1. Field of the Invention
The present invention relates to an apparatus for attaching clips to connect bars, when the bars are used to reinforce concrete. The present invention is particularly applicable for use with bar clips such as those set forth in U.S. Patent Application Publication No. 2006/0248844 to Kodi, which is assigned to the assignee of the present invention, the details of which are incorporated herein by reference.
2. Description of the Prior Art
Supporting bars are commonly used to reinforce concrete. The supporting bars are laid out in a grid where the cement is to be poured, to maximize the effectiveness of the supporting bars; they are placed at specific heights, usually between about 2 and 6 inches from the ground. Bars are then connected so the grid is stable and will not move when the cement or concrete is poured. Many methods have been used to connect bars, and many are done by hand. Rebar is the type of supporting bar most commonly used. When the rebar is connected by hand, it requires a laborer to bend over and connects the rebar at many points within the grid. This is labor intensive, slow, and tends to cause injuries from the repeated bending. In some instances, the rebar grid can be prepared first, and then placed into a form where the cement or concrete is to be poured. This can reduce the bending required, but does not address the time and labor required to connect the rebar. To reduce the time needed to connect the rebar and to minimize the time a laborer is working in a stooped position, several applicators for connecting rebar have been developed.
Three examples of such clip applicators are shown in U.S. Pat. No. 7,891,074 to Kodi entitled “Bar Connecting Apparatus,” in U.S. Pat. No. 7,963,392 to Kodi entitled “Bar Connecting Apparatus,” and U.S. Pat. No. 8,322,006 to Kodi entitled “Clip Gun With Pneumatic Feed,” all of which are assigned to the assignee of the present invention, and are incorporated herein by reference.
There is a continuing need in the art for further improvements in such clip applying apparatus.
In one aspect of the invention an apparatus for applying a clip to a first reinforcing bar and a second reinforcing bar is provided. The apparatus includes a barrel having a clip receiving cavity and an alignment head defined at the barrel's distal end. The apparatus may also include a hammer received in the barrel. A main drive connected to the hammer and configured to reciprocate the hammer within the barrel will be included. A clip track is connected to the barrel and aligned with the cavity for guiding a string of frangibly connected clips into the cavity. A safety shield may be connected to the barrel and include a forward portion extending beyond the alignment head. A lockout lever may be pivotally connected to the barrel to pivot outward when a clip is not fully received within the clip receiving cavity. When the lockout lever is pivoted outward, proximal motion of the safety shield will be prevented.
In another aspect of the invention, the apparatus includes a barrel having a clip receiving cavity and an alignment head defined at the distal end of the barrel. A hammer may be received in the barrel. A main drive may also be connected to the hammer and configured to reciprocate the hammer within the barrel. A clip door may be provided to cover the clip receiving cavity. A sliding-pivot channel defined in either the barrel or the clip door may be included for guiding the motion of the clip door as it opens and closes. The sliding-pivot channel may include a channel length and a channel width wherein the channel width is smaller than the channel length. A pivot pin is attached to the other of the barrel or the clip door and received within the sliding-pivot channel.
In yet another aspect of the invention, a clip applying apparatus is provided for applying a clip to a first reinforcing bar and a second reinforcing bar. The apparatus includes a barrel having at least one guide slot disposed within the barrel. A hammer having a shaft portion may be received within the barrel. In some embodiments, a projection is attached to the hammer and received within the at least one guide slot. The apparatus may also include a hammer bushing coaxial with the barrel and attached at the barrel's proximal end. The hammer bushing may receive and support a shaft of the hammer during operation.
In some aspects of the invention, the lockout lever may include a lobe member having an inner face directed toward the barrel and configured to engage a string of frangibly connected clips and thereby force the lever outward away from the barrel when a clip is not fully received within the clip receiving cavity. This outward position may substantially prevent any proximal movement of the safety shield. The lobe member may also include a support face to support the clip string when the lockout lever is pivoted inward and a clip is fully received within the clip receiving cavity. The support face may prevent regressive movement of the clip string. For example, the string will be unable to fall out of the clip receiving cavity once a clip is fully received in the clip receiving cavity. The support face will serve to hold the clip in place before it is fired from the apparatus or slid upward out of the clip receiving cavity. The inward position of the lockout lever may also allow the safety shield to move forward and rearward in a distal or proximal direction, respectively.
Some aspects of the invention may include an anti-backup lever pivotally connected to the barrel. The anti-backup lever may include a tooth extending toward the clip track. The tooth may be configured to engage the string of frangibly connected clips to hold the string in place and prevent regressive movement of the clip string.
Numerous objects features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the following disclosure when taken in conjunction with the accompanying drawings.
In order to facilitate the understanding of the embodiments described herein, a number of terms are defined below. The terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a,” “an,” and “the” are not intended to refer to only a singular entity, but rather include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as set forth in the claims.
As described herein, an upright position is considered to be the position of apparatus components while in proper operation or in a natural resting position as described herein. Vertical, horizontal, above, below, side, top, bottom and other orientation terms are described with respect to this upright position during operation unless otherwise specified. The term “when” is used to specify orientation for relative positions of components, not as a temporal limitation of the claims or apparatus described and claimed herein unless otherwise specified. The term “lateral” denotes a side to side direction when facing the “front” of an object.
An alignment head 28 is disposed at the distal end 24, and includes first pair of notches 31 and second pairs of notches 33 for positioning the barrel 14 against the first and second reinforcing bars 46 and 48 when the bars 46, 48 are oriented transversely to each other as shown in
In some embodiments, the barrel 14 may be formed as a single integral unit, as shown in
A main drive 29 connects to a hammer 30 and is configured to reciprocate the hammer 30 within the barrel 14. In some embodiments, the main drive 29 is pneumatically powered.
In order to attach the clips 42, the first notch pair 31 and second notch pair 33 may receive one or both of the first and second reinforcing bars 46, 48 to reach proper alignment of the apparatus 10 to the reinforcing bars 46, 48. Upon proper alignment, an individual clip 42 may be fired from the barrel 14 and onto the reinforcing bars 46, 48.
Some embodiments include a trigger assembly 35, as shown in
The trigger assembly 35 includes a safety release operably associated with the safety shield 16. The safety shield 16 is connected to the barrel 14 and includes a forward portion 17 extending distally beyond the alignment head 28. As the safety shield 16 is moved in a rearward, proximal direction relative to the barrel 14, the safety release will permit actuation of the trigger assembly 35 and activation of the main drive 29.
As shown in
The lockout lever 36 is supported on opposite sides by integral wing members 37, shown also in
As shown in
Lobe member 52 extends laterally from the lever body 50 toward the clip receiving cavity 40. In the second position, an inner face 60 of the lobe member 52 faces the barrel second side 34 while a support face 62 faces the clip receiving cavity 40. When a clip 42A is fully engaged in the clip receiving cavity 40 the lobe member 52 will engage the clip 42A at the support face 62 and thereby prevent regressive movement. In contrast, when the clip 42A is not fully engaged in the clip receiving cavity 40, the clip 42A will serve to push against the inner face 60 and simultaneously actuate the stop member 54 in an outward direction (i.e., first position). If a user attempts to press the safety shield 16 against a reinforcing bar 46, 48—or otherwise move the safety shield 16 in a proximal direction—while the lockout lever 36 is in a first position, the stop member 54 will engage the proximally-facing safety shield edge wall 56. When the edge wall 56 is engaged with the stop member 54, actuation of the trigger assembly 35 will be prevented. In some embodiments, a pivot spring 58 will serve to bias the lockout lever 36 toward the clip receiving cavity 40.
During operation, the pivot joint 53 is substantially covered by a wall 68 of the safety shield 16. As a result, the pivot joint 53 will be substantially protected from interference from debris or accidental engagement.
The anti-backup lever 38 attaches to the barrel 14 at secondary wing members 39. The anti-backup lever 38 is positioned between the secondary wing members 39 such that the secondary wing members 39 provide some degree of lateral coverage and protection. If the apparatus is mishandled or accidentally slips from a user's grasp, the anti-backup lever 38 should not bear the full force of the impact. Instead, secondary wing members 39 should be impacted first, if at all.
As shown in
Returning to
A described above, a string 44 of frangibly connected clips is configured to enter the receiving cavity 40 at the barrel receiving side 72. If a user wishes to remove the string 44 of frangibly connected clips without discharging a clip 42 from the alignment head 28, the user may push the string 44 vertically along the clip receiving track 20, through the clip receiving cavity 40, and out the barrel exit side 74. It is noted that this removal process will only be possible when the clip door 18 is in the open position. When the clip door 18 is in the closed position, the clip receiving cavity 40 will be covered, and removal will be prevented.
In the embodiment of
In alternative embodiments, the sliding-pivot channel may be defined in the barrel 14, and the pivot pin may be attached to the door 18.
A door stop tab 84 is fixed to the barrel exit side 74. As described below, the tab 84 is configured to engage grip member 78 when the clip door 18 is in a closed position. As shown in
Optionally, the sloped face 85 may have no taper, and instead, maintain a constant profile in relation to the clip door body 70.
As shown in
In order to ensure the biasing spring 86 does not interfere with the movement of clips 42 within the clip receiving cavity 40, the biasing spring 86 may be received within the recess 76. Disposing the biasing spring 86 in the recess 76, ensures the spring 86 does not enter the clip receiving cavity 40. As a result, a clip 42 may travel through the barrel 14 without touching or engaging the biasing spring 86. Furthermore, positioning the biasing spring 86 within the recess 76 ensures the biasing spring 86 is tensioned primarily in a linear direction. The primarily linear tension provides an even distribution of force across the spring 86.
As shown in
Furthermore, in some embodiments, safety shield 16 includes a top wall 87 disposed over the barrel exit side 74. When the clip door 18 is in the closed position, the clip door 18 will be positioned beneath the top wall 87 to allow for rearward or proximal movement of the safety shield 16. Conversely, if the clip door 18 is in the open position, the clip door 18 will be positioned at least partially above the top wall 87. Any attempt to move the safety shield 16 rearward in a proximal direction will force the top wall 87 to engage with the clip door 18 and prevent further proximal movement. As described above, if the safety shield 16 is not in a rearward position, actuation of the trigger assembly 35 and activation of the main drive 29 will be prevented.
When the safety shield 16 is depressed in a rearward position, the top wall 87 will cover at least a portion of the clip door 18.
As shown in
As illustrated in
Returning to
As shown in
The interaction between the guide slot 102 and projection 104 stabilizes the movement of the hammer 30 as it reciprocates along a longitudinal path within the barrel 14. The projection 104 forces the hammer 30 to follow the path of the guide slot 102. Even if force is not evenly applied to the hammer head 97 or shaft 96 (e.g., if a clip 42A becomes misaligned or does not break evenly from the string 44), the hammer 30 will not be deflected from its longitudinal path. Advantageously, the relatively low surface area of the projection 104 allows the projection to stabilize the hammer 30 without significantly increasing the frictional resistance against the hammer 30 moves through the barrel 14.
Alternatively, some embodiments may require the guide pin 106 to be permanently joined to the pin hole 108. Still other embodiments may require the guide pin 106 to be integrally formed with the hammer 30.
In some embodiments, the guide slot 102 includes a first guide slot 102A and second guide slot 102B defined within the first inner sidewall 98 and second inner sidewall 100, respectively.
Formed at the end of the support pin 110 is a flared member 112. The flared member 112 at least partially covers the safety shield 16 and prevents the shield 16 from disengaging or sliding off of the support pin 110 during use.
In some embodiments, the shield channel 114 has a longitudinal length 116 greater than its vertical height 118. Conversely, in those embodiments, the flared member 112 may have a lateral width 118 less than its height 120.
In some embodiments, the height 120 of the flared member 112 should be equal to or lesser than the longitudinal length 116 of the shield channel 114. Similarly, the lateral width 122 of the flared member should be equal to or lesser than the shield channel width 118. During operation of the clip applying apparatus 10, the flared member 112 will prevent the safety shield 16 from shifting in alignment. When removal of the safety shield 16 is desired (e.g., during repair or service of the clip applying apparatus 10), the safety shield 16 may be rotated about the support pin 110 until the longitudinal length 116 of the shield channel 114 is aligned with the flared member height 120. Upon alignment of the shield channel length 116 and flared member height 120, the shield member 16 may be pulled laterally past the support pin 110 and flared member 112.
Optionally, the flared member 112 may be a removable element, selectively fixed to the support pin 110. In such embodiments, the flared member 112 may assume any shape in which the vertical height 118 exceeds the shield channel width.
While the making and using of various embodiments of the present invention are discussed in detail, it should be appreciated that the present invention provides many applicable inventive concepts that is embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention. It is understood that numerous changes in the arrangement and construction of parts and steps may be made by one of ordinary skill in the art without departing from the spirit and scope of the present invention as claimed herein.