Additional features and advantages of the invention will be explained in greater detail in the following, using an execution example with the aid of drawings.
Closure system 10 of the sealing machine as per the invention has an upper, linearly conducted sealing slider 12 and a lower closure lever 14. The upper sealing slider 12 is driven by an actuator 18 whose force is initiated via articulation 22. The lower closure lever 14 is arranged pivotally around an axis 16. The pivotal movement of lower closure lever 14 is driven by a cam plate, not shown, and transferred via lifter rod 20, which engages with it at articulation 24 to closure lever 14. Die 26 is fastened to upper sealing slider 12 and die plate 28 to lower closure lever 14. An open clamp fastener 30 is held in die plate 28. Between die 26 and die plate 28 with open clamp fastener 30 there is an intestinal braid 32 to be closed, here represented in a simplified manner as a point.
To close the intestinal braid, die 26 and die plate 28 are moved towards one another through a pivotal movement of closure levers 12, 14 in such a manner that first die plate 28 is driven with the inserted clamp fastener 30 against the braid 32 so that the latter comes to rest in the area between limbs 302, 304 of the clamp fastener 30 (compare
After the closing of clamp fastener 30, die 26 and die plate 28 move away from one another again in order to release intestinal braid 32 closed with clamp fastener 30. In the process, closure system 10 shown makes possible a comparatively wide opening of sealing tools 26, 28 so that a sausage of a very large caliber can pass through the opening during the filling operation.
Displacement system 40 depicted in
Displacement elements 422, 424 or 442, 444 come together radially for the purpose of constriction. Because of the releasing of displacement elements 422, 424 or 442, 444, shear-like, interacting and essentially in a V-shape, the aperture in cross-section is continuously narrowed until the filled, tubular-shaped packaging is constricted locally, essentially in a cross-section of the bare packaging tube material. Subsequently displacement element pairs 420, 440 are moved apart axially in the constricted state so that the stuffing is displaced in a sufficiently large axial section, and, in this way, a tubular braid 32 of the requisite length is formed.
The movements are alternatively derived from a torsional movement by means of a crank or cam plate or generated by cylinder piston arrangements operated by fluid (preferentially pneumatic) and transferred to individual displacement elements 422, 424 or 442, 444. Displacement elements 422, 424 or 442, 444 are fastened for this individually at their ends that are distal to the tubular braid to arms 426, 428 or 446, 448 (compare
If the spread state depicted above is achieved, clip 30 is closed around tubular braid 32 in the manner described before by means of closing elements 26, 28. Displacement elements 422, 424 or 442, 444 are then separated radially, on the one hand, and compressed again axially, on the other hand. Both of these movements can be completely executed simultaneously, overlapping or sequentially. Then the opening or starting state shown in
The state of braid 32 represented in
Number | Date | Country | Kind |
---|---|---|---|
20 2006 012 324.5 | Oct 2006 | DE | national |