 | Wilson et al. | Sep 2006 | A1 |
20070016228 | Salas | Jan 2007 | A1 |
20070049947 | Menn | Mar 2007 | A1 |
20070083218 | A. Morris | Apr 2007 | A1 |
20070118161 | Kennedy et al. | May 2007 | A1 |
20070149989 | Santilli et al. | Jun 2007 | A1 |
20070276417 | Mendes et al. | Nov 2007 | A1 |
20070282355 | Brown et al. | Dec 2007 | A1 |
20080287976 | Weaner et al. | Nov 2008 | A1 |
20080312670 | Lutze et al. | Dec 2008 | A1 |
20090012545 | Williamson et al. | Jan 2009 | A1 |
20090088783 | Kennedy et al. | Apr 2009 | A1 |
20090088786 | Zook et al. | Apr 2009 | A1 |
20090112233 | Xiao | Apr 2009 | A1 |
20090171380 | Whiting | Jul 2009 | A1 |
20090240266 | Dennis | Sep 2009 | A1 |
20100057107 | Sorrentino et al. | Mar 2010 | A1 |
20100082047 | Cosgrove et al. | Apr 2010 | A1 |
20100114131 | Rotunda | May 2010 | A1 |
20100211080 | Trivisani et al. | Aug 2010 | A1 |
20100274262 | Schulz et al. | Oct 2010 | A1 |
20100274264 | Schulz | Oct 2010 | A1 |
20100274268 | Singh et al. | Oct 2010 | A1 |
20110022079 | Miles et al. | Jan 2011 | A1 |
20110087244 | Weisshaupt et al. | Apr 2011 | A1 |
20110144665 | Malkowski | Jun 2011 | A1 |
20110245848 | Rosenberg et al. | Oct 2011 | A1 |
20110295291 | Trivisani | Dec 2011 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120083803 | Patel | Apr 2012 | A1 |
20120226291 | Malizia et al. | Sep 2012 | A1 |
20120277765 | Zammataro et al. | Nov 2012 | A1 |
20120330326 | Creston et al. | Dec 2012 | A1 |
20130006271 | Vold et al. | Jan 2013 | A1 |
20130226200 | Kappel et al. | Aug 2013 | A1 |
20130245651 | Schmidt et al. | Sep 2013 | A1 |
20130245652 | Cosgrove et al. | Sep 2013 | A1 |
20130253535 | Pribanic et al. | Sep 2013 | A1 |
20130261642 | Willett et al. | Oct 2013 | A1 |
20140018830 | Shelton, IV | Jan 2014 | A1 |
20140058411 | Soutorine et al. | Feb 2014 | A1 |
20140207156 | Malkowski | Jul 2014 | A1 |
20140243862 | Bagaoisan et al. | Aug 2014 | A1 |
20140309677 | Baldwin | Oct 2014 | A1 |
20150066057 | Malkowski et al. | Mar 2015 | A1 |
20150136835 | Shelton, IV et al. | May 2015 | A1 |
20150190137 | Salas | Jul 2015 | A1 |
20150320426 | Cosgrove et al. | Nov 2015 | A1 |
20160151073 | Castro et al. | Jun 2016 | A1 |
20160174981 | Fago et al. | Jun 2016 | A1 |
20160213377 | Shankarsetty | Jul 2016 | A1 |
20160256157 | Rockrohr et al. | Sep 2016 | A1 |
20160270790 | Jankowski | Sep 2016 | A1 |
20160354089 | Whiting | Dec 2016 | A1 |
20170014135 | Martin et al. | Jan 2017 | A1 |
20170238935 | Shi | Aug 2017 | A1 |
20180036008 | Ramsey et al. | Feb 2018 | A1 |
20180168659 | Bagaoisan et al. | Jun 2018 | A1 |
20180271527 | Shellenberger | Sep 2018 | A1 |
20180271532 | Shellenberger | Sep 2018 | A1 |
20180271534 | Shellenberger | Sep 2018 | A1 |
20180271535 | Shellenberger et al. | Sep 2018 | A1 |
20180271536 | Shellenberger et al. | Sep 2018 | A1 |
20210128159 | Taylor et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
676836 | Mar 1997 | AU |
1356092 | Jul 2002 | CN |
1846638 | Oct 2006 | CN |
101543418 | Sep 2009 | CN |
103181809 | Jul 2013 | CN |
103442658 | Dec 2013 | CN |
103930054 | Jul 2014 | CN |
104039248 | Sep 2014 | CN |
104367363 | Feb 2015 | CN |
104414701 | Mar 2015 | CN |
105054989 | Nov 2015 | CN |
105078536 | Nov 2015 | CN |
105816217 | Aug 2016 | CN |
106037947 | Oct 2016 | CN |
106264646 | Jan 2017 | CN |
110740696 | Jan 2020 | CN |
0086640 | Aug 1983 | EP |
0201344 | Nov 1986 | EP |
0314064 | May 1989 | EP |
0576835 | Jan 1994 | EP |
1233705 | Aug 2002 | EP |
2074954 | Jul 2009 | EP |
2502578 | Sep 2012 | EP |
3493747 | Jun 2019 | EP |
3600084 | Feb 2020 | EP |
2054027 | Feb 1981 | GB |
2069848 | Sep 1981 | GB |
2353710 | Mar 2001 | GB |
2465560 | May 2010 | GB |
56-151034 | Nov 1981 | JP |
61-007818 | Mar 1986 | JP |
61-259652 | Nov 1986 | JP |
03-178648 | Aug 1991 | JP |
05-200039 | Aug 1993 | JP |
07-163574 | Jun 1995 | JP |
2002-345828 | Dec 2002 | JP |
2004-522468 | Jul 2004 | JP |
2004-535236 | Nov 2004 | JP |
4263594 | May 2009 | JP |
2011-036675 | Feb 2011 | JP |
2011-517423 | Jun 2011 | JP |
2014-531250 | Nov 2014 | JP |
2015-043977 | Mar 2015 | JP |
7329038 | Aug 2023 | JP |
9738634 | Oct 1997 | WO |
0135837 | May 2001 | WO |
0137742 | May 2001 | WO |
2004043225 | May 2004 | WO |
2005107613 | Nov 2005 | WO |
2006102578 | Sep 2006 | WO |
2012075532 | Jun 2012 | WO |
2013040467 | Mar 2013 | WO |
2015099067 | Jul 2015 | WO |
2016094647 | Jun 2016 | WO |
2018027032 | Feb 2018 | WO |
2018175626 | Sep 2018 | WO |
2020018784 | Jan 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20220047271 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62474523 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15927408 | Mar 2018 | US |
Child | 17516634 | US |