The present invention relates to apparatus, systems, methods and computer program products that apply clips to packages.
Conventionally, in the production of consumer goods such as, for example, meat or other food products, the food is fed (typically pumped) or stuffed into a casing in a manner that allows the casing to fill with a desired amount of the product. As is well-known, the casings can be a slug-type natural or artificial casing that unwinds, advances, stretches and/or pulls to form the elongate casing over the desired product. Another type of casing is a heat-sealed tubular casing formed by seaming a thin sheet of flexible material, typically elastomeric material, together. U.S. Pat. Nos. 5,085,036 and 5,203,760 describe examples of automated substantially continuous-feed devices suitable for forming sheet material or flat roll stock into tubular film casings. The contents of these patents are hereby incorporated by reference as if recited in full herein.
It is known to use edible collagen film to cover semi-solid sections of meat during processing to form a smoked meat product that gives the appearance of a solid meat muscle, such as a boneless ham. One example of a known prior art apparatus used to form a smoked meat product is the “TCM2250” pumpable model from Tipper Tie, Inc., located in Apex, N.C.
Clip attachment apparatus or “clippers” are well known to those of skill in the art and include those available from Tipper Tie, Inc., of Apex, N.C., including product numbers Z3214, Z3202, and Z3200. Examples of clip attachment apparatus and/or packaging apparatus are described in U.S. Pat. Nos. 3,389,533; 3,499,259; 4,683,700; and 5,161,347, the contents of which are hereby incorporated by reference as if recited in full herein.
A double clipper can concurrently apply two clips to the tails and leading portions of casings or “chubs”. One clip defines the first end portion of the next package or chub and the other defines the trailing or second end portion of the package or chub then being closed. A cutting mechanism, typically incorporated in the clipper, can sever the two packages before the enclosed package is removed from the clipper apparatus. U.S. Pat. No. 4,766,713 describes a double clipper apparatus used to apply two clips to a casing covering. U.S. Pat. No. 5,495,701 proposes a clipper with a clip attachment mechanism configured to selectively fasten a single clip or two clips simultaneously. The mechanism has two punches, one of which is driven directly by a pneumatic cylinder and the other of which is connected to the first punch using a pin and key assembly. The pin and key assembly allows the punches to be coupled or decoupled to the pneumatic cylinder drive to apply one single clip or two clips simultaneously. U.S. Pat. No. 5,586,424 proposes an apparatus for movement of U-shaped clips along a rail. The apparatus includes a clip feed for advancing clips on a guide rail and the arm is reciprocally driven by a piston and cylinder arrangement. The contents of each of these patents are hereby incorporated by reference as if recited in full herein.
Typical clippers pivot during operation from a home position to a clip position. Stationary mount clippers have also been used, such as, for example, the clipper used in an SAM 3E product sold by Tipper Tie, Inc. The SAM 3E product uses separate rotoactuators to close the gate during a clip cycle. However, the gate sometimes moves (“kicks”) outward from a relatively tightly closed operative position, which can malform the clip being applied and/or generate an undesirably loose closure around the gathered portion of the casing. Other stationary clippers have used mechanical servo-driven cam systems. While potentially more resistant to machine/frame flexure, the mechanical systems may not allow sufficient dwell time after clipping and may be unable to form a desirably configured tight clip onto the product.
Embodiments of the present invention provide translating gates having at least one cooperating stiffener assembly and related, apparatus, systems, methods and computer program products. The translating gates with at least one stiffener assembly may be particularly suitable for non-pivoting clippers, such as, for example, stationary-mount clippers. The stiffener assembly can be configured to stiffen, brace and/or otherwise keep the gate assembly tightly closed during a clipping operation.
Some embodiments are directed to translating gate assemblies that are adapted to cooperate with a clipper. The gate assemblies include: (a) a first gate member configured to translate between open and closed configurations; (b) a stiffener assembly attached to the first gate member, the stiffener assembly configured to translate between a retracted and extended configuration; (c) a first actuator attached to the stiffener assembly, wherein the first actuator is configured to automatically translate the stiffener assembly to the extended configuration whereby the stiffener assembly applies a force against the closed first gate member sufficient to inhibit outward movement of the first gate member from the closed configuration during a clipping operation; and (d) a second gate member with a second actuator configured to automatically translate between open and closed configurations, wherein when the first and second gate members are in the respective closed configurations, the first and second gate members meet to define a clip entry gate for clips delivered from an automated or semi-automated clipper.
In some embodiments, the first actuator can include an actuator rod that is pivotably attached to the stiffener assembly at a first location. The stiffener assembly can also be pivotably attached to the first gate member at a second lower location. In operation, the first gate member pivots from an upward open configuration to a downward closed configuration in response to translation of the first actuator rod.
Other embodiments are directed to clippers. The clippers include: (a) a clipper body having upper and lower portions and comprising a clip path that directs clips downward to a clip application window, wherein the clipper body is fixedly mounted to a frame to be substantially stationary; (b) a first gate member attached to the lower portion of the clipper body in communication with a first actuator, the first gate member configured to automatically translate between open and closed configurations; (b) a second gate member attached to the lower portion of the clipper body, attached to a second actuator, wherein when the first and second gate members are in the respective closed configurations, the first and second gate members meet to define a clip entry gate for clips delivered from the clipper body; and (c) a translating stiffener assembly configured to automatically translate between a retracted and extended configuration proximate the clip entry gate to cooperate with the first gate member. In the extended configuration, the stiffener assembly can inhibit outward movement of the first gate member from the closed configuration during a clipping operation.
In some embodiments, the first and second gate members are configured to automatically translate between open and closed configurations substantially in-concert. The first and second actuators include respective actuation rods and the stiffener assembly is attached to the first actuator and the first gate member so that translation of the first actuation rod automatically moves the stiffener assembly to the extended configuration, which forces the first gate member to travel to the closed configuration and applies a force with horizontal and vertical force vectors to the first gate member to inhibit outward movement of the first gate member from the closed configuration during a clipping operation.
In some embodiments the clipper includes a control module with a computer program product, the control module in communication with the first and second actuators for controlling the first and second actuators. The computer program product includes a computer readable storage medium having computer readable program code embodied in the medium. The computer-readable program code is configured to automatically direct the actuation of the first and second actuators to substantially synchronize the movement of the first and gate members, so that the open configuration is timed to coincide with the release of target articles and the closed configuration is timed to coincide with the capture of target articles to define the closed gate clip path for the clipper.
Other embodiments are directed to methods of clipping target articles using an automated or semi-automated clipper. The methods include: (a) linearly actuating a first actuator to direct a stiffener assembly to travel from a retracted to an extended configuration; (b) forcing a first gate member to pivot to a closed configuration (which may be carried out using a separate actuator or in response to the travel of the stiffener assembly); (c) actuating a second actuator to pivot a second gate member to a closed configuration, whereby the first and second gate members meet to define a clip gate for a clipper in the closed configuration; then (d) punching a clip from the clipper through the clip gate to wrap around a target product to attach a clip thereto. During the punching operation, the stiffener assembly cooperates with the first gate member to inhibit outward movement from the closed configuration.
These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.
The present invention will now be described more fully hereinafter with reference to the accompanying figures, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout. In the figures, certain layers, components or features may be exaggerated for clarity, and broken lines illustrate optional features or operations unless specified otherwise. In addition, the sequence of operations (or steps) is not limited to the order presented in the claims unless specifically indicated otherwise. Where used, the terms “attached”, “connected”, “contacting”, “coupling” and the like, can mean either directly or indirectly, unless stated otherwise. The term “concurrently” means that the operations are carried out substantially simultaneously.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
In the description of the present invention that follows, certain terms are employed to refer to the positional relationship of certain structures relative to other structures. As used herein, the term “front” or “forward” and derivatives thereof refer to the general or primary direction that the filler or product travels in a production line to form an encased product; this term is intended to be synonymous with the term “downstream,” which is often used in manufacturing or material flow environments to indicate that certain material traveling or being acted upon is farther along in that process than other material. Conversely, the terms “rearward” and “upstream” and derivatives thereof refer to the directions opposite, respectively, the forward and downstream directions.
The term “frame” means a generally skeletal structure used to support one or more assemblies, modules and/or components. The frame can be a floor mount frame. The term “automated” means that operations can be carried out substantially without manual assistance. The term semi-automatic means that operator input or assistance may be used but that most operations are carried out automatically using electromechanical devices and programmatically directed control systems.
The frame 15 can hold the clipper 50. In some embodiments, the clipper 50 is a non-pivoting clipper. In particular embodiments, the clipper 50 is a stationary mount, non-moving device. In other embodiments, the clipper 50 may translate vertically.
As shown in
When the first and second gate members 62, 64 are closed, the clip gate 66 can be laterally aligned with the centerline (CL) of the clipper 50 and upstream product horn or chute. The clipper 50 can include a clip path that directs a string of clips along a (curvilinear) rail 50r to a clip window 50w. As is well known, a punch can automatically force a forwardmost clip down the clip window 50w and into the clip gate 66 to cooperate with a lower forming die 88 (
A knife 99 (
The clippers 50 of the instant invention can be provided or used as stand-alone devices or may be provided as a part of an automated or semi-automated packaging system. The clippers can be operated to manually, semi-automatically or automatically apply closure clips to seal or hold products held in the casings and/or netting. Examples of exemplary devices and apparatus used to void, clip, package and/or tension casing material are described in U.S. Pat. Nos. 5,085,036, 5,203,760, 4,847,953; 4,675,945; 5,074,386; 5,167,567; and 6,401,885, and U.S. Patent Application Publication No. US-2005-0039419-A1, the contents of which are hereby incorporated by reference as if recited in full herein.
The target products for packaging may be a linked chain of elongated extruded product held in a casing or discrete objects held in netting or other materials. The casing can be any suitable casing (edible or inedible, natural or synthetic) such as, but not limited to, collagen, cellulose, plastic, elastomeric and/or polymeric casing.
The encased product can be a food product, such as a meat product. Exemplary meat products include, but are not limited to, strands of meat (that may comprise pepperoni, poultry, and/or beef or other desired meat), and processed meat products including whole or partial meat mixtures, including sausages, hot dogs, and the like. Other embodiments of the present invention may be directed to seal other types of food (such as cheese) or other product in casing materials or enclose the product in packaging material. Examples of other products that can be sealed in casing material include powders such as granular materials including grain, sugar, sand and the like or other flowable materials including wet (similar to that held conventionally in cans) pet food or other powder, granular, solid, semi-solid or gelatinous materials. Examples of products that can be packaged in netting or other materials also include non-pumpable items, such as, for example, bone-in or boneless hams (half, whole or other size), fresh, frozen or previously frozen turkeys (whole), and other discrete objects. The product may be packaged for any suitable industry including food, aquaculture, agriculture, environmental, chemical, explosives, or other applications.
Turning again to
While described with respect to a certain type of operation, clippers of the instant invention are not limited thereto as they may be used with many different types of equipment (with non-pumpable product and chutes, with netting, without netting, with standard casings rather than heat-seal casings, and the like). In some embodiments, in operation, during the pumping process, the casing is drawn off the product horn, stuffed with product, and concurrently encased in (elastic) netting. The moisture and/or exudates(s) in the product can cause the casing to cling to the product and seal the overlapping layers of the casing together along a lower lap seal. Typically the downstream end portion of the netting and casing is clipped or closed to capture the discharged product therein. As the product is discharged from the horn 20 it expands the casing and netting to create a package shape. The netting is stretched tightly over the product with the casing therebetween. The netting can hold the package together during the cooking or other subsequent process and can provide a uniform, aesthetically appealing crosshatch pattern on the finished product. The size of the package formed can vary depending on the casing size, the length of time the filler is activated to discharge product, the tension of the netting, and/or the conveyor speed of the conveyor receiving and holding the encased product. Once the package is filled, the voider 25 of the apparatus 10 can void a target portion of the package and the clipper 50 can apply one or more clips to the voided region of the package. Typically two clips are applied and the package is severed between the clips using an automatically actuated knife 99 (
The apparatus 10 can be configured to mount other horns and run different casing types, such as a heat seal horn and a shirred casing horn. Thus, the apparatus can be a multi-modal device that accepts at least two different horns, each operating using the same HMI 125 and clipper/voider assembly to allow more manufacturing adaptivity. A horn that may be configured to provide casings can be one that processes a slug-type natural or artificial casing that unwinds, advances, stretches and/or pulls to form the elongate casing over the desired product. Another type of casing is a heat-sealed tubular elastomeric casing formed by seaming a thin sheet of flexible material, typically polymeric material, together. The apparatus 10 includes a first horn 20 which cooperates with forming and sealing mechanisms held therein to convert flat roll stock material into tubular seamed casing as the material travels in the apparatus 10 and over the horn 20. Examples of tubular casing forming apparatus and an associated heat-sealing horn are described in U.S. Pat. Nos. 5,085,036 and 5,203,760, the contents of which are hereby incorporated by reference. However, as stated above, the apparatus may be a non-pumpable apparatus or may be configured to produce the tubular casings using additional and/or alternative joining or seaming means.
Turning now to
In operation, the actuator 52 linearly extends rod 52r, forcing the first linkage 71 to pivot downward away from the clipper body 50b. In the embodiment shown, the first linkage 71 can pivot between about 30-75 degrees between the extended and retracted configurations, typically between about 40-60 degrees. As shown in
When retracted, as shown in
As also shown in
Other stiffener assembly 70 configurations may be used and/or other mechanical structures or linkages and pivot arrangements of the stiffener assembly shown in
Optionally, a first linkage can be pivoted downward so that the second end portion of the first linkage forces the first end portion of the second linkage downward and away from the clipper body, which directs the first gate member to pivot inward toward a center line of the clipper body to the closed configuration (block 202). The first and second linkages can be aligned to define a substantially common centerline that has an angle from vertical of between about 10-60 degrees to generate a force with horizontal and vertical force vectors that inhibits outward rotation of the first gate member during a clipping cycle (block 204).
As shown in
The data 456 may include a look-up chart of different casing run times (i.e., shirred slugs of casing for the second horn or tubular elastomeric (polymer) casings formed in situ, as well as the product, filling rates, selectable chain lengths and link lengths and the like corresponding to particular or target products for one or more producers. The data 456 may include data from a proximity sensor and/or exhaustion of casing material detector that allows the computer program to automatically control the operation of the apparatus to inhibit discharging product when casing material has been expended.
As will be appreciated by those of skill in the art, the operating system 452 may be any operating system suitable for use with a data processing system, such as OS/2, AIX, DOS, OS/390 or System390 from International Business Machines Corporation, Armonk, N.Y., Windows CE, Windows NT, Windows95, Windows98 or Windows2000 from Microsoft Corporation, Redmond, Wash., Unix or Linux or FreeBSD, Palm OS from Palm, Inc., Mac OS from Apple Computer, LabView, or proprietary operating systems. The I/O device drivers 458 typically include software routines accessed through the operating system 452 by the application programs 454 to communicate with devices such as I/O data port(s), data storage 456 and certain memory 436 components. The application programs 454 are illustrative of the programs that implement the various features of the data processing system 416 and preferably include at least one application which supports operations according to embodiments of the present invention. Finally, the data 456 represents the static and dynamic data used by the application programs 454, the operating system 452, the I/O device drivers 458, and other software programs that may reside in the memory 436.
While the present invention is illustrated, for example, with reference to the Module 424 being an application program in
The I/O data port can be used to transfer information between the data processing system 416 and the voider or upstream product preparation system 420 or another computer system or a network (e.g., the Internet) or to other devices controlled by the processor. These components may be conventional components such as those used in many conventional data processing systems which may be configured in accordance with the present invention to operate as described herein.
While the present invention is illustrated, for example, with reference to particular divisions of programs, functions and memories, the present invention should not be construed as limited to such logical divisions. Thus, the present invention should not be construed as limited to the configuration of
The flowcharts and block diagrams of certain of the figures herein illustrate the architecture, functionality, and operation of possible implementations of selective implementation of single and dual clip closure means according to the present invention. In this regard, each block in the flow charts or block diagrams represents a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses, where used, are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application is a continuation of U.S. patent application Ser. No. 11/682,425 filed Mar. 6, 2007, which issued as U.S. Pat. 7,322,164, on Jan. 29, 2008, which claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 60/781,101, filed Mar. 10, 2006, the contents of which arc hereby incorporated by reference as if recited in full herein.
Number | Name | Date | Kind |
---|---|---|---|
2831302 | Jensen et al. | Apr 1958 | A |
3293736 | Tipper | Dec 1966 | A |
3389533 | Tipper et al. | Jun 1968 | A |
3401499 | Jahnke | Sep 1968 | A |
3455010 | Busler | Jul 1969 | A |
3499259 | Tipper et al. | Mar 1970 | A |
3583056 | Klenz | Jun 1971 | A |
3717972 | Niedecker | Feb 1973 | A |
4043011 | Giraudi et al. | Aug 1977 | A |
4085779 | Wells | Apr 1978 | A |
RE30196 | Velarde | Jan 1980 | E |
4218861 | Marz | Aug 1980 | A |
4393641 | Niedecker | Jul 1983 | A |
4675945 | Evans et al. | Jun 1987 | A |
4683700 | Evans et al. | Aug 1987 | A |
4766713 | Evans | Aug 1988 | A |
4847953 | Evans et al. | Jul 1989 | A |
5074386 | Evans | Dec 1991 | A |
5077955 | Evans | Jan 1992 | A |
5085036 | Evans et al. | Feb 1992 | A |
5161347 | May et al. | Nov 1992 | A |
5167567 | Evans | Dec 1992 | A |
5203760 | Chen et al. | Apr 1993 | A |
5209041 | Evans | May 1993 | A |
5259168 | Evans et al. | Nov 1993 | A |
5269054 | Poteat et al. | Dec 1993 | A |
5495701 | Poteat et al. | Mar 1996 | A |
5586424 | Chen et al. | Dec 1996 | A |
6155024 | Bussey, III et al. | Dec 2000 | A |
6298635 | Bienert et al. | Oct 2001 | B1 |
6401885 | Whittlesey | Jun 2002 | B1 |
6883297 | Kirk et al. | Apr 2005 | B2 |
7322164 | Whittlesey et al. | Jan 2008 | B2 |
20050034426 | Griggs et al. | Feb 2005 | A1 |
20050039419 | Griggs et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0352825 | Jan 1990 | EP |
1428760 | Jun 2004 | EP |
1731432 | Dec 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20080083195 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60781101 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11682425 | Mar 2007 | US |
Child | 11950736 | US |