This disclosure relates generally to a cloner.
Plant propagation or cloning may be achieved by a process called aeroponics. Aeroponics may involve growing plants in a chamber by misting suspended roots, without use of an aggregate medium such as soil. Aeroponics may improve oxygen and nutrient intake of roots, reduce water usage, and allow for higher density growing. Conventional cloners, for example, those with submersible water pumps, may generate excess heat inside the cloner, causing roots to rot. Fan systems on conventional cloners may fail to provide sufficient oxygen to roots or effective airflow to counter excess heat.
The following presents a simplified summary of the disclosure to provide a basic understanding to the reader. This summary is not an extensive overview of the disclosure, nor does it identify key or critical elements of the claimed subject matter or define its scope. Its sole purpose is to present some concepts disclosed in a simplified form as a precursor to the more detailed description that is later presented.
The instant application discloses, among other things, a cloner, which may use aeroponics to propagate or clone plants. In one embodiment, the cloner may comprise a reservoir operable to hold a liquid, such as water. The reservoir may include a housing to contain a pump. The pump may function without becoming submerged in the liquid. The pump housing may serve as a heat shield to mitigate or prevent harmful overheating inside the cloner.
The cloner may comprise a lid with apertures operable for holding plant cuttings, stems, or roots, for example. The lid may include a housing for a fan, which may direct airflow across the cloner to prevent an inside temperature from getting too hot. Airflow from the fan may mix with water sprayed from a manifold to diffuse dissolved oxygen to roots. The manifold may be mounted at or near a water line of the reservoir. A spoiler inside the lid may help direct air to flow efficiently across the cloner unit. Air may be released through ventilation holes in the reservoir, which may be located at an opposite end from the fan.
A person skilled in the art will understand that cloner and its components may comprise various shapes, colors, and sizes. Cloner may be made of a material such as plastic, carbon fiber, metal rubber, wood, or fiberglass, for example.
Many of the attendant features may be more readily appreciated as they become better understood by reference to the following detailed description considered in connection with the attached drawings.
Like reference numerals are used to designate like parts in the accompanying drawings.
Cloner 100 may comprise a Lid 130 with Apertures 140 across its surface. Apertures 140 may serve as sites for holding plant cuttings, stems, or roots, for example. Stem collars, neoprene inserts, or other accessories may be placed in Apertures 140 to promote stability or nourishment of objects in Apertures 140.
Lid 130 may include Fan Housing 150 to house Fan 160. Fan Screen 165 may couple to Fan Housing 150, covering an outward-facing side of Fan 160. Fan Screen 165 may comprise a clear polymer film with holes, for example, to block obstructions from entering Fan 160 or promote user safety, while allowing passage of air.
Fan 160 may move a fluid, such as cool air, into Cloner 100. The air may be directed to flow across Cloner 100 to prevent an inside temperature from getting too high, to promote air or water circulation, or to optimize diffusion of dissolved oxygen, for example.
In one embodiment, Fan 160 may be located at a first end of a generally rectangular-shaped Reservoir 110. A spoiler inside of Lid 130 may direct air moved by Fan 160 to flow toward the sides of an interior space of Cloner 100, causing the air to flow efficiently across a length of Cloner 100. Air may be released from Cloner 100 through ventilation holes on a second end of Lid 130, opposite Fan 160, for example.
Air flow generated by Fan 160 may mix with water sprayed from a manifold in Reservoir 110 to diffuse dissolved oxygen to roots, for example. In another embodiment, the air may be directed to create turbulent air flow to optimize concentration or diffusion of dissolved oxygen, for example.
A person skilled in the art will understand that Cloner 100 and its components may comprise various shapes, colors, and sizes. For example, Cloner 100 may have a spherical shape in another embodiment. Cloner 100 may be made of a material including polymers such as plastic, composites such as carbon fiber or fiberglass, metal, rubber, or wood, for example.
Reservoir 110 may include Pump Housing 210, operable to receive Pump 220. Pump Housing 210 may receive Pump 220 in such a way that Pump 220 is situated separately or externally from an interior space of Reservoir 110, for example, preventing Pump 220 from coming into contact or becoming submerged in the liquid of Reservoir 110. Pump 220 may be operable to move a fluid, for example, water, through piping connected to a manifold with spray jets. Pump 220 may operate without becoming submerged in the liquid of Reservoir 110. Submersible pumps may create excess heat within a cloner. Pump Housing 210 may serve as a heat shield to mitigate or prevent heat which may be incidentally generated by Pump 220 from overheating the inside of Cloner 100, for example.
A surface of Lid 130 may have Apertures 140 for holding plant cuttings, stems, or roots, for example. A first end of Lid 130 may include Fan Housing 150 for receiving Fan 160. A protective Fan Screen 165 may couple to Fan Housing 150, covering an outward-facing side of Fan 160. Fan Screen 165 may have holes to allow air to pass through it.
In one embodiment, Fan Housing 150 or Fan 160 may couple to a light, for example, a light-emitting diode (LED). The LED may have various attributes such as color, brightness, or flash, for example. The LED may indicate information, for example, a type of plant being grown, a stage in a growing process, or an environmental condition inside or outside Cloner 100, such as temperature, pH level, or humidity. In another embodiment, the LED may be used to indicate that a Cloner 100 unit is in operation, to identify an inventory of a Cloner 100 unit, or identify clone strains by a color of the LED, for example. Use of an LED with Fan Housing 150 or Fan 160 may give Cloner 100 a unique style or individuality. In another embodiment, an LED may identify a Cloner 100 product brand or model, for example.
Air may be released through Ventilation Holes 310 at a second end of Lid 130, on a side opposite from Fan 160. A second Spoiler 430 may be located in front of Ventilation Holes 310 to prevent air from being released too quickly from Cloner 100 or to minimize or prevent outside air from entering Cloner 100. Spoiler 430 may be smaller in size than Spoiler 420.
Air flow from Fan 160 may mix with water sprayed from a manifold in Reservoir 110 to diffuse dissolved oxygen to roots. In one embodiment, Fan 160 and Spoiler 430 may help create turbulence within Cloner 100 to increase a concentration of dissolved oxygen, for example.
Pump 220 may be operable to push a fluid, for example, water, through Piping 530, which may couple to a manifold equipped with spray jets. Filter 540 may comprise a water filter for Pump 220. Pump 220 may operate without becoming submerged in the liquid of Reservoir 110. Pump Housing 210 may serve as a heat shield to mitigate or prevent harmful overheating inside Cloner 100, for example.
Cloner 100 may be drained by connecting a hose to Piping 630, turning on Pump 220, and utilizing the pump to allow the liquid to drain out of Reservoir 110 and into a bucket placed below Cloner 100, for example. In another embodiment, Cloner 100 may have a drain, for example, in Reservoir 110.
Lip 520 may be located at or near Water Line 510 and may serve as a mounting surface for a Manifold 610.
Manifold 610 may include a plurality of Spray Jets 620 for diffusing water and dissolved oxygen, for example, inside Cloner 100. Manifold 610 may have Supports 630 which may rest upon Lip 520, allowing Manifold 610 to remain at or near Water Line 510 and to maintain a flat or stable position.
Pump 220 may push a fluid, for example, water, through an arrangement of Piping 530 which may connect to a manifold with spray jets. Filter 540 may comprise a water filter for Pump 220. Connector 640 may couple Manifold 610 to Piping 530. Pump 220 may operate without becoming submerged in the liquid of Reservoir 110. Submersible pumps may create excess heat within a cloner. Pump Housing 210 may serve as a heat shield to mitigate or prevent heat created by Pump 220 from overheating the inside of Cloner 100.
Pump 220 may couple to Piping 530, and Filter 540 may comprise a water filter for Pump 220. Water may fill Reservoir 110 up to or near Water Line 510. Lip 520 may be located at or near Water Line 520. A surface of Lip 520 may serve as a mounting surface for the manifold. Cloner 100 may receive power through a Power Cord 120, for example.
Manifold 610 may be stacked onto Reservoir 110 by resting or mounting Supports 630 on Lip 520 of Reservoir 110. Spray Jets 620 may release liquid, such as water into Cloner 100 in any direction, for example upward, sideways, or in a rotation. Spray Jets 620 may include threaded sockets for stability or easy removal. Connector 640 may couple an underside of Manifold 610 to Piping 530.
Lid 130 may comprise a top portion of Cloner 100. Lid 310 may be placed on top of Reservoir 110 to enclose Cloner 100. A locking mechanism or other enclosure means may prevent Lid 130 from sliding off. Lid 130 may have Apertures 140 for holding plant cuttings, stems, or roots. Accessories, for example, stem collars or neoprene inserts may be inserted into or within Apertures 140.
Lid 130 may have a Fan Housing 150 at one end. Fan Housing may house Fan 160, which may move a fluid, for example, cool air, into Cloner 100. Fan Screen 165 may couple to Fan Housing 150 or Fan 160 to prevent objects from obstructing Fan 160.
Cloner 100 may be placed on a flat surface, such as a floor or table, to optimize effectiveness in propagating or cloning plants, for example. Cloner 100 may also couple with a lighting fixture, to facilitate in the growing process. In one embodiment, it may be placed on a cart having a flat surface for receiving Cloner 100. The cart may include a multi-plug device for receiving multiple power plugs, for example, plugs from Fan 160 or Pump 220. The cart may also include a light fixture, for example, a fluorescent grow light, which may be mounted above Cloner 100.