A Small Arterial Substitute: Expanded Microporous Polytetrafluoroethylene: Patency Versus Porosity, C. Campbell et al., Annals of Surgery, 1975, pp. 138-143. |
Expanded Microporous Polytetrafluoroethylene as a Vascular Substitute: A Two Yeare Follow-Up, C. Campbell et al., Surgery, 1979, pp. 177-183. |
The Relationship Between Soft Tissue Attachment, Epithelial Downgrowth and Surface Porosity, C. Squier et al., Journal of Periodontal Research, vol. 16, 1981, pp. 434-440. |
Effects of a Grooved Epoxy Substratum on Epithelial Cell Behavior In Vitro and In Vivo, B. Chehroudi et al., Journal of Biomedical Materials Research, vol. 22, 1988, pp. 459-473. |
Endothelial Cell Culture on Dacron Fabrics of Different Configurations, S. Eskin et al., Journal of Biomedical Materials Research, vol. 12, 1978, pp. 517-524. |
Physical Characteristics of Expanded Polytetrafluoroethylene Grafts, B. Boyce, Biologic and Synthetic Vascular Prostheses, 1982, pp. 553-559. |
Normal Wound Healing Compared to Heating Within Porous Dacron Implants, Schreuders, et al., Journal of Biomedical Materials Research, vol. 22, 1988, pp. 121-135. |
Inhibition of Epithelial Downgrowth on Percutaneous Access Devices in Swine; II, Wasfie et al., Trans. Am. Soc. Artif. Intern. Organs, 1984, vol. XXX, pp. 556-560. |
Long-Term Percutaneous Access Device, Freed et al., Trans. An. Soc. Artif. Intern. Organs, 1985, vol. XXXI, pp. 230-232. |
Society for Biomaterials 1992 Presidential Address, B. Ratner, Journal of Biomedical Materials Research, vol. 27, 193, pp. 837-850 (Attachment No. 11). |
Neovascularization at a Membrane-Tissue Interface is Dependent on Microarchitecture, J. Brauker et al., Fourth World Biomaterials Congress, 1992 (Attachment 12). |
Surface Characterization of Microtextured Silicone, J. Schmidt et al., Fourth World Biomaterials Congress, 1992, p. 351 (Attachment No. 8). |
Influence of Surface Microgeometry on Orientation and Anchorage of Fibroblasts; J. Meyle et al., Fourth World Biomedical Congress (1992) (Attachment No. 9). |
Fibroblast Response to Microtextured Silicone Surfaces: Texture Orientation Into or Out of the Surface, A. Green et al., Journal of Biomedical Materials Research, vol. 28, 1994, pp. 647-653 (Attachment No. 10). |
Fibroblast Shape Conformation to Surface Micromorphology, J. Meyle et al., Journal of Applied Biomaterials, vol. 2, 1991, pp. 273-276 (Attachment 5). |
Bulk Chemistry Versus Surface Texture; an In Vivo Study of Titanium, Hydroxyapatite, and Silicone, E. Wu et al., Fourth World Biomedical Congress, 1992, p. 159 (Attachment 6). |
Cellular Metabolic Activity on Microtextured Silicone, J.A. Schmidt et al., Fourth World Biomaterials Congress, Apr., 1992, p. 138 (Attachment No. 7). |
Bioengineering in Development of the Hybrid Artificial Pancreas, C.K. Colton et al., Transactions of the ASME, vol. 113, May, 1991, pp. 152-170 (Attachment No. 1). |
Texturing of Polymer Surfaces at the Cellular Level, J.A. Schmidt et al., Biomaterials, vol. 12, May 1991, pp. 385-389) (Attachment No. 4). |
Microtopography and Soft Tissue Response; C.E. Campbell et al., Journal of Investigative Surgery, vol. 2, pp. 51-74, 1991. |
Activated Macrophages Induce Vascular Proliferation; Polverini et al., Nature, vol. 269, pp. 804-806, Oct. 27, 1977. |
Macroporous Hydrogel Membranes for a Hybrid Artificial Pancreas. II. Biocompatibility; Klomp et al., Jrnl of Biomedical Mat. Res., vol. 17, 865-871 (1983). |
Oxygen Tension Regulates the Expression of Angiogenesis Factor by Macrophages; Knighton et al., Science, Sep., 1981. |
Macrophage-derived Growth Factors in Wound Healing: Regulation of Growth Factor Production by the Oxygen Microenvironment; Knighton et al., Am. Rev. Respir. Dis. 1989; 140:1108-1111. |