The present disclosure relates generally to decorative moldings for drop ceiling grids.
Current drop ceilings can comprise a series of interconnected supports for installing acoustic, insulating, or decorative tiles. The gridwork for suspended ceilings may comprise L-bars anchored to walls around a ceiling perimeter. T-bars may be suspended from anchors to extend latitudinally and longitudinally with respect to each other to create a grid. The L-bars and T-bars cooperate by overlapping and/or interlocking to provide support for tiles.
Many configurations of hardware are possible, including a system of main runners, cross grids, and perimeter wall runner grids, such as a system marketed by Armstrong World Industries.
Since the L-bars and T-bars are largely functional, their appearance can be characterized as plain or industrial. In addition, since the L-bars and T-bars tend to be metal, paint coatings can be marred during installation. Therefore, various prior art designs provide for interlocking tiles or other decorative means for concealing the L-bars and T-bars.
In one embodiment, a clip-on molding for concealing gridwork in suspended ceilings may comprise two opposed clip assemblies. Each clip assembly comprises a vertical portion having a lower edge and an upper edge and a lower finger protruding horizontally from the lower edge of the vertical portion and towards the opposed clip assembly. An upper finger protrudes horizontally from the vertical portion and towards the opposed clip assembly. Upward projecting arms extend from the upper edges of the vertical portions, the upward projecting arms having upward edges. Horizontal arms extend from the upward edges of the upward projecting arms, and the horizontal arms extend away from the clip assemblies and have distal ends. A decorative portion spans between distal ends of the horizontal arms. The lower surfaces of the upper fingers may be parallel to the upper surfaces of the lower fingers, thereby forming grooves. The grooves may be configured to accept opposed edges of gridwork.
In yet another embodiment, a snap-on molding may conceal perimeter gridwork in suspended ceilings. A first horizontal arm may abut a lower portion of a horizontal surface. A second horizontal arm may be parallel to the first horizontal arm. A first leg may connect to a first end of the second horizontal arm. A second leg may connect to a second end of the second horizontal arm, with the second leg configured to abut an upper, distal portion of the horizontal surface near a hem on the horizontal surface. Serially connected connecting arms may span between an upper end of the second leg to an end of the first horizontal arm.
A molding system may conceal peripherally, longitudinally and/or laterally extending gridwork in suspended ceilings. The system may comprise at least one clip-on molding and at least one snap-on molding.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present exemplary embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In an effort to provide a lightweight and easily installed molding for concealing L-bars and T-bars, proposed herein is a clip-on extruded molding system. The system provides for a perimeter molding that can attach to L-bars and also provides cooperating main and cross piece moldings that can attach to the T-bars. The moldings abut one another to provide a substantially unitary appearance.
Since the proposed moldings are one-piece and clip-on in nature, it reduces the material content greatly over the prior art, resulting in a thin and lightweight product. Since the material can be uniform in composition in some embodiments, nicks and scratches in the molding are not as readily visible as they would be on powder-coated metal hardware. The design also eliminates the need for associated metal clips, magnetic or other tapes, or adhesives, thereby making installation simple. The one-piece design also reduces fabrication costs and time to market.
The profile 100 may comprise a first side and an opposite side. The first side comprises a clip assembly. The clip assembly may comprise a groove between a first finger 108 and a second finger 106. First finger 108 and second finger 106 are integrally formed with a vertical surface 104. Second finger 106 may have a triangular tab shape to assist with the alignment of T-bar T with the groove. The T-bar T may slide along the triangular tab shape of second finger 106, thereby facilitating a snap-fit with T-bar T. The triangular tab shape also creates a strong grip on the T-bar since the material comprising the triangular tab shape prevents the finger from flexing.
Vertical surface 104 is a sufficient distance from upper edge 102 to provide space for the formation of the triangular tab shaped second finger. The vertical distance also enables a pressure-enhanced grip on T-bar T by transferring pressure exerted on upper edge 102 towards the clip assembly, thereby forcing clip assembly towards T-bar T. Upper edge 102 may receive a pressure load from the weight of tiles placed upon it. In addition, the molding may be designed to accommodate up to three tensile pounds without losing the grip capacity of the clip assembly.
The opposite side of profile 100 mirrors the first side, with a clip assembly, vertical surface and upper edge. The first side and opposite side are connected by a section of material that may comprise any one of a number of decorative designs which may include, for example, one or more ogees, bullnoses, roundovers, squares, semi-circles, groove patterns, chamfers, coves, rabbets, or flutings.
The combination of the diagonal surface and the triangular tab shape assists with the alignment of T-bar T with the groove. The T-bar T may slide along diagonal surface 124, along the triangular tab shape of upper finger 126, and into the groove, thereby facilitating a snap-fit with T-bar T. The triangular tab shape also creates a strong grip on the T-bar since the material comprising the triangular tab shape prevents the finger from flexing.
Vertical surface 124 is a sufficient distance from an upper edge 122 to provide space for the formation of the triangular tab shaped second finger. The vertical distance also enables a pressure-enhanced grip on T-bar T by transferring pressure exerted on upper edge 122 towards the clip assembly, thereby forcing clip assembly towards T-bar T. Upper edge 122 may receive a pressure load from the weight of tiles placed upon it. In addition, the molding is designed to accommodate up to three tensile pounds without losing the grip capacity of the clip assembly.
The opposite side of profile 120 mirrors the first side, with a clip assembly, vertical surface and upper edge. The first side and opposite side are connected by a section of material that may comprise any one of a number of decorative designs which may include, for example, one or more ogees, bullnoses, roundovers, squares, semi-circles, groove patterns, chamfers, coves, rabbets, or flutings. An exemplary molding pattern is shown in
Turning now to
A first perimeter profile 200 is shown attached to an L-bar L. The components of first perimeter profile 200 cooperate to exert pressure on a horizontal portion of L-bar L and to receive a hem H in a way that prevents the profile from slipping off of L-bar L.
A first vertical arm 202 contacts a first horizontal portion of L-bar L and connects to a first horizontal arm 204. Second vertical arm 206 extends downward from first horizontal arm 204 and contacts a second horizontal portion of L-bar L. Vertical side 207 connects first horizontal arm 204 with a second horizontal arm 208. Third vertical arm 210 extends towards second vertical arm 206 and contacts an opposite side of second horizontal portion of L-bar L. Second vertical arm 206 and third vertical arm 210 together cooperate to exert pressure on the second horizontal portion of L-bar L. Second vertical arm 206 and third vertical arm 210 also allow hem H of L-bar L to pass between them during installation and cooperate to prevent hem H from passing backwards out of the decorative molding. This cooperation secures a molding using the design of first perimeter profile 200 to a ceiling perimeter.
Second horizontal arm 208 also connects to fourth vertical arm 212, which connects to third horizontal arm 214. Third horizontal arm 214 abuts a horizontal length of L-bar L, including an opposite side of first horizontal portion of L-bar L. First vertical arm 202 and third horizontal arm 214 cooperate to press against L-bar L, thereby assisting with securing a molding using the design of first perimeter profile 200 to a ceiling perimeter.
The weight of a tile bearing down on first horizontal arm 204 also assists with providing pressure to press first vertical arm 202 and second vertical arm 206 against the L-bar L. When the molding is mounted, fourth vertical arm 212 abuts a wall thereby providing counter support to third horizontal arm 214.
First vertical arm 222 cooperates with third horizontal arm 236 to hold a portion of L-bar L. Third horizontal arm 236 can abut a horizontal distance of L-bar L.
Second vertical arm 226 and third vertical arm 230 extend towards each other to exert pressure on a second horizontal portion of L-bar L. Second vertical arm 226 and third vertical arm 230 also allow hem H of L-bar L to pass between them during installation and cooperate to prevent hem H from passing backwards out of the molding. The cooperation of first, second, and third vertical arms 222, 226, and 230, and third horizontal arm 236 secures a molding using the design of second perimeter profile 220 to a ceiling perimeter.
The weight of a tile bearing down on first horizontal arm 224 also assists with providing pressure to press first vertical arm 222 and second vertical arm 226 against the L-bar L.
Diagonal arm 242 provides a means for lifting first horizontal arm 244 and first vertical arm 246 a sufficient distance away from third horizontal arm 256 to permit hem H to exit the decorative molding.
Pressure caused by the weight of a tile bearing down on second horizontal arm 248 transfers to press first vertical arm 246 and first horizontal arm 244 against the L-bar L. When the molding is mounted, second vertical arm 254 abuts a wall thereby providing counter support to fourth horizontal arm 256.
First horizontal arm 264, fifth horizontal arm 280, first vertical arm 274, and diagonal arm 266 cooperate to form a snap fit. The snap fit allows hem H of L-bar L to pass into the interior of the molding during installation while preventing hem H from passing backwards out of the decorative molding. First horizontal arm 264 and fifth horizontal arm 280 also press against opposing surfaces of L-bar L to provide a secure and stable connection of a molding to L-bar L.
Diagonal arm 262 provides a means for lifting first horizontal arm 264 and diagonal arm 266 a sufficient distance away from fifth horizontal arm 280 to permit hem H to exit the molding.
Pressure caused by the weight of a tile bearing down on second horizontal arm 268 transfers to press diagonal arm 266 and first horizontal arm 264 against the L-bar L.
As one non-limiting example, the main piece molding may have the following dimensions so as to accommodate standard two foot by two foot tiles. The material thickness may be 0.060+/−0.005 inches. The depth of the notch along notch wall 404 may be approximately 0.300 inches. First notches may be approximately 11.438 inches from opposing ends of the six foot length. At least one additional notch may be spaced 22.875 inches away from the inner ends of the first notches, while the notches may be 1.125 inches in width. A reasonable engineering tolerance of approximately 0.030 may be implemented for the notch widths, notch spacings, and overall molding lengths. However, the notch depth may benefit from having a minimum depth of 0.300 inches with a maximum overcut of 0.010 inches.
As shown in
First end 526 is formed with a butt cut end to smoothly abut a perimeter molding. The butt cut end may be formed during installation of the peripheral cross piece molding 520 since the distance between main piece moldings 400 and perimeter moldings 200, 220, 240, or 260 may vary. In addition, two peripheral cross piece moldings 520 may be abutted at their butt cut ends to span a section between main piece moldings 400.
Second end 528 is formed with a coped end to smoothly abut the decorative pattern of main piece moldings 400. The coping may follow an inverse of the decorative pattern that allows second end 528 to receive a face of the decorative portion. Bottom edge 136′″ is at a vertical distance that is flush with other lower edges of other molding pieces in the ceiling assembly.
As one non-limiting example, the perimeter molding may have the following dimensions. The material thickness may be 0.060+/−0.005 inches. The depth of the notch along notch wall 606 may be approximately 0.245 inches. First notches may be approximately 11.438 inches from opposing ends of the six foot length. At least one additional notch may be spaced 22.875 inches away from the inner ends of the first notches, while the notches may be 1.125 inches in width. A reasonable engineering tolerance of approximately 0.030 may be implemented for the notch widths, notch spacings, and overall molding lengths. However, the notch depth may benefit from having a minimum depth of 0.300 inches with a maximum overcut of 0.010 inches.
As shown in
In the example of
Notches 608 permit T-bar T to pass through a portion of perimeter molding. Notch wall 606 abuts T-bar T, or is reasonably close to prevent a visual gap in the final installation.
The exterior of perimeter piece molding 240 is shown with substantially flat surfaces to allow butt cut ends of other perimeter piece moldings to abut the exterior. Butt cut ends of peripheral piece moldings 520 may also smoothly abut the flat surfaces of perimeter piece molding 240.
For instance, the length of peripheral piece molding 520 may be cut to a custom length to accommodate non-uniformly cut tiles or custom-cut tiles, such as may occur at the edges of a ceiling installation. The butt cut end 408 may abut a perimeter molding, or it may abut another butt cut end of a peripheral piece molding to accommodate a custom tile size in between main ceiling grids.
Cross piece molding 500 extends between first main piece molding 400 and second main piece molding 400′. First coped end 506 abuts first main piece molding 400, and second coped end 508 abuts second main piece molding 400′. Bottom edge 136″ faces downward in the ceiling assembly.
Turning now to formation methods for the molding system, while other formation methods may be used, the decorative molding may be extruded against a die to create a one-piece molding unit. The material for the molding may comprise composite wood, a synthetic composite, or a plastic such as PVC.
While the groove for the clip assemblies may be created during the molding process, the groove can be formed more precisely by cutting or etching the groove into the extruded molding to form the clip assembly.
The main piece molding can be fabricated to custom length, or it can be created to longer lengths and cut down to appropriate sizes, such as by sawing. For example, the main piece molding may be extruded to an initial 73 inch length and processed to create the clip assembly. Several pieces, for example, five, may be placed into a machining nest and fed into a set of saws that cut the extruded grooved pieces down to a 72 inch finished length. Simultaneously, three dado blade sets, or other cutting tools, may also cut the required notches.
The cross-piece molding 500 may be cut from an extruded grooved piece to a finished length of, for example 23.13 inches. The piece may then be cycled back and forth between two aligned punch units, which are connected by a rail, to form the opposed coped first and second ends 506 and 508. Other alternatives are available to form the coped edges, such as a CNC machine equipped with a router bit, laser cutting, etc.
The peripheral edge molding 520 may be cut from an extruded grooved piece to a finished length of, for example 22.79 inches. The cutting may form a butt cut surface on butt cut end 526, and the piece may then be punched to form coped end 528. Other alternatives are available to form the coped end 528, such as a CNC machine equipped with a router bit, laser cutting, etc
The perimeter molding can be fabricated to custom length, or it can be created to longer lengths and cut down to appropriate sizes, such as by sawing. For example, the perimeter molding may be extruded to an initial 73 inch length. Several pieces, for example, five, may be placed into a machining nest and fed into a set of saws that cut the extruded pieces down to a 72 inch finished length. Three dado blade sets, or other cutting tools, may then cut the required notches.
In the preceding specification, various preferred embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various other modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
For instance, the dimensions of the moldings may be adjusted to accommodate two foot by four foot tiles, or other tile sizes. The adjustment would entail adjusting notch spacings and may entail adjusting the finished lengths of the moldings. Other gridwork configurations can also be accommodated, and the L-bar and T-bar shown are not meant to be limiting.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3594972 | Jones et al. | Jul 1971 | A |
4055930 | Weinar et al. | Nov 1977 | A |
4117641 | Wells | Oct 1978 | A |
4452021 | Anderson | Jun 1984 | A |
4742662 | Smith | May 1988 | A |
4848054 | Blitzer et al. | Jul 1989 | A |
4926606 | Hanson | May 1990 | A |
5253462 | Blitzer et al. | Oct 1993 | A |
5421132 | Bischel et al. | Jun 1995 | A |
5495697 | Bischel et al. | Mar 1996 | A |
5609007 | Eichner | Mar 1997 | A |
5979134 | Neff | Nov 1999 | A |
6408589 | Bousquet | Jun 2002 | B1 |
6536173 | Rebman | Mar 2003 | B2 |
7278243 | Jones et al. | Oct 2007 | B2 |
7392629 | Bankston et al. | Jul 2008 | B1 |
Number | Date | Country |
---|---|---|
195 09 127 | Sep 1995 | DE |
Number | Date | Country | |
---|---|---|---|
20110247284 A1 | Oct 2011 | US |