Clonal analysis of hematopoietic stem and progenitor biology in situ

Information

  • Research Project
  • 9225236
  • ApplicationId
    9225236
  • Core Project Number
    R01HL128850
  • Full Project Number
    5R01HL128850-02
  • Serial Number
    128850
  • FOA Number
    PA-13-302
  • Sub Project Id
  • Project Start Date
    2/15/2016 - 8 years ago
  • Project End Date
    1/31/2020 - 4 years ago
  • Program Officer Name
    THOMAS, JOHN
  • Budget Start Date
    2/1/2017 - 7 years ago
  • Budget End Date
    1/31/2018 - 6 years ago
  • Fiscal Year
    2017
  • Support Year
    02
  • Suffix
  • Award Notice Date
    1/23/2017 - 7 years ago

Clonal analysis of hematopoietic stem and progenitor biology in situ

? DESCRIPTION (provided by applicant): Current dogma suggests that all hematolymphoid lineages are derived from a common ancestor, the hematopoietic stem cell (HSC). HSCs are believed to be the only cells with long-term self-renewal capacity in the bone marrow (BM), and are generally regarded as the cell of origin for continuous multi-lineage blood production during adult life. Evidence supporting this HSC-centric paradigm has been acquired through decades of work based largely on the use of functional assays involving transplantation. However, it is unclear to what extent functional characteristics of cells assayed under transplantation conditions are shared with cells driving non-transplant native hematopoiesis. Because of a historical lack of tractable systems, the mechanistic nature of non-transplant blood production has remained largely unexplored. To address this limitation, my laboratory has developed a novel experimental system in mice where cells can be uniquely and genetically labeled in situ. Using this system, clonal fate of multiple hematopoietic populations can be tracked over time and across lineages, for the first time, in a native context. Our preliminary findings with this model have revealed surprisingly unique features of unperturbed hematopoiesis. Among other things, our data demonstrate that long-term native hematopoiesis is mainly driven by waves of progenitor recruitment and that HSC contribution during this process is minimal. Thus, we hypothesize that native hematopoiesis is driven by fundamentally different mechanisms as transplantation. In this proposal, we aim to extend our earlier findings and to provide comprehensive insight into the biology of blood production in situ. Specifically, we will test whether HSCs can be recruited into productive hematopoiesis via injury, stress, or infection. We will also test whether progenitor recruitment can exhaust during the aging process. Additionally, we will revisit the existence of classical progenitor populations and lineage relationships using our clonal strategy. Completion of this project would elucidate the basic mechanisms underlying blood production and provide insight into stem cell dynamics during disease processes.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R01
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
    296232
  • Indirect Cost Amount
    228099
  • Total Cost
    524331
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:524331\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    DEV2
  • Study Section Name
    Development - 2 Study Section
  • Organization Name
    CHILDREN'S HOSPITAL CORPORATION
  • Organization Department
  • Organization DUNS
    076593722
  • Organization City
    BOSTON
  • Organization State
    MA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    021155724
  • Organization District
    UNITED STATES