Clip for rib stabilization

Information

  • Patent Grant
  • 9237910
  • Patent Number
    9,237,910
  • Date Filed
    Monday, January 28, 2013
    12 years ago
  • Date Issued
    Tuesday, January 19, 2016
    9 years ago
  • CPC
  • Field of Search
    • US
    • 606 074000
    • 606 075000
    • 606 324000
    • 606 228000
    • 606 233000
    • 606 280-299
    • 606 070000
    • 606 071000
    • 606 905000
    • CPC
    • A61B17/8076
    • A61B17/82
    • A61B17/80
    • A61B17/8085
  • International Classifications
    • A61B17/56
    • A61B17/58
    • A61B17/064
    • A61B17/84
    • A61F2/30
    • A61B17/80
    • Term Extension
      164
Abstract
System, including methods, apparatus, and kits, for rib stabilization. The system may comprise a clip member having a bridge region and a pair of leaf portions connected to each other by the bridge region. The clip member may be configured to be placed on a rib bone with the leaf portions disposed on opposite sides of the rib bone. The system also may comprise a securing member, such as a suture, to attach the clip member to the rib bone, with the securing member extending at least twice between the leaf portions.
Description
INTRODUCTION

The rib cage, or thoracic cage, is composed of bone and cartilage that surround the chest cavity and organs therein, such as the heart and the lungs. In humans, the rib cage typically consists of 24 ribs (interchangeably termed rib bones), twelve thoracic vertebrae, the sternum (or breastbone), and the costal cartilages. The ribs articulate with the thoracic vertebrae posteriorly and, with the exception of the bottom two pairs of ribs (the floating ribs), are connected to the sternum anteriorly using the costal cartilages.


One or more ribs may need to be stabilized temporarily after a thoracotomy, which is a surgical incision through the chest wall to provide access to the chest cavity. For example, a rib may sustain an iatrogenic fracture, that is, a fracture induced inadvertently by a surgeon. More particularly, a rib may be fractured by a surgeon when the thoracic cage is deformed to create an entry site to the chest cavity by spreading ribs and/or urging apart the halves of a cut sternum. In other cases, a surgeon may choose to perform an osteotomy by placing a cut through one or more ribs to provide better access to the chest cavity and/or to relieve pressure on the ribs. In any event, the chest cavity may be accessed medially (through the sternum), posterolaterally (between ribs in a back region of the chest wall), anterolaterally (between ribs in a front region of the chest wall), or the like, and one or more ribs near any of these positions may be fractured or cut during surgery.


Implants have been developed for rib fixation in trauma patients, particularly to treat flail chest produced by fracture of multiple adjacent ribs. However, such implants may not be necessary or desirable when only one or two ribs need to be stabilized, particularly when rib stabilization is only an ancillary procedure to be performed during a surgery.


Therefore, a rib stabilization system is needed for surgically-created rib discontinuities.


SUMMARY

The present disclosure provides a system, including methods, apparatus, and kits, for rib stabilization. The system may comprise a clip member having a bridge region and a pair of leaf portions connected to each other by the bridge region. The clip member may be configured to be placed on a rib bone with the leaf portions disposed on opposite sides of the rib bone. The system also may comprise a securing member, such as a suture, to attach the clip member to the rib bone, with the securing member extending at least twice between the leaf portions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a view of selected aspects of an exemplary rib stabilization system including a clip member disposed on a fractured rib bone and attached with a securing member (e.g., a suture loop), in accordance with aspects of the present disclosure.



FIG. 2 is a view of the rib stabilization system of FIG. 1, taken generally as in



FIG. 1 but in the absence of the securing member and with the clip member present on the rib bone as a larger form, before detachment of a pair of integral drill guides from the clip member to produce the smaller form shown in FIG. 1, in accordance with aspects of the present disclosure.



FIG. 3 is a front elevation view of the clip member of FIG. 2.



FIG. 4 is a back elevation view of the clip member of FIG. 2.



FIG. 5 is an end view (a right side view) of the clip member of FIG. 2, taken generally along line 5-5 of FIG. 4 and with the securing member of FIG. 1 preloaded in the clip member, before the free ends of the securing member are tied together.



FIG. 6 is a top view of the clip member of FIG. 2, taken after installation of the securing member as in FIG. 1.



FIG. 7 is a front elevation view of the rib stabilization system of FIG. 1 illustrating how the securing member can be hooked onto a hitching bracket of the clip member to tighten the securing member and compress the rib bone axially, in accordance with aspects of the present disclosure.



FIG. 8 is end view of the rib stabilization system of FIG. 1, taken generally along line 8-8 of FIG. 7 through the rib bone.



FIG. 9 is a front elevation view of selected aspects of another exemplary rib stabilization system including another exemplary embodiment of a clip member disposed on a fractured rib bone and attached with a securing member, in accordance with aspects of the present disclosure.



FIG. 10 is a perspective view of an exemplary embodiment of an implant for rib stabilization, with the implant including a pair of clip members connected integrally by a spanning member, in accordance with aspects of the present disclosure.





DETAILED DESCRIPTION

The present disclosure provides a system, including methods, apparatus, and kits, for rib stabilization. The system may comprise a clip member having a bridge region and a pair of leaf portions connected to each other by the bridge region. The clip member may be configured to be placed on a rib bone with the leaf portions disposed on opposite sides of the rib bone. The system also may comprise a securing member, such as a suture, to attach the clip member to the rib bone, with the securing member extending at least twice between the leaf portions.


An exemplary method of rib stabilization is provided. In the method, a clip member may be selected. The clip member may have a bridge region and a pair of leaf portions (e.g., a proximal leaf portion and a distal leaf portion) connected to each other by the bridge region. For example, the clip member may be U-shaped. The clip member may be disposed on a rib bone, with the leaf portions disposed on opposite sides of the rib bone. The clip member may (or may not) span a discontinuity of the rib bone. The clip member may be attached to the rib bone with a securing member, such as a suture, that extends between the leaf portions at least twice (e.g., exactly twice), and through the rib bone at least twice (e.g., exactly twice). The securing member may (or may not) span a discontinuity of the rib bone. In some embodiments, the securing member may be hooked onto a bracket of the clip member to tighten the securing member. In some embodiments, the securing member may extend along the rib bone through a retainer of the distal leaf portion. In some embodiments, the clip member may include at least one or a pair of integral drill guides that are detached from the proximal leaf portion after holes are formed through the rib bone along axes defined by the drill guide(s). In some embodiments, the securing member may be centered around an axis that extends through the bridge region, such as orthogonally through the bridge region.


An exemplary system for rib stabilization is provided. The system may comprise a clip member having a bridge region and a proximal leaf portion and a distal leaf portion connected to each other by the bridge region. The clip member may be configured to be placed on a rib bone with the leaf portions disposed on opposite sides of the rib bone. The system also may comprise a securing member to attach the clip member to the rib bone, with the securing member including a suture. The clip member may, for example, have any combination of a bracket to engage the suture (e.g., with the bracket configured to permit the suture to be hooked onto the bracket to tighten the securing member), a retainer provided by the distal leaf portion to hold the suture, and/or integral drill guides that are detachable after use, among others.


The rib stabilization system disclosed herein may have substantial advantages over other approaches to rib repair. The advantages may include any combination of the following: faster and easier installation, better conformability of the implant to a rib bone, bioresorbability, less stress shielding of the rib bone (to produce more rapid healing), and/or adjustable axial compression of the rib bone, among others.


These and other aspects of the present disclosure are described in the following sections: (I) exemplary rib stabilization system, (II) methods of rib stabilization, (III) exemplary system combinations, and (IV) examples.


I. Exemplary Rib Stabilization System

This section describes an exemplary rib stabilization system 20; see FIGS. 1-8. The system may include a stabilizing implant or device 22 comprising at least one clip member 24. The clip member (and/or implant/device) may be attached to a rib bone 26 with a securing member 28 that includes a suture, with the clip member (and/or implant/device) spanning a discontinuity 30, such as a fracture or cut, in the rib bone. (The clip member interchangeably may be termed a clip, a plate, an implant, and/or a device.)


Clip 24 may have a pair of leaf portions 32, 34 connected to each other by a bridge region 36. Each leaf portion interchangeably may be termed a mounting portion and/or a clip region, and may include a plate region. When the clip is disposed on rib bone 26, the leaf portions may be disposed on opposite sides 38, 40 of the rib bone, to opposingly flank the rib bone. Proximal leaf portion 32 (interchangeably termed the front region of the clip) may be positioned adjacent outer side 38 of the rib bone and adjacent/against an outer surface region thereof (i.e., relatively closer to the surgeon and/or the exterior of the recipient of the clip (the subject/patient)). Distal leaf portion 34 (interchangeably termed the back or rear region of the clip) may be positioned on inner side 40 of the rib bone and adjacent/against an inner surface region thereof (i.e., relatively farther from the surgeon and/or the exterior of the recipient of the clip and relatively closer to (or in) the chest cavity). The outer and inner surface regions of the rib bone may be anterior, lateral, or posterior surface regions, among others, of a rib bone and/or rib cage. The leaf portions may face each other and may be separated by a receiving space for a rib bone. The leaf portions may project the same or different distances from the bridge region to form a U-shaped structure. For example, proximal leaf portion 32 can project farther from the bridge region than the distal leaf portion, to extend to a more caudal/inferior position on the rib bone. Each leaf portion may or may not project past the inferior/caudal boundary of the rib bone.


Bridge region 36 may be disposed on a superior (or rostral) side 42 of the rib bone, adjacent/against a superior/rostral surface region thereof that extends between the outer surface region and the inner surface region of the rib bone. Alternatively, the clip may be installed in an inverted configuration, with bridge region 36 disposed on an inferior (or caudal) side 44 of rib bone 26, adjacent/against an inferior/caudal surface region thereof that extends between an outer surface region and an inner surface region of the rib bone. Accordingly, the bridge region may be described as a top region (or a bottom region) of the clip.


Securing member 28 may extend at least twice between proximal leaf portion 32 and distal leaf portion 34. The securing member may extend twice between the leaf portions on a pair of separate paths through rib bone 26, namely, through each of a pair of holes 46, 48 formed in rib bone 26. Each hole may be a bore or through-hole that extends from outer side 38 to inner side 40 of rib bone 26. The holes may be spaced longitudinally along rib bone 26 from each other, and may be formed on respective opposite sides of rib discontinuity 30, or may be formed on the same side of a rib discontinuity (see Example 2).


Securing member 28, alone or in combination with clip 24, may form a loop 50. The loop may be centered around an axis 52 (interchangeably termed a receiving axis) that extends through the bridge region and through rostral/superior and caudal/inferior surface regions of the rib bone (see FIG. 6). For example, to form a complete circuit, the loop may extend on inner side 40, generally axially along the rib bone and over/through distal leaf portion 34, to hole 46, then through hole 46 to outer side 38, next generally axially along the rib bone on outer side 38 and over proximal leaf portion 32, to hole 48, then through hole 48, and back to distal leaf portion 34. The securing member thus may attach the clip to the rib bone without traversing the superior or inferior sides of the rib bone outside bone.


The securing member may include one or more pieces/lengths of suture (i.e., a surgical thread, string, cord, wire, cable, etc.). In other words, the suture may be any long, flexible piece(s) of material capable of extending along various nonlinear paths, such a path extending at least twice through a rib bone. The suture may be formed of natural and/or artificial materials, such as a bioresorbable or non-resorbable polymer (e.g., plastic), metal, or the like. Each piece/length of suture may be composed of a single fiber/filament or a bundle of two or more fibers/filaments. Exemplary securing members may include a single length/piece of suture (or a pair of lengths/pieces of suture) having a pair of free ends 54 that can be fastened to each other (see FIGS. 5 and 6). The ends can be fastened to each other by tying the ends together to form a knot, twisting the ends together, engagement of the ends with a separate suture-locking device (e.g., a suture clamp, a crimp block, etc.), or the like. In some cases, the securing member may be integrally attached to the clip member, such as by over-molding the clip member around a region(s) of a pre-formed securing member, forming the securing member as a continuous extension of the clip member, or the like.



FIGS. 2-6 show a larger form of clip 24 having a central body region 60 and a pair of integral drill guides 62, 64 (interchangeably termed guide regions). (FIGS. 1, 7, and 8 show a smaller form of the clip lacking the guides.) Each drill guide may define a guide axis 66 along which the tip of a hole-forming tool (a drill), such as a rotary drill or a percussive drill, may be advanced to create one of holes 46, 48 (see FIGS. 1 and 2).


Each drill guide may project laterally from an edge of body region 60 and/or proximal leaf portion 32 of the clip to form a protrusion 68 on an outer surface region of the clip (see FIGS. 2 and 3). The protrusion may be cylindrical. Each drill guide may (or may not) be detachably connected to body region 60 of the clip via proximal leaf portion 32. The drill guide may be continuous with body region 60 of the clip. For example, clip 24 may form a frangible site 70 connecting each drill guide to the proximal leaf portion (see FIGS. 3 and 4), which allows the drill guide to be broken off of the clip after use. The frangible site may, for example, be a groove, opposing grooves formed in inner and outer surface regions of the clip, and/or a set of perforations, among other others, that allow each drill guide to be removed from the clip (e.g., snapped off) after formation of a corresponding hole 46 or 48, and before a surgical incision is closed over the clip. In other embodiments, each drill guide may be provided by a discrete guide piece that is attached to a body piece of the clip.


Each drill guide may define an aperture 72 that is coaxial with guide axis 66 (see FIGS. 2 and 3). The aperture may be elongated parallel to guide axis 66, such that guides 62 and 64 project away from the rib bone (see FIG. 2), in a direction transverse to a plane defined by a plate region of proximal leaf portion 32, and much farther than the average thickness of the proximal leaf portion. Aperture 72 may be open not only at both ends but also along a lateral side thereof. For example, each guide may define an axial slot 74 (interchangeably termed a suture slot) formed in a wall of protrusion 68 and contiguous with aperture 72 (see FIG. 3). Slot 74 may be bounded by a lateral edge of proximal leaf portion 32 at the base of the guide, which allows securing member 28 to be threaded axially through aperture 72, and then removed from the aperture/guide, at a suitable time, by lateral motion of the securing member and/or guide. Guides 62 and 64 may be slotted so that securing member 28 is temporarily held in place while the surgeon passes the securing member from inward of the rib bone to outward of the rib bone. The guides then can be snapped off once the securing member has been passed and, optionally, tied. The guides can ensure proper location and depth of holes 46, 48. For example, each guide can function as a stop to prevent a drill from being advanced too far past the inner surface region of the rib bone.



FIGS. 2, 3, and 5-8 show additional projections that may be formed on the front side of clip 24. The clip may have a hitching bracket 80 that projects from an outer surface region 82 of proximal leaf portion 32. (Bracket 80 interchangeably may be termed a receiver, a hitching post, or a peg.) Bracket 80 may form a lip 84 that projects upwards in a spaced relation from a plate region of proximal leaf portion 32 to create a recess 88 (interchangeably termed a slot) between the lip and the plate region (see FIG. 5). Securing member 28 can be hooked onto bracket 80 by urging the securing member over lip 84 and into recess 88, to increase tension on (i.e., tighten) the securing member (also see FIGS. 7 and 8). The clip also may have a pair of ridges 90 (interchangeably termed suture guide ridges) formed on outer surface region 82 adjacent respective guides 62, 64 (see FIGS. 3, 6, and 8). The ridges may support end regions of securing member 28 during installation and may direct the end regions centrally on the proximal leaf portion, to help to ensure that the securing member is in the correct place during installation. Also, ridges 90 may restrict the clip from twisting about the long axis of the rib bone by engaging the securing member to prevent the securing member from slipping to a position below the ridges (e.g., caudal to the proximal leaf portion on the rib bone).



FIGS. 4, 5, and 6 show a retainer 100 formed by distal leaf portion 34. The retainer may project from an outer surface region 102 of a plate region of distal leaf portion 34, and may have a tubular structure. The retainer may form an opening, such as a channel 104, to receive and hold securing member 28. The channel may define an axis 106 that extends parallel to a local long axis of rib bone 26, and parallel to a through-axis 110 defined by clip 24. Through-axis 110 is at least generally parallel to, and at least generally equidistant from the leaf portions and the bridge region of the clip. Securing member 28 may be pre-loaded into retainer 100 before the clip is disposed on rib bone 26 (see FIG. 5).



FIG. 3 shows further aspects of the clip's geometry. The clip may be made flexible by a relatively thinner bridge region, which may be stiffened by one or more rib members 120 (interchangeably termed stiffening ribs). The rib members may be formed on an outer (or inner) surface region of the bridge region. The average thickness of the bridge region may be less than the average thickness of the plate regions of one or both leaf portions, as measured between the outer and inner surface regions of the clip. In some cases, the bridge region may have an average thickness that is no more than about 75% or 50% of the average thickness of the plate regions of the leaf portions.



FIGS. 7 and 8 illustrate the forces generated by the tension of securing member 28. The tension may be created and/or increased by fastening the free ends of the securing member to each other and/or by hooking the fastened securing member onto bracket 80. In these views, securing member 28 is shown in phantom outline for a less-tensioned configuration, before being hooked onto bracket 80, and with solid lines for a more-tensioned configuration that removes any slack in the fastened securing member, after being hooked onto bracket 80. Tension on the securing member may apply compressive force to rib bone 26 longitudinally between holes 46, 48, indicated by arrows at 122 (see FIG. 7). Also, tension on the securing member may apply rostral-caudal force, indicated by an arrow at 124, that urges bridge region 36 toward rib bone 26 (and clip member 24 is urged caudally/inferiorly on the rib bone) (see FIG. 8). Rostral-caudal forces may be generated with the securing member by positioning holes 46, 48 more caudally/inferiorly along rostral-caudal axis 126 than bracket 80 and retainer 100 (see FIG. 8) (and/or farther from bridge region 36 than the bracket and retainer. Further, the tensioned securing member may apply compressive force on leaf portions 32, 34, indicated by force arrows at 128, to urge the leaf portions toward each other (and toward respective, adjacent outer or inner surface regions of rib bone 26).


Hooking the suture loop onto the hitching bracket may apply compressive forces to the rib bone and/or clip along three generally orthogonal axes. The compressive forces may include axial compression of the rib bone at the fracture or cut in the rib bone. Also, the compressive forces may urge the proximal and distal leaf portions of the clip toward each other against the rib bone and may create a downward force pulling the bridge region to the rib bone, thereby pulling the clip tight to the rib bone on three sides.


The clip may have features focused on making installation easy, repeatable, and stable. The features may include a general “U” shape in one or more lengths and widths that may be contoured further, such as by thermoforming, to fit a variety of rib shapes and sizes (e.g., thicknesses).


The clip and securing member of the present disclosure may be formed of any suitable biologically compatible material, such as metal, plastic, or the like. In exemplary embodiments, the clip is molded of plastic (e.g., from a bioresorbable polymer), and both the clip and the securing member are bioresorbable. (The terms “bioresorbable” and “bioabsorbable” are interchangeable.) Further aspects of rib stabilization and of clip members and securing members that may be suitable are described elsewhere in the present disclosure, such as in Sections II and IV, and in the references identified above under Cross-References, which are incorporated herein by reference, namely, U.S. Provisional Patent Application Ser. No. 61/590,955, filed Jan. 26, 2012; and U.S. Pat. No. 7,695,501, issued Apr. 13, 2010.


II. Methods of Rib Stabilization

This section describes exemplary methods of rib stabilization with a device or implant that includes at least one clip attached to bone with a flexible securing member (e.g., a suture). The steps described in this section may be performed in any suitable order and combination and with any of the apparatus, features, or approaches described elsewhere in the present disclosure.


A rib bone to be stabilized may be selected. The rib bone may have at least one discontinuity, such as a fracture or cut, among others. The discontinuity may be located at any suitable position along the selected rib bone, such as a medial, anterior, lateral, or posterior position of a rib cage that includes the rib bone. In some cases, the fracture or cut may be produced during a surgical procedure, either deliberately or inadvertently by a surgeon. The discontinuity may be produced and stabilized during the same surgical operation.


An implantable device for rib stabilization may be selected. The device may include one or more clip members. The clip may be a selected from a set of clips having different sizes/shapes (i.e., different separation distances between the leaf portions, different lengths/widths of leaf portions, different radii of curvature for the bridge region, etc.). In some cases, different clips can be connected together on a multi-limbed (e.g., Y-shaped) bar that may be used by the surgeon as a sizer. Once the correct size is determined the surgeon can snap the clip at the connection point located at the base of the clip, removing the clip from the sizer. The remaining clips and sizer may be discarded or used on another fracture/cut within the same case (i.e., on the same subject during the same surgery).


The selected clip is prepared for installation. The surgeon may prep the clip for installation by selecting suture and feeding the suture through a retainer, such as a suture channel, located in the back of the clip, or the clip may be supplied pre-loaded with suture.


The clip also may be thermoformed intraoperatively to provide a better fit to the rib bone. Heating the clip may be performed off the rib bone, such as in a bath or oven, or on the rib bone, such as with a heat pack or heat gun, to render the clip more conformable. The clip may be composed of a polymer having a relatively low glass transition temperature (e.g., less than about 75° C. or 65° C., among others). The clip (or a region thereof) may be heated above the glass transition temperature, and then the heated clip may be reshaped, for example, compressed (or expanded) to urge the leaf portions closer together (or farther apart). The clip may be reshaped off or on the rib bone. In exemplary embodiments, the clip may be composed of polylactic acid, which has a glass transition temperature of about 60° C.


The clip loaded with a length of suture may be positioned on the rib bone with the discontinuity generally centered between the left and right ends of the clip. The suture ends may be kept on the front side of the rib (e.g., adjacent the proximal leaf portion of the clip). A clamp and/or a surgical assistant may hold the clip in place while the surgeon drills a pair of holes through the rib bone. The holes may be drilled through apertures (such as elongated apertures or slots) defined by the clip, for example, along guide axes defined by integral drill guides. Alternatively, the holes may be drilled at positions outside the clip's footprint, such as lateral to the proximal leaf portion on opposing sides thereof. The holes may be positioned more inferiorly/caudally, and/or farther from the bridge region, than bracket 80 and/or retainer 100.


After the holes are drilled in the rib bone, a suture passer/retriever may be used to pass (e.g., pull) an end region of the suture through each hole. A suture end region disposed adjacent each end of the suture retainer of the clip may be passed through a corresponding hole in the rib bone. Each suture end region may be pulled from inward of the rib bone to outward of the rib (i.e., from the inner side to the outer side of the rib bone).


After both ends of the suture are passed through respective holes in the rib bone, the surgeon may tie the ends of the suture together to form a loop. The loop may create compression at the rib discontinuity and flex the clip such that the leaf portions are pulled together, and tight against the rib bone. The surgeon then can tighten the suture (and the stability of the rib and clip) by pulling an outer portion of the suture loop upward in front of the clip and hooking the suture loop onto the hitching bracket of the clip, where the suture can rest in the slot formed by the bracket.


If the selected clip has removable drill guides, the guides can be removed at any suitable time. In any event, with the suture tied and elevated into the slot of the hitching bracket, the stability of the discontinuity may be optimized. The suture may create axial compression of the rib at the discontinuity, may pull the clip downward from the front and the back, bringing the top of the clip tight against the rib. The clip may be squeezed from the front and back, bringing the front and back of the clip tight against the outer and inner rib surface regions.


Further aspects of rib stabilization are described elsewhere in the present disclosure and in the references identified above under Cross-References, which are incorporated herein by reference, namely, U.S. Provisional Patent Application Ser. No. 61/590,955, filed Jan. 26, 2012; and U.S. Pat. No. 7,695,501, issued Apr. 13, 2010.


III. Exemplary System Combinations

The apparatus disclosed herein may be utilized and/or grouped in any suitable manner to provide a system, which may be supplied as a kit. The system (or kit) may include one or more clip members and one or more securing members. The system also or alternatively may include any combination of the following: a drill to form holes in bone, one or more clamps to engage and hold the clip members during installation, a suture passer/retriever, and instructions for use. Each system component may be configured for single use (e.g., clip members and securing members) or for multiple use (e.g., the drill, clamps, and/or suture/retriever). Some or all of the components of each system (or kit) may be provided in a sterile condition, such as packaged in a sterile container.


IV. EXAMPLES

The following examples describe selected aspects and embodiments of the present disclosure related to implants for rib stabilization. These examples are included for illustration and are not intended to limit or define the entire scope of the present disclosure.


Example 1
Clip Member with Longer Bridge Region

This example describes an exemplary clip member 140 having a bridge region 36 that has a greater characteristic dimension, measured along rib bone 26, than a loop formed by securing member 28; see FIG. 9.


Clip 140 may have any of the features described above for clip 24. For example, the clip may have a U-shaped structure formed by proximal leaf portion 32, distal leaf portion 34, and bridge region 36. The proximal leaf portion may define a pair of apertures 142, 144 through which holes 46, 48 may be drilled in rib bone 26. The apertures, which may or may not be elongated to provide slots, may be longer and/or larger in diameter, than holes 46, 48, to permit axial compression of the rib bone when the securing member is tightened. In other words, the position of holes 46, 48 with respect to apertures 142, 144 may change as a region of rib bone 26 between holes 46, 48 is compressed axially. The length or characteristic dimension of the clip, measured parallel to through-axis 110, may be greater at bridge region 36 than the distance between holes 46, 48 and/or apertures 142, 144. In other embodiments, proximal leaf portion 32 may lack apertures 142, 144 and may taper more aggressively as the proximal leaf portion projects from the bridge region, such that holes 46, 48 can be formed lateral to, instead of through, the proximal leaf portion. Stated differently, holes 46, 48 can be formed outside the footprint of the clip on bone (i.e., outside the footprint of the proximal and/or distal leaf portions).


Bridge region 36 of clip 140 may define one or more openings 146 that expose rostral/superior surface areas 148 of the rib bone. Access to areas 148 may facilitate re-attachment of intercostal muscle to the rib bone.


Example 2
Implant with Pair of Clip Members

This example describes an exemplary implant 160 having a pair of clip members 162, 164 connected by a spanning member 166; see FIG. 10.


Each clip member 162, 164 may have any combination of the features described elsewhere herein for clips, such as leaf portions 32, 34, bridge region 36, a U-shape, hitching bracket 80, and apertures 142, 144. However, spanning member 166 may be positioned to span a discontinuity in the rib bone. (Each of clip members 162, 164 may or may not also span a discontinuity in the rib bone.) The spanning member may be attached to the rib bone with a securing member. In some cases, each clip member and the spanning member may be attached with a respective, distinct securing member.


Example 3
Selected Embodiments

This example describes selected embodiments of the present disclosure, presented as a series of numbered paragraphs.


1. A system for rib stabilization, comprising: (A) a clip member having a bridge region and a proximal leaf portion and a distal leaf portion connected to each other by the bridge region, the clip member being configured to be placed on a rib bone with the leaf portions disposed on opposite sides of the rib bone; and (B) a securing member to attach the clip member to the rib bone, the securing member including a suture.


2. The system of paragraph 1, wherein the distal leaf portion includes a retainer to hold the securing member.


3. The system of paragraph 2, wherein the retainer defines an axis that is parallel to a plane defined by a plate region of the distal leaf portion.


4. The system of paragraph 2 or 3, wherein the retainer defines a channel that extends along the axis.


5. The system of any of paragraphs 2 to 4, wherein a plate region of the distal leaf portion has an outer surface region, and wherein the retainer projects from the outer surface region.


6. The system of any of paragraphs 2 to 5, wherein the clip member defines a through-axis along which a rib bone extends after the clip member is placed on the rib bone, and wherein the retainer defines an aperture that is parallel to the through-axis.


7. The system of any of paragraphs 2 to 6, wherein the securing member extends through an aperture defined by the retainer.


8. The system of any of paragraphs 2 to 7, wherein the securing member is axially slideable in the retainer.


9. The system of any of paragraphs 1 to 8, wherein ends of the securing member are tied to one another.


10. The system of any of paragraphs 1 to 9, wherein the securing member is disposed in a loop.


11. The system of paragraph 10, wherein the loop is a suture loop.


12. The system of any of paragraphs 1 to 11, wherein the proximal leaf portion includes a bracket configured to engage the securing member.


13. The system of paragraph 12, wherein the securing member has a pair of ends, and wherein the bracket is configured to hold the securing member after the ends of the securing member have been fastened to each other and the securing member has been hooked onto the bracket.


14. The system of paragraph 12 or 13, wherein the securing member is disposed in a loop that is hooked onto the bracket.


15. The system of paragraph 14, wherein unhooking the loop from the bracket loosens the securing member.


16The system of any of paragraphs 12 to 15, wherein the bracket projects upward when the bridge region is disposed above the leaf portions.


17. The system of any of paragraphs 1 to 16, wherein the securing member extends between the leaf portions at least twice without overlapping the bridge region.


18. The system of any of paragraphs 1 to 17, wherein the securing member is centered around an axis that extends through the bridge region.


19. The system of paragraph 18, wherein the axis is orthogonal to the bridge region.


20. The system of any of paragraphs 1 to 17, wherein the securing member extends between the leaf portions exactly twice and forms a loop.


21. The system of any of paragraphs 1 to 20, wherein the securing member is engaged with each leaf portion.


22. The system of paragraph 21, wherein the securing member is not in contact with the bridge region.


23. The system of any of paragraph 1 to 22, wherein the clip member includes at least one integral drill guide connected to a leaf portion.


24. The system of paragraph 23, wherein each drill guide is attached to the proximal leaf portion by a frangible connection.


25. The system of paragraph 24, wherein the proximal leaf portion thins at the frangible connection.


26. The system of any of paragraphs 23 to 25, wherein the clip member includes a pair of detachable drill guides.


27. The system of any of paragraphs 23 to 26, wherein each drill guide defines an aperture that is elongated transverse to a plane defined by a plate region of the proximal leaf portion.


28. The system of any of paragraphs 23 to 27, wherein each drill guide defines an aperture that is open at opposing ends and open along a side of the drill guide to form a slot.


29. The system of any of paragraphs 1 to 28, wherein the clip member is formed of a bioresorbable polymer.


30. The system of any of paragraphs 1 to 29, wherein the securing member is formed of a bioresorbable polymer.


31. The system of any of paragraphs 1 to 30, wherein the securing member includes a pair of ends tied together to form a knot.


The disclosure set forth above may encompass multiple distinct inventions with independent utility. Although each of these inventions has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the inventions includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in applications claiming priority from this or a related application. Such claims, whether directed to a different invention or to the same invention, and whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the inventions of the present disclosure. Further, ordinal indicators, such as first, second, or third, for identified elements are used to distinguish between the elements, and do not indicate a particular position or order of such elements, unless otherwise specifically stated.

Claims
  • 1. A method of rib stabilization, comprising: selecting a clip member having a bridge region and a pair of leaf portions connected to each other by the bridge region;disposing the clip member on a rib bone such that the leaf portions at least partially cover a discontinuity of the rib bone and are disposed on opposite sides of the rib bone from one another;creating a pair of holes through the rib bone, wherein the discontinuity is located intermediate the pair of holes; andfastening ends of a securing member to one another to form a loop that extends through each of the holes and connects the clip member to the rib bone.
  • 2. The method of claim 1, wherein the securing member includes a suture.
  • 3. The method of claim 2, wherein the step of fastening ends includes a step of tying a pair of suture ends to one another.
  • 4. The method of claim 1, wherein the leaf portions include a proximal leaf portion and a distal leaf portion, and wherein the distal leaf portion includes a retainer for the securing member.
  • 5. The method of claim 4, wherein the distal leaf portion includes a plate region that defines a plane, and wherein the loop extends through the retainer parallel to the plane.
  • 6. The method of claim 4, wherein the securing member extends through the retainer parallel to a longitudinal axis of the rib bone.
  • 7. The method of claim 1, wherein the clip member includes a pair of integral drill guides connected to a proximal leaf portion, further comprising a step of forming holes through the rib bone coaxial with the drill guides, and a step of detaching the drill guides from the proximal leaf portion.
  • 8. The method of claim 1, wherein the clip member includes a body formed collectively by the leaf portions and the bridge region, and wherein the bracket projects from the body.
  • 9. The method of claim 1, wherein the leaf portions include a proximal leaf portion having an outer surface region that faces away from the rib bone, and wherein the step of hooking includes a step of hooking the loop onto a bracket projecting from the outer surface region of the proximal leaf portion.
  • 10. The method of claim 1, further comprising a step of hooking the loop onto a bracket of the clip member to tension the loop.
  • 11. The method of claim 10, wherein the step of hooking the loop applies axial compression to the rib bone between the pair of holes.
  • 12. The method of claim 10, wherein the step of hooking the loop includes a step of producing a tensioned configuration of the securing member that urges the bridge region toward the rib bone, urges the leaf portions toward each other, and applies axial compression to the rib bone.
  • 13. The method of claim 10, wherein the step of hooking produces a configuration in which an outer portion of the loop extends from an outer end of one of the holes to the bracket and from the bracket to an outer end of the other hole, without extending to an inner side of the rib bone.
  • 14. The method of claim 13, wherein the step of hooking the loop repositions a central region of the outer portion of the loop closer to the bridge region.
  • 15. The method of claim 14, wherein the leaf portions include a proximal leaf portion and a distal leaf portion, and wherein the proximal leaf portion includes the bracket and the distal leaf portion includes a retainer for the securing member, and wherein the pair of holes in the rib bone are located inferior to the bracket and the retainer after the step of hooking.
  • 16. The method of claim 1, wherein the leaf portions are disposed on an inner side and an outer side of the rib bone, and wherein the loop extends from the inner side to the outer side of the rib bone only via the pair of holes.
  • 17. A method of rib stabilization, comprising: selecting a clip member having a bridge region and proximal and distal leaf portions connected to each other by the bridge region, the distal leaf portion including a retainer;disposing the clip member on a rib bone with the proximal and distal leaf portions disposed on respective outer and inner sides of the rib bone and each at least partially covering a discontinuity of the rib bone such that the proximal and distal leaf portions face one another at the discontinuity, the rib bone extending through the clip member along a through-axis; andattaching the clip member to the rib bone with a securing member that extends at least twice between the leaf portions and that extends through the retainer of the distal leaf portion substantially parallel to the through-axis.
  • 18. The method of claim 17, wherein the step of attaching the clip member includes a step of fastening ends of the securing member to each other and a step of hooking the securing member onto a bracket of the clip member after the step of fastening ends.
  • 19. The method of claim 18, wherein the step of hooking applies axial compression to the rib bone.
  • 20. The method of claim 18, wherein the step of hooking urges the bridge region toward the rib bone and urges the leaf portions toward each other.
  • 21. A method of rib stabilization, comprising: selecting a clip member having a bridge region and also having a pair of leaf portions that are connected to each other by the bridge region;disposing the clip member on a rib bone such that the leaf portions at least partially cover a discontinuity of the rib bone and are disposed on opposite sides of the rib bone; andfastening ends of a securing member to one another to form a loop that connects the clip member to the rib bone;wherein the loop does not cross itself at any position spaced from the fastened ends of the loop.
CROSS-REFERENCE TO PRIORITY APPLICATIONS

This application is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/590,955, filed Jan. 26, 2012, which is incorporated herein by reference in its entirety for all purposes. The following patent is incorporated herein by reference in its entirety for all purposes: U.S. Pat. No. 7,695,501, issued Apr. 13, 2010.

US Referenced Citations (407)
Number Name Date Kind
20503 Morse Jun 1858 A
820503 Krengel et al. May 1906 A
869697 Eilhauer et al. Oct 1907 A
1105105 Sherman Jul 1914 A
1156440 Smith Oct 1915 A
1345425 Wells Jul 1920 A
1789060 Weisenbach Jan 1931 A
1889239 Crowley Nov 1932 A
1950799 Jones Mar 1934 A
2406832 Hardinge Sep 1946 A
2443363 Toensend et al. Jun 1948 A
2489870 Dzus Nov 1949 A
2494229 Collison Jan 1950 A
2496126 Haboush Jan 1950 A
2500370 McKibbin Mar 1950 A
2500993 Mason Mar 1950 A
2526959 Lorenzo Oct 1950 A
2579968 Rush Dec 1951 A
2580821 Nicola Jan 1952 A
2583896 Siebrandt Jan 1952 A
2737835 Herz Mar 1956 A
3025853 Mason Mar 1962 A
3072423 Charlton Jan 1963 A
3171518 Bergmann Mar 1965 A
3244170 McElvenny Apr 1966 A
3346894 Lemelson Oct 1967 A
3357432 Sparks Dec 1967 A
3386437 Treace Jun 1968 A
3477429 Sampson Nov 1969 A
3488779 Christensen Jan 1970 A
3489143 Halloran Jan 1970 A
3593709 Halloran Jul 1971 A
3604414 Borges Sep 1971 A
3716050 Johnston Feb 1973 A
3726279 Barefoot et al. Apr 1973 A
3741205 Markolf et al. Jun 1973 A
3759257 Fischer et al. Sep 1973 A
3774244 Walker Nov 1973 A
3842825 Wagner Oct 1974 A
3866458 Wagner Feb 1975 A
3900025 Barnes, Jr. Aug 1975 A
3901064 Jacobson Aug 1975 A
3939497 Heimke et al. Feb 1976 A
3965720 Goodwin et al. Jun 1976 A
4000525 Klawitter et al. Jan 1977 A
4011863 Zickel Mar 1977 A
4055172 Ender et al. Oct 1977 A
4091806 Aginsky May 1978 A
4119092 Gil Oct 1978 A
4135507 Harris Jan 1979 A
4169470 Ender et al. Oct 1979 A
4187840 Watanabe Feb 1980 A
4187841 Knutson Feb 1980 A
4201215 Crossett et al. May 1980 A
4263904 Judet Apr 1981 A
4327715 Corvisier May 1982 A
4364382 Mennen Dec 1982 A
4378607 Wadsworth Apr 1983 A
4388921 Sutter et al. Jun 1983 A
4408601 Wenk Oct 1983 A
RE31628 Allgower et al. Jul 1984 E
4457307 Stillwell Jul 1984 A
4473069 Kolmert Sep 1984 A
4483335 Tornier Nov 1984 A
4484570 Sutter et al. Nov 1984 A
4493317 Klaue Jan 1985 A
4503847 Mouradian Mar 1985 A
4506662 Anapliotis Mar 1985 A
4506681 Mundell Mar 1985 A
4513744 Klaue Apr 1985 A
4565192 Shapiro Jan 1986 A
4565193 Streli Jan 1986 A
4573458 Lower Mar 1986 A
4630601 Harder et al. Dec 1986 A
4651724 Berentey et al. Mar 1987 A
4683878 Carter Aug 1987 A
4703751 Pohl Nov 1987 A
4718413 Johnson Jan 1988 A
4730608 Schlein Mar 1988 A
4733654 Marino Mar 1988 A
4736737 Fargie et al. Apr 1988 A
4743261 Epinette May 1988 A
4750481 Reese Jun 1988 A
4757810 Reese Jul 1988 A
4759350 Dunn et al. Jul 1988 A
4760843 Fischer et al. Aug 1988 A
4794918 Wolter Jan 1989 A
4800874 David et al. Jan 1989 A
4823780 Odensten et al. Apr 1989 A
4828492 Agnone May 1989 A
4867144 Karas et al. Sep 1989 A
4892093 Zamowski et al. Jan 1990 A
4893619 Dale et al. Jan 1990 A
4896661 Bogert et al. Jan 1990 A
4903691 Heinl Feb 1990 A
4905679 Morgan Mar 1990 A
4915092 Firica et al. Apr 1990 A
4923471 Morgan May 1990 A
4926847 Luckman May 1990 A
4943292 Foux Jul 1990 A
4955886 Pawluk Sep 1990 A
4957497 Hoogland et al. Sep 1990 A
4963153 Noesberger et al. Oct 1990 A
4964403 Karas et al. Oct 1990 A
4966599 Pollock Oct 1990 A
4973332 Kummer Nov 1990 A
4978349 Frigg Dec 1990 A
4988350 Herzberg Jan 1991 A
5002544 Klaue et al. Mar 1991 A
5006120 Carter Apr 1991 A
5013314 Firica et al. May 1991 A
5013315 Barrows May 1991 A
5015248 Burstein et al. May 1991 A
5021056 Hofmann et al. Jun 1991 A
5035697 Frigg Jul 1991 A
5041113 Biedermann et al. Aug 1991 A
5042983 Rayhack Aug 1991 A
5049149 Schmidt Sep 1991 A
5053036 Perren et al. Oct 1991 A
5085660 Lin Feb 1992 A
5113685 Asher et al. May 1992 A
5116335 Hannon et al. May 1992 A
5129899 Small et al. Jul 1992 A
5133718 Mao Jul 1992 A
5135527 Ender Aug 1992 A
5139497 Tilghman et al. Aug 1992 A
5147361 Ojima et al. Sep 1992 A
5151103 Tepic et al. Sep 1992 A
5161404 Hayes Nov 1992 A
5176685 Rayhack Jan 1993 A
5190544 Chapman et al. Mar 1993 A
5190545 Corsi et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5201736 Strauss Apr 1993 A
5201737 Leibinger et al. Apr 1993 A
5234431 Keller Aug 1993 A
5254119 Schreiber Oct 1993 A
5261908 Campbell, Jr. Nov 1993 A
5269784 Mast Dec 1993 A
5290288 Vignaud et al. Mar 1994 A
5304180 Slocum Apr 1994 A
5314490 Wagner et al. May 1994 A
5356410 Pennig Oct 1994 A
5364398 Chapman et al. Nov 1994 A
5364399 Lowery et al. Nov 1994 A
5380327 Eggers et al. Jan 1995 A
5413577 Pollock May 1995 A
5413579 Tom Du Toit May 1995 A
5423826 Coates et al. Jun 1995 A
5443483 Kirsch Aug 1995 A
5443516 Albrektsson et al. Aug 1995 A
5468242 Reisberg Nov 1995 A
5474553 Baumgart Dec 1995 A
5487741 Maruyama et al. Jan 1996 A
5487743 Laurain et al. Jan 1996 A
5522902 Yuan et al. Jun 1996 A
5527311 Procter et al. Jun 1996 A
5531745 Ray Jul 1996 A
5534027 Hodorek Jul 1996 A
5545228 Kambin Aug 1996 A
5564302 Watrous Oct 1996 A
5571103 Bailey Nov 1996 A
5578036 Stone et al. Nov 1996 A
5586985 Putnam et al. Dec 1996 A
5591166 Bernhardt et al. Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5603715 Kessler Feb 1997 A
5607426 Ralph et al. Mar 1997 A
5643261 Schafer et al. Jul 1997 A
5643265 Errico et al. Jul 1997 A
5645599 Samani Jul 1997 A
5647872 Gilbert et al. Jul 1997 A
5658283 Huebner Aug 1997 A
5662655 Laboureau et al. Sep 1997 A
5665088 Gil et al. Sep 1997 A
5665089 Dall et al. Sep 1997 A
5674222 Berger et al. Oct 1997 A
5676665 Bryan Oct 1997 A
5676667 Hausman Oct 1997 A
5681313 Diez Oct 1997 A
5702396 Hoenig et al. Dec 1997 A
5707372 Errico et al. Jan 1998 A
5707373 Sevrain et al. Jan 1998 A
5709682 Medoff Jan 1998 A
5709686 Talos et al. Jan 1998 A
5718704 Medoff Feb 1998 A
5718705 Sammarco Feb 1998 A
5720502 Cain Feb 1998 A
5722976 Brown Mar 1998 A
5722978 Jenkins, Jr. Mar 1998 A
5730743 Kirsch et al. Mar 1998 A
5733287 Tepic et al. Mar 1998 A
5735853 Olerud Apr 1998 A
5741258 Klaue et al. Apr 1998 A
5741259 Chan Apr 1998 A
5749872 Kyle et al. May 1998 A
5749873 Fairley May 1998 A
5752958 Wellisz May 1998 A
5772662 Chapman et al. Jun 1998 A
5807396 Raveh Sep 1998 A
5810823 Klaue et al. Sep 1998 A
5810824 Chan Sep 1998 A
5814047 Emilio et al. Sep 1998 A
5853413 Carter et al. Dec 1998 A
D404128 Huebner Jan 1999 S
5855580 Kreidler et al. Jan 1999 A
5871548 Sanders et al. Feb 1999 A
5879389 Koshino Mar 1999 A
5902304 Walker et al. May 1999 A
5904683 Pohndorf et al. May 1999 A
5916216 DeSatnick et al. Jun 1999 A
5919195 Wilson et al. Jul 1999 A
5928234 Manspeizer Jul 1999 A
5931839 Medoff Aug 1999 A
5938664 Winquist et al. Aug 1999 A
5941878 Medoff Aug 1999 A
5951557 Luter Sep 1999 A
5954722 Bono Sep 1999 A
5964763 Incavo et al. Oct 1999 A
5968046 Castleman Oct 1999 A
5968047 Reed Oct 1999 A
5973223 Tellman et al. Oct 1999 A
6001099 Huebner Dec 1999 A
6004323 Park et al. Dec 1999 A
6004353 Masini Dec 1999 A
6007535 Rayhack et al. Dec 1999 A
6007538 Levin Dec 1999 A
6022350 Ganem Feb 2000 A
6027504 McGuire Feb 2000 A
6053915 Bruchmann Apr 2000 A
6077266 Medoff Jun 2000 A
6077271 Huebner et al. Jun 2000 A
6093188 Murray Jul 2000 A
6096040 Esser Aug 2000 A
6113603 Medoff Sep 2000 A
6117139 Shino Sep 2000 A
6117160 Bonutti Sep 2000 A
6123709 Jones Sep 2000 A
6129728 Schumacher et al. Oct 2000 A
6129730 Bono et al. Oct 2000 A
6139548 Errico Oct 2000 A
6152927 Farris et al. Nov 2000 A
6159213 Rogozinski Dec 2000 A
6179839 Weiss et al. Jan 2001 B1
6183475 Lester et al. Feb 2001 B1
6193721 Michelson Feb 2001 B1
6197028 Ray et al. Mar 2001 B1
6197037 Hair Mar 2001 B1
6221073 Weiss et al. Apr 2001 B1
6224602 Hayes May 2001 B1
6228087 Fenaroli et al. May 2001 B1
6235033 Brace et al. May 2001 B1
6235034 Bray May 2001 B1
6238396 Lombardo May 2001 B1
6258092 Dall Jul 2001 B1
6261291 Talaber et al. Jul 2001 B1
6273889 Richelsoph Aug 2001 B1
6280446 Blackmore Aug 2001 B1
6283969 Grusin et al. Sep 2001 B1
6290703 Ganem Sep 2001 B1
6302883 Bono Oct 2001 B1
6302884 Wellisz et al. Oct 2001 B1
6302887 Spranza et al. Oct 2001 B1
6306136 Baccelli Oct 2001 B1
6312431 Asfora Nov 2001 B1
6315779 Morrison et al. Nov 2001 B1
6322562 Wolter Nov 2001 B1
6325803 Schumacher et al. Dec 2001 B1
6331179 Freid et al. Dec 2001 B1
6336927 Rogozinski Jan 2002 B2
6338734 Burke et al. Jan 2002 B1
6342055 Eisermann et al. Jan 2002 B1
6342075 MacArthur Jan 2002 B1
6355036 Nakajima Mar 2002 B1
6355041 Martin Mar 2002 B1
6355042 Winquist et al. Mar 2002 B2
6358250 Orbay Mar 2002 B1
6364881 Apgar et al. Apr 2002 B1
6364882 Orbay Apr 2002 B1
6364883 Santilli Apr 2002 B1
6379354 Rogozinski Apr 2002 B1
6379359 Dahners Apr 2002 B1
6379364 Brace et al. Apr 2002 B1
6402756 Ralph et al. Jun 2002 B1
6413259 Lyons et al. Jul 2002 B1
6428542 Michelson Aug 2002 B1
6436103 Suddaby Aug 2002 B1
6440135 Orbay et al. Aug 2002 B2
6454769 Wagner et al. Sep 2002 B2
6454770 Klaue Sep 2002 B1
6458133 Lin Oct 2002 B1
6503250 Paul Jan 2003 B2
6508819 Orbay Jan 2003 B1
6514274 Boucher et al. Feb 2003 B1
6520965 Chervitz et al. Feb 2003 B2
6527775 Warburton Mar 2003 B1
6533789 Hall, IV et al. Mar 2003 B1
6547790 Harkey, III et al. Apr 2003 B2
6565570 Sterett et al. May 2003 B2
6572620 Schon et al. Jun 2003 B1
6592578 Henniges et al. Jul 2003 B2
6595993 Donno et al. Jul 2003 B2
6602255 Campbell et al. Aug 2003 B1
6623486 Weaver et al. Sep 2003 B1
6623487 Goshert Sep 2003 B1
6682531 Winquist et al. Jan 2004 B2
6682533 Dinsdale et al. Jan 2004 B1
6689139 Horn Feb 2004 B2
6695846 Richelsoph et al. Feb 2004 B2
6706046 Orbay et al. Mar 2004 B2
6712820 Orbay Mar 2004 B2
6719759 Wagner et al. Apr 2004 B2
6730090 Orbay et al. May 2004 B2
6730091 Pfefferle et al. May 2004 B1
6736819 Tipirneni May 2004 B2
6767351 Orbay et al. Jul 2004 B2
6793658 LeHuec et al. Sep 2004 B2
6821278 Frigg et al. Nov 2004 B2
6858031 Morrison et al. Feb 2005 B2
6863694 Boyce et al. Mar 2005 B1
6866665 Orbay Mar 2005 B2
6893444 Orbay May 2005 B2
6955677 Dahners Oct 2005 B2
6974461 Wolter Dec 2005 B1
7011659 Lewis et al. Mar 2006 B2
7070600 Silverman Jul 2006 B2
7077844 Michelson Jul 2006 B2
7153309 Huebner et al. Dec 2006 B2
7635365 Ellis et al. Dec 2009 B2
7695501 Ellis et al. Apr 2010 B2
7695502 Orbay et al. Apr 2010 B2
7727264 Orbay et al. Jun 2010 B2
7731718 Schwammberger et al. Jun 2010 B2
20010011172 Orbay et al. Aug 2001 A1
20020004660 Henniges et al. Jan 2002 A1
20020032446 Orbay Mar 2002 A1
20020055741 Schlapfer et al. May 2002 A1
20020128654 Steger et al. Sep 2002 A1
20020143336 Hearn Oct 2002 A1
20020143337 Orbay et al. Oct 2002 A1
20020143338 Orbay et al. Oct 2002 A1
20020147453 Gambale Oct 2002 A1
20020150856 Payton Oct 2002 A1
20020151899 Bailey et al. Oct 2002 A1
20020156474 Wack et al. Oct 2002 A1
20020177852 Chervitz et al. Nov 2002 A1
20020183752 Steiner et al. Dec 2002 A1
20030040748 Aikins et al. Feb 2003 A1
20030055429 Ip et al. Mar 2003 A1
20030105461 Putnam Jun 2003 A1
20030149434 Paul Aug 2003 A1
20030153918 Putnam et al. Aug 2003 A1
20030233093 Moles et al. Dec 2003 A1
20040102775 Huebner May 2004 A1
20040102776 Huebner May 2004 A1
20040102777 Huebner May 2004 A1
20040102778 Huebner et al. May 2004 A1
20040116930 O'Driscoll et al. Jun 2004 A1
20040127901 Huebner et al. Jul 2004 A1
20040127903 Schlapfer et al. Jul 2004 A1
20040127904 Konieczynski et al. Jul 2004 A1
20040153073 Orbay Aug 2004 A1
20040186472 Lewis et al. Sep 2004 A1
20040193164 Orbay Sep 2004 A1
20040193165 Orbay Sep 2004 A1
20040220566 Bray Nov 2004 A1
20040260291 Jensen Dec 2004 A1
20040260292 Orbay et al. Dec 2004 A1
20040260293 Orbay et al. Dec 2004 A1
20040260294 Orbay et al. Dec 2004 A1
20040260295 Orbay et al. Dec 2004 A1
20050015089 Young et al. Jan 2005 A1
20050049593 Duong et al. Mar 2005 A1
20050065520 Orbay Mar 2005 A1
20050065522 Orbay Mar 2005 A1
20050065523 Orbay Mar 2005 A1
20050065524 Orbay Mar 2005 A1
20050065528 Orbay Mar 2005 A1
20050070902 Medoff Mar 2005 A1
20050085818 Huebner Apr 2005 A1
20050085819 Ellis et al. Apr 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050159747 Orbay Jul 2005 A1
20050165395 Orbay et al. Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050171544 Falkner, Jr. Aug 2005 A1
20050182405 Orbay et al. Aug 2005 A1
20050182406 Orbay et al. Aug 2005 A1
20050187551 Orbay et al. Aug 2005 A1
20050192578 Horst Sep 2005 A1
20050234458 Huebner Oct 2005 A1
20060085000 Mohr et al. Apr 2006 A1
20060100623 Pennig May 2006 A1
20060150986 Roue et al. Jul 2006 A1
20070043367 Lawrie Feb 2007 A1
20070043368 Lawrie et al. Feb 2007 A1
20070083202 Eli Running et al. Apr 2007 A1
20070123883 Ellis et al. May 2007 A1
20070185493 Feibel et al. Aug 2007 A1
20070213727 Bottlang et al. Sep 2007 A1
20090069812 Gillard et al. Mar 2009 A1
20090118768 Sixto et al. May 2009 A1
20090177240 Perez Jul 2009 A1
20100234896 Lorenz et al. Sep 2010 A1
20100274245 Gonzalez-Hernandez Oct 2010 A1
20100331844 Ellis et al. Dec 2010 A1
20110160730 Schonhardt et al. Jun 2011 A1
Foreign Referenced Citations (66)
Number Date Country
8975091 Feb 1992 AU
2452127 Dec 1993 CA
576249 Jun 1976 CH
611147 May 1979 CH
251430 Nov 1975 DE
3808937 Oct 1989 DE
4201531 Jul 1993 DE
4343117 Jun 1995 DE
0029752 Apr 1983 EP
0094039 Nov 1983 EP
0179695 Apr 1986 EP
0053999 Mar 1987 EP
0410309 Jan 1991 EP
0415837 Mar 1991 EP
0362049 May 1992 EP
0471418 Jun 1995 EP
0561295 May 1996 EP
1250892 Oct 2002 EP
742618 Mar 1933 FR
2211851 Jul 1974 FR
2254298 Jul 1975 FR
2367479 May 1978 FR
2405705 May 1979 FR
2405706 May 1979 FR
2406429 May 1979 FR
2416683 Sep 1979 FR
2472373 Jul 1981 FR
2674118 Sep 1992 FR
2245498 Jan 1992 GB
2331244 May 1999 GB
2435429 Aug 2007 GB
S47-44985 Jan 1972 JP
S64-032855 Feb 1989 JP
H05-146502 Jun 1993 JP
H06-3551 Feb 1994 JP
2002542875 Dec 2002 JP
610518 Jun 1978 SU
718097 Feb 1980 SU
862937 Sep 1981 SU
874044 Oct 1981 SU
897233 Jan 1982 SU
921553 Apr 1982 SU
1049054 Oct 1983 SU
1130332 Dec 1984 SU
1192806 Nov 1985 SU
1223901 Apr 1986 SU
1225556 Apr 1986 SU
1544406 Feb 1990 SU
1630804 Feb 1991 SU
1644932 Apr 1991 SU
1683724 Oct 1991 SU
1711859 Feb 1992 SU
1734715 May 1992 SU
WO8201645 May 1982 WO
WO8702572 May 1987 WO
WO8803781 Jun 1988 WO
WO9505782 Mar 1995 WO
WO9629948 Oct 1996 WO
WO9747251 Dec 1997 WO
WO9922089 May 1999 WO
WO0121083 Mar 2001 WO
WO0162136 Aug 2001 WO
WO0203882 Jan 2002 WO
WO03105712 Dec 2003 WO
WO2007092813 Aug 2007 WO
WO2007109436 Sep 2007 WO
Non-Patent Literature Citations (98)
Entry
Depuy, Inc., McBride S.M.O. Stainless Steel Bone Plates brochure, 1943.
Vitallium, Bone Plates brochure, Mar. 1948.
Moore et al., “Operative stabilization of nonpenetrating chest injuries”, The Journal of Thoracic and Cardiovascular Surgery, vol. 70, No. 4, pp. 619-630, 1975.
Tarazona et al., “Surgical stabilization of traumatic flail chest”, pp. 521-527, 1975.
Thomas et al., “Operative stabilization for flail chest after blunt trauma”, The Journal of Thoracic and Cardiovascular Surgery, vol. 75, No. 6, pp. 793-801, 1978.
Trunkey, “Chest Wall Injuries”, Cerviothoracic Trauma, vol. 3. pp. 129-149, 1986.
Klein et al., “Rib Fracture Healing after Osteosynthesis with Wire Mesh Titanium and Screws: A Histological Study in Sheep”, Eur Surg Res, vol. 21 pp. 347-354, 1989.
Techmedica, Inc., The Arnett-TMP* Titanium Miniplating System brochure, 1989.
Haasler, “Open Fixation of Flail Chest After Blunt Trauma”, The Society of Thoracic Surgeons, pp. 993-995, 1990.
Howmedica Inc., Dupont Distal Humeral Plates brochure, 1990.
Landreneau et al., “Strut Fixation of an Extensive Flail Chest”, The Society of Thoracic Surgeons, pp. 473-475, 1991.
Synthes (USA), Biological Plating: A New Concept to Foster Bone Healing, 1991.
Synthes, CMR Matrix: MatrixRIB. Stable fixation of normal and asteoporotic ribs. Techinque Guide, 1991.
Techmedica, Inc., Techmedica Bioengineers Keep Tabs on Your Needs brochure, 1991.
Ace Medical Company, Ace 4.5/5.0 mm Titanium Cannulated Screw and Reconstruction Plate System simplified fracture fixation brochure, 1992.
Ace Medical Company, Ace 4.5/5.0 mm Titanium Cannulated Screw and Reconstruction Plate System surgical technique brochure, 1992.
Beaupre et al., “A Comparison of Unicortical and Bicortical End Screw Attachment of Fracture Fixation Plates”, Journal of Orthopaedic Trauma, vol. 6, No. 3, pp. 294-300, 1992.
Ace Medical Company, Ace Titanium 3.5/4.0 mm Screw and Plate System with the Ace 3.5 mm Universal Ribbon CT/MRI compatible fixation brochure, 1994.
Esser, “Treatment of Three- and Four-Part Fractures of the Proximal Humerus with a Modified Cloverleaf Plate”, Journal of Orthopaedic Trauma, vol. 8, No. 1, pp. 15-22, 1994.
Amadio, “Open Reduction of Intra-Articular Fractures of the Distal Radius”, Fractures of the Distal Radius, pp. 193-202, 1995.
Ducloyer, “Treatment by Plates of Anteriorly Displaced Distal Radial Fractures”, Fractures of the Distal Radius, pp. 148-152, 1995.
Gesensway et al., “Design and Biomechanics of a Plate for the Distal Radius”, Journal of Hand Surgery, vol. 20, No. 6, pp. 1021-1027, 1995 (abstract only provided).
Jupiter et al., “Management of Comminuted Distal Radial Fractures”, Fractures of the Distal Radius, pp. 167-183, 1995.
Waldemar Link GmbH & Co., May Anatomical Bone Plates: Plates, Bone Screws and Instruments brochure, pp. 3-4 and 10-15, 1995.
Zimmer, Inc., Forte Distal Radial Plate System brochure, 1995.
Ace Medical Company, The Ace Symmetry Titanium Upper Extremity Plates new product release brochure, 1996.
Ace Medical Company, Ace Symmetry Titanium Upper Extremity Plates surgical technique brochure, 1996.
Fernandez et al., Fractures of the Distal Radius: A Practical Approach to Management, pp. 103-188, 1996.
Avanta Orthopaedics, SCS/D Distal Radius Plate System brochure, 1997.
Fitoussi et al., “Treatment of Displaced Intra-Articular Fractures of the Distal End of the Radius With Plates”, The Journal of Bone and Joint Surgery, vol. 79, No. 9, pp. 1303-1312, 1997 (abstract only provided).
Synthes (USA), The Titanium Distal Radius Plate, technique guide, 1997.
TriMed Inc., TriMed Wrist Fixation System brochure, 1997.
Synthes, Small Titanium Plates overview page, p. 2a-33, Mar. 1997.
Synthes, Titanium Distal Radius Instrument and Implant Set standard contents description pages, Mar. 1997.
Ring et al., “Prospective Multicenter Trial of a Plate for Dorsal Fixation of Distal Radius Fractures”, The Journal of Hand Surgery, vol. 22A, No. 5, pp. 777-784, Sep. 1997.
Avanta Orthopaedics, SCS/V Distal Radius Plate Volar brochure, 1998.
Oyarzun et al., “Use of 3.5mm Acetabular Reconstruction Plates for Internal Fixation of Flail Chest Injuries”, Section of Cardiothoracic Surgery, pp. 1471-1474, 1998.
Voggenreiter et al., “Operative Chest Wall Stabilization in Flail Chest—Outcomes of Patients With or Without Pulmonary Contusion”, American College of Surgeons, pp. 130-138, 1998.
Kolodziej et al., “Biomechanical Evaluation of the Schuhli Nut”, Clinical Orthopaedics and Related Research, vol. 347, pp. 79-85, Feb. 1998.
Acumed Inc., Congruent Distal Radius Plate System description, Mar. 4, 1998.
Trumble et al., “Intra-Articular Fractures of the Distal Aspect of the Radius”, Journal of Bone and Joint Surgery, vol. 80A, No. 4, pp. 582-600, Apr. 1998.
Kambouroglou etal., “Complications of the AO/ASIF Titanium Distal Radius Plate System (π Plate) in Internal Fixation of the Distal Radius: A Brief Report”, Journal of Hand Surgery, vol. 23A, No. 4, pp. 737-741, Jul. 1998.
DePuy Ace, TiMAX Pe.R.I. Small Fragment Upper Extremity description pages, 1999.
Palmer etal., “The Use of Interlocked ‘Customised’ Blade Plates in the Treatment of Metaphyseal Fractures in Patients with Poor Bone Stock”, Injury, Int. J. Care Injured, vol. 31, pp. 187-191, 1999.
Synthes (USA), The Distal Radius Plate Instrument and Implant Set technique guide, 1999.
Tatsumi et al., “Bioabsorable Poly-L-Lactide Costal Coaptation Pins and Their Clinical Application in Thoroacotomy”, Original Articles: General Thoracic. pp. 765-768, 1999.
Morgan et al., “Salvage of Tibial Pilon Fractures Using Fusion of the Ankle with a 90° Cannulated Blade Plate: A Preliminary Report”, Foot & Ankle International, vol. 20, No. 6, pp. 375-378, Jun. 1999.
Nunley et al., “Delayed Rupture of the Flexor Pollicis Longus Tendon After Inappropriate Placement of the π Plate on the Volar Surface of the Distal Radius”, Journal of Hand Surgery, vol. 24, No. 6, pp. 1279-1280, Nov. 1999.
Toby, Scaphoid Protocols Using the Acutrak® Bone Screw System brochure, published by Acumed, Inc., Dec. 7, 1999.
Biomet Orthopedics, Inc., Supracondylar Cable Plate brochure, 2000.
Cacchione et al., “Painful Nonunion of Multiple Rib Fractures Managed by Operative Stabilization”, The Journal of Trauma, Injury, Infection and Critical Care, vol. 48, No. 2, pp. 319-321, 2000.
Peine et al., “Comparison of Three Different Plating Techniques for the Dorsum of the Distal Radius: A Biomechanical Study”, Journal of Hand Surgery, vol. 25A, No. 1, pp. 29-33, Jan. 2000.
Young, “Outcome Following Nonoperative Treatment of Displaced Distal Radius Fractures in Low-Demand Patients Older Than 60 Years”, Journal of Hand Surgery, vol. 25A, No. 1, pp. 19-28, Jan. 2000.
Putnam et al., “Distal Radial Metaphyseal Forces in an Extrinsic Grip Model: Implications for Postfracture Rehabilitation”, Journal of Hand Surgery, vol. 25A, No. 3, pp. 469-475, May 2000.
Surfix Technologies, Single Units Osteosynthesis brochure, Sep. 2000.
Lardinois et al., “Pulmonary Function Testing After Operative Stabilisation of the Chest Wall for Flail Chest”, European Journal of Cardio-thoracic Surgery (2001) 20:496-501.
Ng et al., “Operative Stabilisation of Painful Non-united Multiple Rib Fractures”, Injury (2001) 32:637-639.
Synthes (USA), Titanium Distal Radius Plates description page, 2001.
Wright Medical Technology, Inc., Locon-T Distal Radius Plating System case study and surgical method, 2001.
TriMed Inc., TriMed Wrist Fixation System internet description pages, 2001.
Slater et al., “Operative Stabilization of Flail Chest Six Years After Injury”, Annals of Thoracic Surgery (2001) Aug. 600-601.
Sanchez-Sotelo et al., “Principle-Based Internal Fixation of Distal Humerus Fractures, Techniques in Hand & Upper Extremity Surgery”, vol. 5, No. 4, pp. 179-187, Dec. 2001.
Abel et al., “An Axially Mobile Plate for Fracture Fixation”, Internal Fixation in Osteoporotic Bone, pp. 279-283, 2002.
An, Y.H., Internal Fixation in Osteoporotic Bone, pp. 82-83, 2002.
Konrath et al., “Open Reduction and Internal Fixation of Unstable Distal Radius Fractures: Results Using the Trimed Fixation System”, Journal of Orthopaedic Trauma, vol. 16, No. 8, pp. 578-585, 2002.
Mizuho Co., Ltd., Jplate Diaphysis Plates for Japanese brochure, 2002.
Synthes (USA), 3.5 mm LCP™ Proximal Humerus Plate technique guide, 2002.
Tanaka et al., “Surgical Stabilization or Internal Pneumatic Stabilization? A Prospective Randomized Study of Management of Severe Flail Chest Patients”, Journal of Trauma (2002) 52:727-732.
Sing et al., “Thoracoscopic Resection of Painful Multiple Rib Fractures: Case Report” The Journal of Trauma, vol. 52, No. 2, pp. 391-392, 2002.
Tornetta, Distal Radius Fracture, Journal of Orthopaedic Trauma, vol. 16, No. 8, pp. 608-611, 2002.
Wright Medical Technology, Inc., Locon-T Distal Radius Plating System brochure, 2002.
Zimmer, Inc., Periarticular Plating System brochure, 2002.
Acumed Inc., Congruent Plate System—The Mayo Clinic Congruent Elbow Plates brochure, May 7, 2002.
Acumed Inc., Modular Hand System brochure, Aug. 2002.
Acumed Inc., Modular Hand System brochure, Sep. 2002.
Harvey et al., “The Use of a Locking Custom Contoured Blade Plate for Peri-Nonunions”, Injury, Int. J. Care Injured, vol. 34, pp. 111-116, 2003.
Chin et al., “Salvage of Distal Tibia Metaphyseal Nonunions With the 90° Cannulated Blade Plate”, Clinical Orthopaedics and Related Research, No. 409, pp. 241-249, 2003.
Hooker et al., Fixation of Unstable Fractures of the Volar Rim of the Distal Radius with a Volar Buttress Pine®, 2003.
Rozental et al., Functional Outcome and Complications Following Two Types of Dorsal Plating for Unstable Fractures of the Distal Part of the Radius, Journal of Bone and Joing Surgery, vol. 85, No. 10, pp. 1956-1960, 2003 (abstract only).
Osada et al.., “Comparison of Different Distal Radius Dorsal and Volar Fracture Fixation Plates: A Biomechanical Study”, Journal of Hand Surgery, vol. 28A, No. 1, pp. 94-104, Jan. 2003.
Turner et al., Tendon Function and Morphology Related to Material and Design of Plates for Distal Radius Fracture Fixation: Canine Forelimb Model, Orthopaedic Research Society, Feb. 2003.
Erothitan Titanimplantate AG, Titanium Wire Plate Osteosynthesis System According to Dr. Gahr internet printout, print date Feb. 6, 2003.
Simic, “Fractures of the Distal Aspect of the Radius: Changes in Treatment Over the Past Two Decades”, Journal of Bone and Joint Surgery, vol. 85-A, No. 3, pp. 552-564, Mar. 2003.
Leung et al., “Palmar Plate Fixation of AO Type C2 Fracture of Distal Radius Using a Locking Compression Plate—A Biomechanical Study in a Cadaveric Model”, Journal of Hand Surgery, vol. 28B, No. 3, pp. 263-266, Jun. 2003.
Martin GmbH & Co. KG, Bilder Internet printout, print date Sep. 5, 2003.
Mayberry, “Absorbable Plates for Rib Fracture Repair: Preliminary Experience”, Journal of Trauma Injury, Infection and Critical Care. vol. 55, No. 5, pp. 835-839, Nov. 2003.
Moore et al., Clinically Oriented Anatomy, Fourth Edition, pp. 70-71, 2004.
Orthocopia, LLC, Synthes Volar Distal Radius Locking Plate Internet description page, 2004.
Ruch et al., “Results of Palmar Plating of the Lunate Facet Combined with External Fixation for the Treatment of High-Energy Compression Fractures of the Distal Radius”, J. Orthop. Trauma, Vo. 18, No. 1, pp. 28-33, Jan. 2004.
Sanatmetal, Rib Securing Clamped Plate, internet printout, Sep. 2004 <http://www.sanatmetal.hu/catalog/pict/1—5—89a—1.jpg>.
Zespol Bone Plates, in Mikromed—Catalogue 2004 (Nov. 2004), original website <http://www.mikromed.pl/katalog/Main/main—eng.htm> and < http://www.mikromed.pl/katalog/zespol—eng/plytki.htm >, viewable via the Internet Archive Wayback Machine < http://replay.waybackmachine.org/ 20070830023439/http://www.mikromed.pl/katalog/zespol—eng/plytki.htm >.
Zespol Bone Screws, in Mikromed—Catalogue 2004 (Nov. 2004), original website <http://www.mikromed.p1/katalog/Main/main—eng.htm> and < http://www.mikromed.pl/katalog/zespol—eng/wkrety.htm >, viewable via the Internet Archive Wayback Machine < http://replay.waybackmachine.org/ 20050226124226/http://www.mikromed.pl/katalog/zespol—eng/wkrety.htm >.
DVO Extremity Solutions, Mlfx Dorsal IM Plate, brochure, Sep. 2005.
Stryker SmartLock Locking Screw Technology, advertisement, The Journal of Hand Surgery, vol. 30A, No. 1, Jan. 2005.
Legacy Biomechanics Laboratory, Applied Research, Jan. 2006, original website <http://www.biomechresearch.org/sling.html>, viewable via the Internet Archive Wayback Machine <http://replay.waybackmachine.org/ 20060320091922/http://www.biomechresearch.org/sling.html>.
Osteomed, images of Resorable Plates, Feb. 2006 <http://www.osteomedcorp.com/images/library/resorbfixation.gif>.
AO Foundation, TK System: Innovations, Dec. 2011.
US Receiving Office of WIPO, International Search Report and Written Opinion of the International Searching Authority regarding PCT Patent Application No. PCT/US2013/023476, dated Mar. 22, 2013, 22 pages.
Related Publications (1)
Number Date Country
20130197521 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61590955 Jan 2012 US