CLOCK GENERATOR AND RELATED BIASING CIRCUIT

Information

  • Patent Application
  • 20050093634
  • Publication Number
    20050093634
  • Date Filed
    November 02, 2004
    20 years ago
  • Date Published
    May 05, 2005
    19 years ago
Abstract
A clock generator capable of providing low-jitter clock signals without utilization of a crystal oscillator is introduced. The present invention clock generator utilizes a diode in related biasing circuit such that the generated control current to a current control oscillator is stable and clear due to the low flicker noise and low thermal noise of the voltage across the diode. The cost of PLL systems utilizing the present invention clock generator instead of a crystal oscillator is decreased. The adopted biasing circuit is introduced as well.
Description
BACKGROUND OF INVENTION

1. Field of the Invention


The present invention generally relates to a clock generator and a biasing circuit adopted in the clock generator. More specifically, the present invention relates to a clock generator that provides stable clock signals without utilizing a crystal oscillator.


2. Description of the Prior Art


It is very important to provide stable clock signals in signal processing systems. Please refer to FIG. 1. FIG. 1 shows a block diagram of a prior art analog phase-locked loop 100. The analog phase-locked loop (PLL) 100 includes a crystal oscillator (XO) 110, a frequency divider 120, a phase-frequency detector (PFD) 130, a charge pump 140, a loop filter 150 and a voltage-controlled oscillator (VCO) 160. The analog PLL 100 utilizes the frequency divider 120 to divide oscillation signals FVCO output by the VCO 160 by a multiple, and evaluates the differences of phase and frequency between the output signals from the frequency divider 120 and the reference clock signals Fref generated from the crystal oscillator 110 by using the PFD 130, so as to generate difference signals. The charge pump 140 charges the loop filter 150 according to the difference signals, and the loop filter 150 generates a control voltage VC accordingly. The VCO 160 outputs an oscillation signal FVCO corresponding to the control voltage VC. In this manner, the PLL 100 can provide stable clock signals with the aid of the stable reference clock signals Fref generated from the crystal oscillator 110, and can change the frequency of output oscillation signals by varying the frequency-dividing multiple of the frequency divider 120. There are PLLs of different structures, including digital ones. However, in every kind of PLLs, for providing an accurate reference clock signal, the crystal oscillator cannot be replaced with any other common clock generator. There are many kinds of oscillators. However, crystal oscillators of high accuracy and low noise are expensive. No matter what category of the oscillator is utilized, the cost of the oscillator is usually the significant part of the cost of the total PLL. Hence the effect of decreasing cost by simplifying or changing components other than the crystal oscillator is quite limited. Still, utilizing oscillators other than crystal oscillators results in jitter generated by the flicker noise and thermal noise of the oscillation signals, which locate at low frequencies. In video signal systems, the problem of jitter at low frequency is more serious since the jitter locates around the frequency of HSYNC signals.


SUMMARY OF THE INVENTION

It is therefore a primary objective of the present invention to provide a clock generator and a biasing circuit.


Briefly described, the claimed invention disclosed a clock generator. The clock generator includes a current controlled oscillator (ICO) having an input for receiving a control current, and an output for outputting clock signals of a frequency according to the control current; and a biasing circuit electrically connected to the ICO. The biasing circuit includes a current mirror having a first current output coupled to the input of the ICO for outputting the control current, and a second current output mirroring the first current output; a resister having one end coupled to the second current output of the current mirror; an operation amplifier (OpAmp) having a first input coupled to the second current output of the current mirror, a second input, and an output coupled to the current mirror; a diode having an end coupled to the second input of the OpAmp; and a current source having a first end coupled to the end of the diode and a second end coupled to the output of the OpAmp.


The claimed invention further disclosed a biasing circuit. The biasing circuit includes a current mirror having a first current output for outputting a control current, and a second current output mirroring the first current output; a resister having one end coupled to the second current output of the current mirror; an operation amplifier (OpAmp) having a first input coupled to the second current output of the current mirror, a second input, and an output coupled to the current mirror; a diode having an end coupled to the second input of the OpAmp; and a current source having a first end coupled to the end of the diode and a second end coupled to the output of the OpAmp.


It is an advantage of the present invention that the clock generator utilizes a biasing circuit for decreasing jitter of the utilized ICO. Hence the present invention clock generator does not have to utilize a crystal oscillator. Therefore the cost is reduced.


These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.




BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a block diagram of a prior art analog phase-locked loop.



FIG. 2 is a block diagram of an embodiment of the present invention clock generator.



FIG. 3 is a block diagram of an embodiment of the present invention biasing circuit.




DETAILED DESCRIPTION

The present invention provides a clock generator including a common current-controlled oscillator (ICO) and a biasing circuit for providing low-jitter reference clock signals without the aid of any crystal oscillators. Conventionally, no matter of what structure the PLL is, a crystal is necessary for providing stable reference clock signals and hence generating an accurate and low-jitter output oscillation signals accordingly. However, in the present invention, the claimed clock generator and its adopted biasing circuit decrease the low-jitter noise of the output reference clock signal. Hence the crystal oscillator can be replaced, and the cost is decreased in consequence.


The reason that the reference clock signals have to be generated by a crystal oscillator is that the current and voltages in most real circuits are inherently imprecise and unclear. For example, reference voltages generated by bandgap voltage generator commonly exhibit offset errors of up to 7% and high-jitter noise as well. The high-jitter effect results in an unacceptable error in final output oscillation signals if being utilized to control an oscillator for generating clock signals. Please refer to FIG. 2. FIG. 2 is a block diagram of the present invention clock generator 200. The present invention clock generator 200 includes a current-controlled oscillator (ICO) 210 capable of generating clock signals according to input control current and a biasing circuit 220. The biasing circuit 220 comprises a current mirror 222, a resister 224 coupled to the current mirror 222, an operation amplifier (OpAmp) 226, a current source 230, a diode 228 coupled to the current source 230, and an inverter (or a buffer) 240 coupled with the ICO 210. The current mirror 222 have a first current output 2221 coupled to the input of the ICO 210 for outputting a first output current l1 as the control current of the ICO 210, and a second current output 2222 for outputting a second output current l2 mirroring the first output current l1, say, l2=k*l1. The OpAmp 226 has a first input 1 coupled to the second current output 2222 of the current mirror 222, a second input 2 coupled to the diode 228, and an output 3 coupled to the current mirror and a gate the current source 230. The diode could be made of a parasitic bipolar transistor in a MOS semiconductor device in order to further reduce the noise of jitter effect. The voltage potential across the diode 228 is a stable and known value, say, Vbe, depending on the circuit design. According to the physic nature of the diode 228, the flicker noise and thermal noise of Vbe are pretty small compared to the high flicker noise and thermal noise of common reference voltages generated by the bandgap circuit. While the OpAmp 226 forms a closed loop, the voltage potentials at the first input 1 and the second input 2 of the OpAmp 226 lock in equal. That is, the current flows on the resistor 224 is Vbe/R. Since the relationship between the first current l1 and the second current l2 is predetermined and fixed as aforementioned, the value of the first current l1 is K*Vbe/R in consequence. Since the currents l1 and l2 are mirrored currents, the first current l1 is as low-jitter and clear as the second current l2. Hence the output clock signals of the ICO 210 and further output signals FOUT of the inverter (or buffer) 240 are more precise than other ICOs controlled by common bandgap currents.


The present invention biasing circuit utilizes the nature of low noise of the diode to provide a suitable control current. In the embodiment illustrated in FIG. 2, the diode 228 can be formed by a parasitic bipolar in a CMOS circuit. Further, the current source 230 is implemented by a P-type metal-oxide semiconductor (PMOS), and the output of the OpAmp 226 is coupled to the gate of the adopted PMOS. In fact, the current source 230 can be implement in other ways as long as it can provide sufficient current to the diode 228 and form a closed loop together with the OpAmp 226. The current mirror 222 can be implemented in many ways as well. The ICO 210 demonstrated in FIG. 2 is a ring oscillator. Similarly, other types of ICOs can be utilized in the present invention to provide clock signals with the stable and clear control current generated from the claimed biasing circuit.


Please refer to FIG. 3. FIG. 3 is a block diagram of an embodiment of the present invention biasing circuit 320. P1, P2 and P3 are three PMOSs. P1 and P2 constitute a pair of current mirror, outputting currents l1 and l2 wherein the current l1 mirrors the current l2. The sources of P1 and the source of P2 are coupled to a voltage source. The drain of P1 is the first current output of the current mirror. The drain of P2 is coupled to the first input 31 of the OpAmp 326 and the resister 324. The gates of P1, P2 and P3 are all coupled to the output 33 of the OpAmp 326. P3 behaves as a current source providing current to the diode 328. The OpAmp 326 forms a closed-loop such that the voltage potentials at two inputs 31 and 32 of the OpAmp 326 are remained in equal. Therefore, the current l2 flows on the resistor 324 is Vbe/R, and the current l1 is K*Vbe/R with the same assumption as the current mirror 222 in FIG. 2. As aforementioned, the current l1 is clear and with low noise due to the nature of the diode 328. The structure of the embodiment of the claimed biasing circuit 320 illustrated in FIG. 3 is quite concise. In realization, any equal circuit that can perform the same task is preferred and within the claimed invention as well.


The present invention discloses a clock generator capable of providing low-jitter clock signals to meet the requirement of PLL circuits in signal processing systems without utilization of crystal oscillators to reduce the cost. In video signal processing systems, the accuracy of sampling clocks and signal processing clocks is even more important for the visual performance relies on it. The claimed clock generator utilizes a diode hence the flicker noise and thermal noise of final output oscillation signals are reduced. Otherwise, the jitter resulted by the flicker noise and thermal noise of the oscillation signals will locate around the frequency of HSYNC signals. The performance of video signal processing system will be destroyed that way.


Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims
  • 1. A clock generator comprising: a current controlled oscillator (ICO) having an input for receiving a control current, and an output for outputting clock signals of a frequency according to the control current; and a biasing circuit electrically connected to the ICO comprising: a current mirror having a first current output coupled to the input of the ICO for outputting the control current, and a second current output mirroring the first current output; a resister having one end coupled to the second current output of the current mirror; an operation amplifier (OpAmp) having a first input coupled to the second current output of the current mirror, a second input, and an output coupled to the current mirror; a diode having an end coupled to the second input of the OpAmp; and a current source having a first end coupled to the end of the diode and a second end coupled to the output of the OpAmp.
  • 2. The clock generator of claim 1 further comprising an inverter coupled to the output of the ICO.
  • 3. The clock generator of claim 1 further comprising a buffer coupled to the output of the ICO.
  • 4. The clock generator of claim 1 wherein the current mirror comprises: a first PMOS comprising: a source coupled to a voltage source; a drain coupled to the input of the ICO; and a gate coupled to the output of the OpAmp; and a second PMOS comprising a source coupled to the voltage source; a drain coupled to the first input of the OpAmp; and a gate coupled to the output of the OpAmp.
  • 5. The clock generator of claim 1 wherein the current source is a PMOS, the first end of the current source being a drain of the PMOS, the second end of the current source being a gate of the PMOS.
  • 6. The clock generator of claim 1 wherein the ICO is a ring oscillator.
  • 7. The clock generator of claim 1 wherein the diode is a parasitic bipolar.
  • 8. A biasing circuit for controlling a current oscillator, the biasing circuit comprising: a current mirror having a first current output for outputting a control current, and a second current output mirroring the first current output; a resister having a first end coupled to the second current output of the current mirror, and a second end coupled to a low-level reference voltage; an operation amplifier (OpAmp) having a first input coupled to the second current output of the current mirror, a second input, and an output electrically coupled to the current mirror; a diode having a first end coupled to the second input of the OpAmp, and a second end coupled to the low-level reference voltage; and a current source having a first end coupled to the end of the diode, a second end coupled to the output of the OpAmp, and a third end coupled to a high-level reference voltage.
  • 9. The biasing circuit of claim 8 wherein the current mirror comprises: a first PMOS comprising: a source coupled to the high-level reference voltage; a drain for outputting the control current; and a gate coupled to the output of the OpAmp; and a second PMOS comprising a source coupled to the high-level reference voltage; a drain coupled to the first input of the OpAmp; and a gate coupled to the output of the OpAmp.
  • 10. The biasing circuit of claim 8 wherein the current source is a PMOS, the first end of the current source being a drain of the PMOS, the second end of the current source being a gate of the PMOS, the third end of the current source being a source of the PMOS.
  • 11. The biasing circuit of claim 8 wherein the diode is a parasitic bipolar.
CROSS REFERENCE TO RELATED APPLICATIONS

The application claims the benefit of U.S. Provisional Application No. 60/517,076, filed Nov. 5, 2003, and included herein by reference.

Provisional Applications (1)
Number Date Country
60517076 Nov 2003 US