1. Field of the Invention
The present invention pertains to a closed automatic fluid mixing system, and, more particularly, to a closed automatic fluid mixing system capable of mixing two fluids while maintaining a feed pressure of the mixed fluid at a predetermined level.
2. Description of the Related Art
Wells drilled in exploration or for production of hydrocarbons typically employ fluids pumped at relatively high pressures down the bore of the well. A variety of fluids are used for a variety of purposes. The fluids will frequently comprise several components that are mixed at the site of the well. The component fluids are typically transported to the site and stored in separate holding tanks. The component fluids are then fed into a mixing tank, where they are mixed in the desired ratio for the anticipated application. The mixed fluid is then fed to a positive displacement pump, which pumps the fluid down the well bore. Positive displacement pumps, as opposed to centrifugal pumps, are used because of the relatively high (up to 15,000 psi) pressures employed.
Although this system has worked satisfactorily for many years, it presents many problems. The mixing tanks can be relatively expensive—up to $50,000 each—and can occupy space at the site that is literally and/or figuratively costly. The fluids are frequently highly acidic, and so the mixing tank sometimes creates environmental and safety concerns. For instance, if a job is cut short, the mixed fluid remaining in the mixing tank must be disposed of, which may implicate compliance with environmental regulations in some circumstances.
These drawbacks are tolerated, however, because of the needs of the positive displacement pump. A positive displacement pump includes one or more pistons, frequently as many as three to five, that reciprocate. As the piston(s) reciprocate, fluid is drawn into the pump's inlet and pumped out. If the supply of fluid to the pump is interrupted, the pump will “cavitate.” Persistent cavitation can produce effects in the pump that can damage or even destroy the pump. The mixing tank, however, will hold a supply of feed fluid whose level can be monitored to avoid cavitating the pump.
The present invention is directed to resolving, or at least reducing, one or all of the problems mentioned above.
A closed automatic fluid mixing apparatus and method for mixing two fluids while maintaining a feed pressure of the mixed fluid at a predetermined level are disclosed. The apparatus comprises a first fluid feed, a second fluid feed, a mixing valve, and a closed control system. The mixing valve is capable of mixing a first fluid received from the first fluid feed and a second fluid received from the second fluid feed to produce a mixed fluid. The closed control system is capable of controlling the mixing valve to determine the ratio of the first and second fluids in the mixed fluid while maintaining the pressure of the mixed fluid at a predetermined level. The method, comprises feeding a first fluid to a mixing valve; feeding a second fluid to the mixing valve; mixing the first and second fluids in the mixing valve; and controlling the actuation of the mixing valve to determine the ratio of the first and second fluids in a resultant mixed fluid while maintaining the pressure of the mixed fluid at a predetermined level.
The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the invention is susceptible to various modifications and alternative forms, the drawings illustrate specific embodiments herein described in detail by way of example. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort, even if complex and time-consuming, would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
More particularly, each of the first and second fluid feeds 102, 104 comprises a holding tank 110, 112, respectively, and a pump 114, 116, respectively, capable of pumping the respective fluid 107, 109 from the holding tanks 110, 112, to the mixing valve 106. Note that it is not necessary to the practice of the invention that the first and second fluid feeds 102, 104 have the same construction. In alternative embodiments, the first and second fluid feeds 102, 104 may be implemented using different kinds and numbers of equipment.
The implementation of the first and second fluid feeds 102, 104 will be strongly influenced by the properties of the first and second fluids 107, 109. For instance, in the illustrated embodiment, the first fluid 107 is water (H2O) and the second fluid 109 is a raw acid. More particularly, the second fluid 109 is hydrochloric acid (HCl). As those skilled in the art having the benefit of this disclosure will appreciate, different materials behave differently in the presence of these two different fluids. Different equipment will therefore typically be desired to handle these two fluids. In some embodiments, the differences between the properties of the two fluids may even be more subtle—for instance, the difference between tap water and sea water. Thus, the implementation of the first and second fluid feeds 102, 104 will depend somewhat on the properties of the first and second fluids 107, 109.
In the embodiment illustrated in
The holding tanks 110, 112 also should be implemented keeping the properties of the first and second fluids 107, 109 in mind. As those in the art having the benefit of this disclosure will appreciate, there are many makes and models of holding tanks that are commercially available. The selection will be readily apparent to those in the art once the implementation-specific details for the system have been developed. These implementation specific details will include not only the properties of the first and second fluids 107, 109, but also storage capacities, flow rates, size constraints, etc. In the illustrated embodiment, the holding tank 110 (i.e., for the water service) may be implemented with standard frac tanks, ship's below deck mud tanks, body of water, or other. The holding tank 112 (i.e., for the acid service) may be implemented with a 40,000 gallon acid storage tank with appropriated liner, or with a natural rubber lined, 150 bbl tank 8′ diameter with a 6″ suction.
The mixing valve 106 is a three-way valve. In the illustrated embodiment, the mixing valve 106 is implemented by a pair of valves (not otherwise shown) slaved together with a common actuator such that as one of the valves opens the other closes. In one particular implementation, the mixing valve 106 may be implemented with two stream selector valves:
As previously mentioned, the control system 108 in
The control system 108 of the illustrated embodiment includes an inlet flow meter 118 on the first fluid feed 102, an inlet flow meter 120 on the second fluid feed 104, an outlet flow meter 122 on the outlet of the mixing valve 106, and an electronic controller 126. The implementation of the inlet flow meters 118, 120 and the outlet flow meter 122 should, like the pumps 114, 116, consider the properties of the first and second fluids. As noted, in the illustrated embodiment, the first fluid is water and the second fluid is an acid. Accordingly, the flow meters 118, 120, 122 may be implemented with:
The electronic controller 126 is a Proportional, Integral, Differential (“PID”) controller. In one particular implementation is a controller disclosed and claimed in U.S. Pat. No. 6,007,227, entitled “Blender Control System,” and issued Dec. 28, 1999, to BJ Services Co. as assignee of the inventor Bradley T. Carlson. Alternative embodiments may employ other PID controllers. Exemplary, commercially available PID controllers that may be employed in various embodiments include a Programmable Logic Controller (“PLC”) type controller from Homer Electric Co. operating on the Homer Electric Operator Control Station (“OCS”) Control System and comprising a base CPU (Part No. HE800FOX104), a Universal I/O Module (Part No. HE800MIX904), and a Color Display Module (Part No. HE800MIX904). However, still other PID controllers may be used.
The illustrated embodiment also includes a positive displacement pump 128 on the outflow of the mixing valve 106. The positive displacement pump 128 may be implemented using any such pump known to the art that is suitable for a given system's design. Suitable positive displacement pumps include the:
In operation, the positive displacement pump 128 pumps the mixed fluid received from the mixing valve 106 to, for example, a well used in hydrocarbon prospecting or production. The mixing valve 106, as mentioned above, controls the ratio of the first and second fluids 107, 109 in the mixed fluid under the programmed control of the electronic controller 126. The ratio may range from a 100% ratio of the first fluid 107, through a 50%-50% ratio of the first fluid 107 to the second fluid 109, to a 100% ratio of the second fluid 109. The ratio may also vary over time, depending on the programming of the electronic controller 126. The positive displacement pump 128 controls the flow rates of the first and second fluids in the first and second fluid feeds 102, 104.
In the embodiment of
The electronic controller 126 then reads (at 204) the discharge rate of the mixed fluid from the mixing valve 106. The discharge rate is measured by the outlet flow meter 122, from which the electronic controller 126 receives the measured discharge rate as an input. The discharge rate is typically measured in gallons-per-minute (“gpm”).
In the illustrated embodiment, the electronic controller 126 then calculates (at 206) the Rate 1 (i.e., the flow rate of the first fluid) setpoint in gallons-per-minute for the first fluid 107. The illustrated embodiment calculates as follows:
Rate 1 Setpoint=1,000÷Discharge Rate*Setpoint (GPT)
This calculation converts the units of measurement from those entered by the user to those measured by the outlet flow meter 122. Note that this is driven by the units of measurement being used, and is therefore implementation specific. If the setpoint is entered in the same units of measurement employed by the outlet flow meter 122, then this conversion can be omitted. Thus, not all embodiments will include this calculation.
The electronic controller 126 then (at 208) determines from the inflow rate of the first fluid 107 measured by the inlet flow meter 118 the output to the mixing valve 106. Note that the inflow rate is measured, in the illustrated embodiment, in gallons-per-minute. Note also that alternative embodiments may employ the inflow rate of the second fluid 109 measured by the inlet flow meter 120. The determination is made by a PID routine (not otherwise shown) in the electronic controller 126, and is therefore also implementation specific. The output to the mixing valve 106 is an electronic signal that drives the actuator of the mixing valve 106. Thus, the PID routine compares the inflow rate to the setpoint, determines whether the mixing valve 106 needs to be adjusted, and generates the output to the mixing valve 106 to adjust it appropriately should adjustment be needed.
SPGPM=1,000÷Discharge Rate*SPGM
After the setpoint is calculated (at 206), the flow diagram 300 determines whether the user discharge rate (i.e., the user-entered setpoint) is greater than 5,000 gpt.
If the user-enters a rate>5,000 gpt, then the electronic controller 126 sets (at 302) the valve for the first fluid feed 102 (“valve 1”) full open. The PID routine then determines (at 304) from the inflow rate of the first fluid feed 102 (measured by the inlet flow meter 118) and sets the valve for the second fluid feed 104 (“valve 2”). If the user enters a rate<5,000 gpt, the PID routine determines (at 306) from the inflow rate of the first fluid feed 102 (measured by the inlet flow meter 118) and sets the valve for the first fluid feed 102 (“valve 1”). The electronic controller 126 then sets the valve for the second fluid feed 104 (“valve 2”) full open.
This concludes the detailed description. The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
Number | Date | Country | |
---|---|---|---|
Parent | 10331719 | Dec 2002 | US |
Child | 11138231 | May 2005 | US |