U.S. application Ser. No. 13/167,492, filed Jun. 23, 2011, which is assigned to the assignee of the present application, includes related information and is incorporated herein by reference.
Some applications of the present invention relate in general to valve repair, and more specifically to repair of an atrioventricular valve of a patient.
Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium. Dilation of the annulus is sometimes treated by annuloplasty, in which a partial or full ring is implanted around the annulus to cause the leaflets to coapt when the valve is closed.
In some applications of the present invention, an implantable structure is provided that comprises a flexible sleeve having first and second sleeve ends, a contracting assembly, and a plurality of tissue anchors. The contracting assembly is configured to longitudinally contract the sleeve, and comprises a contracting mechanism and a longitudinal contracting member having first and second member ends. The contracting mechanism is disposed longitudinally at a first site of the sleeve, and the second member end is coupled to the sleeve longitudinally at a second site longitudinally between the first site and the second sleeve end, exclusive. The contracting member also has a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the contracting member, and is coupled to the contracting mechanism. A first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, and a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site. The sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve. The implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites, and not along the overlapping portion. The longitudinal contracting force longitudinally contracts at least a portion of the sleeve only between the first and the second sites, and not along the overlapping portion. Typically, the contracting member extends along neither the first nor the second portion of the sleeve.
In some applications of the present invention, the contracting assembly includes one or more longitudinal contracting members coupled to the contracting mechanism. The implantable structure is placed completely around an annulus of an atrioventricular valve of a subject, such that none of the one or more longitudinal contracting members is positioned along an anterior portion of the annulus between fibrous trigones of the valve. The implantable structure is fastened to the annulus. The contracting assembly is then actuated to contract a longitudinal portion of the sleeve not positioned along the anterior portion of the annulus. Tightening of the implantable structure therefore tightens at least a portion of the posterior portion of the annulus, while preserving the length of the anterior portion of the annulus. (The anterior portion of the annulus should generally not be contracted because its tissue is part of the skeleton of the heart.) However, the portion of the sleeve deployed along the anterior portion of the annulus prevents dilation of the anterior annulus, because the sleeve is anchored at both ends of the anterior annulus, and the sleeve typically comprises a longitudinally non-extensible material. This deployment configuration may help prevent long-term resizing of annulus, especially the anterior annulus, which sometimes occurs after implantation of partial annuloplasty rings, such as C-bands.
In some applications of the present invention, one or more of the tissue anchors are coupled to the sleeve at respective third sites longitudinally between the second site and the second sleeve end, exclusive. Typically, the implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites. The longitudinal contracting force contracts at least a portion of the sleeve only between the first and the second sites. Providing the one or more anchors beyond the ends of the contracting member generally distributes force applied by contraction of the contracting assembly over the tissue interfaces of these anchors. In contrast, in some configurations of the implantable structure in which anchors are not provided beyond the ends of the contracting member, the force applied by the contracting assembly is applied predominantly to the single anchor nearest the first end of the contracting member, and the single anchor nearest the second end of the contracting member.
For some applications, at least two of the tissue anchors are coupled to the sleeve at respective third sites longitudinally between the second member end and the second sleeve end, exclusive. For some applications, the second site is at least 5 mm from the second sleeve end, measured when the sleeve is in a straight, relaxed, non-contracted state, such as at least 9 mm, e.g., at least 18 mm. For some applications, the second site is at a longitudinal distance from the second sleeve end, which distance is no greater than 30% of a total length of the sleeve, the distance and length measured when the sleeve is in the straight, relaxed, non-contracted state. For some applications, at least three of the tissue anchors are coupled to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive. Typically, the sleeve is substantially longitudinally non-extensible.
For some applications, the sleeve has first and second sleeve ends, and first and second portions that longitudinally extend from the first and the second sleeve ends, respectively. The sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve positioned at least partially along the anterior portion of the annulus, and none of the one or more longitudinal contracting members is positioned along the overlapping portion of the sleeve. For some applications, at least one of the tissue anchors penetrates both the first and second portions of the sleeve at the overlapping portion. Such a mutual anchor helps ensure that the first and second portions remain tightly coupled together and to the tissue, so that the sleeve retains its closed loop shape. Alternatively, for some applications, the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
The implantable structure, when in this closed-loop configuration, is deployed around the entire annulus of the native valve, including an anterior portion of the annulus (on the aortic side of the valve) between the fibrous trigones. Typically, the contracting member does not extend along the portion of the sleeve deployed along the anterior portion of the annulus, and thus does not extend along the first portion, the second portion, or the overlapping portion of the sleeve. The portion of the sleeve deployed along the anterior portion of the annulus (between the trigones) is thus non-contractible. As mentioned above, tightening of the implantable structure therefore tightens the posterior portion of the annulus, while preserving the length of the anterior portion of the annulus. For some applications, this deployment configuration may also help achieve a closed loop that serves as a base ring to which a prosthetic valve is coupled.
In some applications of the present invention, the implantable structure further comprises an elongated linking member, which is positioned along an anterior portion of the annulus, so as to join the ends of the implantable structure in a complete loop. Over time after implantation, the linking member becomes fixed to the anterior portion of the annulus, thereby helping prevent long-term dilation of the anterior annulus. Typically, at least a portion of the linking member is disposed within and covered by the sleeve, into and/or over which fibrous tissue grows over time, helping anchor the linking member to tissue of the anterior annulus. Typically, in this configuration of the implantable structure, none of the anchors is coupled to the anterior portion of the annulus.
A first end of the linking member is typically fixed between 2 and 6 cm from a first end of the sleeve. A second end of the linking member is positioned within 1.5 cm of the same end of the sleeve, either protruding from the end of the sleeve, or recessed within the sleeve. The second end of the linking member comprises (e.g., is shaped so as to define) a first coupling element. The implantable structure further comprises a second coupling element, which is configured to be coupleable to the first coupling element. The second coupling element is coupled to the implantable structure within 1.5 cm of the second end of the sleeve. The second coupling element may be coupled to the housing, directly to the sleeve, or otherwise coupled to the implantable structure. Typically, the linking member is substantially longitudinally non-extensible, i.e., its length is fixed.
For some applications, the linking member is configured as a spring, which is typically curved, so as to be elastic in a radial direction, i.e., to be compressible like a bow or deflected beam. In these applications, the linking member is oriented such that it is pressed by elasticity against the anterior portion of the mitral annulus, i.e., the outer wall of the aorta, thereby holding the sleeve covering the linking member against the aortic wall. For some applications, at least two of the tissue anchors are coupled to the sleeve at respective, different longitudinal sites alongside the linking member, within 6 cm of the first end of the linking member. These tissue anchors may help set the proper direction of curvature of the linking member, for applications in which the linking member is curved.
For some applications, the implantable structure further comprises an elongated radial-force application element, which is disposed entirely within a first longitudinal portion of the sleeve. The elongated radial-force application element is configured to apply a force against a wall of the first longitudinal portion of the sleeve in at least one radially-outward direction. The applied force pushes the first longitudinal portion of the sleeve against tissue of the left atrium, such as against tissue of the annulus and/or the atrial wall, so as to inhibit blood flow between the sleeve and the tissue. It is generally desirable to inhibit blood flow between the sleeve and the annulus on anterior side, to avoid creating turbulence. When implanting the implantable structure, the elongated radial-force application element is placed along the anterior portion of the annulus, between the fibrous trigones.
For some applications, the elongated radial-force application element comprises a springy element. For some applications, at least a portion of the springy element is curved at least partially about an inner surface of the wall of the sleeve.
For some applications, the elongated radial-force application element is rotationally asymmetric and not helically symmetric. For other applications, the elongated radial-force application element is helically symmetric; for these applications, the springy element typically comprises a coiled spring.
For some applications, the sleeve has first and second sleeve ends. For some applications, the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the annuloplasty ring further comprises (a) a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second coupling element. The second coupling element is configured to be coupleable to the first coupling element, and is fixed to the implantable structure (e.g., the annuloplasty ring) within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended. For some applications, at least one of the first and second coupling elements comprises a hook.
For some applications, the contracting mechanism (e.g., the housing thereof) is fixed along the sleeve within 30 mm, such as within 15 mm, of the second sleeve end (i.e., the same end of the sleeve near which the second coupling element is coupled), measured when the sleeve is fully longitudinally extended. For example, the contracting mechanism (e.g., the housing thereof) may be fixed at the second sleeve end. Alternatively, for some applications, the contracting mechanism (e.g., the housing thereof) is fixed at least 5 mm from the second sleeve end, e.g., between 5 and 30 mm, such as between 5 and 15 mm, from the second sleeve end. The second coupling element may be coupled to the contracting mechanism (e.g., to the housing).
For some applications, the annuloplasty ring further comprises a substantially longitudinally non-extensible linking member, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. The linking member typically helps prevent long-term dilation of the anterior annulus. The linking member is typically configured not to apply any force to the wall of the first longitudinal portion of the sleeve. Typically, the linking member is not configured as a spring.
For some applications, at least the first longitudinal portion of the sleeve is substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. In these applications, the first longitudinal portion typically helps prevent long-term dilation of the anterior annulus. For some applications, the first coupling element is fixed to the wall of the sleeve within 1.5 cm of first sleeve end 51, measured when the sleeve is fully longitudinally extended. The implantable structure typically does not comprise the linking member in these applications. In these applications, at least the first longitudinal portion of the sleeve is substantially longitudinally non-extensible, and the first longitudinal portion typically helps prevent long-term dilation of the anterior annulus.
For some applications, during placement, after fastening the sleeve to the portion of the annulus, the healthcare professional twists the first longitudinal portion of the sleeve. Optionally, such twisting may serve one or both of the following purposes: (1) the twisting may store energy in the springy element for exertion of torque against the wall of the sleeve, and (2) the twisting may rotationally align the springy element in the desired radial direction. Alternatively or additionally to twisting for the first of these purposes, the springy element may be pre-loaded (twisted) to store energy before implantation in the subject, such as immediately before implantation or during manufacture.
For some applications, the sleeve is fastened to the annulus by coupling a plurality of tissue anchors to the annulus. The tissue anchors are coupled with:
The first longitudinal density is greater than the second longitudinal density. For some applications, the first longitudinal density is at least twice the second longitudinal density, such as at least 2.5 the second longitudinal density, e.g., at least 3 times the second longitudinal density. After the tissue anchors are fastened to the annulus, a longitudinal portion of the sleeve is contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating the contracting assembly.
For some applications, the sleeve is fastened to the annulus by coupling a plurality of tissue anchors to the annulus, including first, second, and third tissue anchors, as follows:
The longitudinal densities are characterized by at least one of the following: (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density. For some applications, both (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density.
For some applications, the tissue anchors, including the second tissue anchors, comprise respective anchor heads and tissue coupling elements. Typically, the anchor heads are circular; alternatively, they have another shape, such as of an ellipse or a polygon (e.g., a hexagon or a square). The plurality of tissue anchors are coupled to the annulus such that, after the longitudinal portion of the sleeve has been contracted, each of the anchor heads of at least two of the second tissue anchors coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head; for example, each of the anchor heads of at least three of tissue anchors touches at least one longitudinally-adjacent anchor head 320.
Typically, before the longitudinal portion of the sleeve has been contracted, the anchor heads of the at least two of the second tissue anchors do not touch any longitudinally-adjacent the anchor heads. Before the longitudinal portion of the sleeve has been contracted, the anchors are coupled to the sleeve and tissue at distances between the anchors that are less than the planned distances that the anchors move toward each other during contraction of the longitudinal portion of the sleeve. As a result, the anchor heads touch each other upon such contraction.
This touching of the longitudinally-adjacent anchors heads inhibits longitudinal contraction of the sleeve in the longitudinal area of these anchors, so as to facilitate reshaping of the annulus in a desired manner. These longitudinally-adjacent the anchor heads thus are dual-function, and serve to both anchor their respective anchors to the sleeve and to inhibit contraction of the sleeve.
For some applications, the plurality of tissue anchors is coupled to the annulus such that, after the longitudinal portion of the sleeve has been contracted:
For some applications, the plurality of tissue anchors are coupled to the annulus such that, after the longitudinal portion of the sleeve has been contracted:
For some applications, the sleeve is fastened to the annulus by coupling a plurality of tissue anchors to the annulus, such that:
The first distance equals at least twice the second distance, such as at least 2.5 times the second distance, e.g., at least 3 times the second distance. The first distance is measured between closest portions of the longitudinal-end tissue anchors of the first set, and the second distance is measured between closest portions of the longitudinal-end tissue anchors of the second set. The first and second sets do not share any common tissue anchors. After the tissue anchors are fastened to the annulus, a longitudinal portion of the sleeve is contracted. Providing the greater number of anchoring points with the second set better distributes forces among the anchors of this set.
For some applications, the contracting mechanism comprises a rotatable structure, and a housing in which the rotatable structure is positioned. The contracting mechanism and the longitudinal contracting member are arranged such that rotation of the rotatable structure contracts the implantable structure. Typically, an anchor deployment manipulator is advanced into a lumen of the sleeve, and, from within the lumen, deploys the anchors through a wall of the sleeve and into cardiac tissue, thereby anchoring the sleeve around a portion of a valve annulus.
For some applications, the implantable structure comprises an adjustable annuloplasty ring for repairing a dilated valve annulus of an atrioventricular valve, such as a mitral valve. The annuloplasty ring may be used for treating functional mitral regurgitation (FMR) or degenerative mitral valve disease. For other applications, a prosthetic heart valve is further provided, which is configured to be coupled to the sleeve.
For some applications in which the implantable structure is implanted around the annulus of a valve, the implantable structure may be advanced toward the annulus of a valve in any suitable procedure, e.g., a transcatheter procedure, a percutaneous procedure, a minimally invasive procedure, or an open heart procedure.
There is therefore provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, and (b) a contracting assembly;
during a percutaneous transcatheter procedure, placing the flexible sleeve entirely around an annulus of a mitral valve of a subject in a closed loop;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to a posterior portion of the annulus, without coupling any tissue anchors to an anterior portion of the annulus between left and right fibrous trigones of the annulus; and
thereafter, contracting a longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications, the sleeve has first and second sleeve ends, and placing the sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other; and thereafter, in the left atrium, arranging the flexible sleeve entirely around the annulus to form the closed loop.
For some applications, the annuloplasty ring further includes an elongated linking member, which is coupled to and disposed within the sleeve, and placing the flexible sleeve entirely around the annulus includes placing the linking member along the anterior portion of the annulus.
For some applications, the linking member is configured as a spring. For some applications, the linking member is curved. For some applications, the linking member has a length of between 2 and 6 cm. For some applications, the linking member includes metal. For some applications, the linking member is substantially longitudinally non-extensible.
For some applications:
the linking member includes a first coupling element,
the annuloplasty ring includes a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of one of the first and the second sleeve ends, measured when the sleeve is fully longitudinally extended,
the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the one of the first and the second sleeve ends, and
placing the linking member along the anterior portion of the annulus includes setting an effective length of the linking member while coupling the first and the second coupling elements together.
For some applications:
the linking member is disposed within a longitudinal portion of the sleeve,
the annuloplasty ring further includes an elongated radial-force application element, which is disposed within the longitudinal portion of the sleeve, and
placing the linking member includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element applies a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, placing the elongated radial-force application element includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element pushes the longitudinal portion of the sleeve against atrial tissue.
For some applications, the elongated radial-force application element is springy.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications, the linking member is not configured as a spring.
For some applications, placing the linking member includes placing the linking member such that the linking member does not apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the elongated radial-force application element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
There is further provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, and (b) a contracting assembly;
during a percutaneous transcatheter procedure, placing the flexible sleeve entirely around an annulus of a mitral valve of a subject in a closed loop;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to the annulus, with:
a first non-zero longitudinal density of the tissue anchors along a posterior portion of the annulus between left and right fibrous trigones of the annulus, including the trigones, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the posterior portion of the annulus divided by (b) a length of the posterior portion of the annulus, and
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, the first longitudinal density is at least twice the second longitudinal density.
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications, the sleeve has first and second sleeve ends, and placing the flexible sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other; and thereafter, in the left atrium, arranging the flexible sleeve entirely around the annulus to form the closed loop.
For some applications, the annuloplasty ring further includes an elongated linking member, which is coupled to and disposed within the sleeve, and placing the flexible sleeve entirely around the annulus includes placing the linking member along the anterior portion of the annulus.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, the linking member includes metal.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications:
the linking member includes a first coupling element,
the annuloplasty ring includes a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of one of the first and the second sleeve ends, measured when the sleeve is fully longitudinally extended,
the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the one of the first and the second sleeve ends, and
placing the linking member along the anterior portion of the annulus includes setting an effective length of the linking member while coupling the first and the second coupling elements together.
For some applications:
the linking member is disposed within a longitudinal portion of the sleeve,
the annuloplasty ring further includes an elongated radial-force application element, which is disposed within the longitudinal portion of the sleeve, and
placing the linking member includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element applies a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, placing the elongated radial-force application element includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element pushes the longitudinal portion of the sleeve against atrial tissue.
For some applications, the elongated radial-force application element is springy.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications, the linking member is not configured as a spring.
For some applications, placing the linking member includes placing the linking member such that the linking member does not apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the elongated radial-force application element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
the contracting assembly includes (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve, and
the elongated radial-force application element is disposed entirely within the first longitudinal portion of the sleeve.
There is still further provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, and (b) a contracting assembly;
during a percutaneous transcatheter procedure, placing the flexible sleeve at least partially around an annulus of a mitral valve of a subject;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to the annulus, with:
a first longitudinal density of the tissue anchors along a lateral scallop (P1) of a posterior leaflet of the mitral valve, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the lateral scallop (P1) divided by (b) a length of the lateral scallop (P1) along the annulus,
a second longitudinal density of the tissue anchors along a middle scallop (P2) of the posterior leaflet, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the middle scallop (P2) divided by (b) a length of the middle scallop (P2) along the annulus, and
a third longitudinal density of the tissue anchors along a medial scallop (P3) of the posterior leaflet, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the medial scallop (P3) divided by (b) a length of the medial scallop (P3) along the annulus, wherein the longitudinal densities are characterized by at least one of the following: (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density; and
thereafter, contracting a longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, both (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density.
For some applications, the second longitudinal density is at least twice the first longitudinal density.
For some applications, the second longitudinal density is at least twice the third longitudinal density.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling at least 3 tissue anchors to the annulus along the middle scallop (P2).
For some applications, the tissue anchors have respective anchor heads, and coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, each of the anchor heads of at least two of the tissue anchors coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, before contracting the longitudinal portion of the sleeve, the anchor heads of the at least two of the tissue anchors do not touch the at least one longitudinally-adjacent anchor head.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, each of the anchor heads of at least three of the tissue anchors coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, none of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touches any of the other anchor heads of the tissue anchors.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, none of the anchor heads of the tissue anchors coupled along the medial scallop (P3) touches any of the other anchor heads of the tissue anchors.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, (a) none of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touches any of the other anchor heads of the tissue anchors, and (b) none of the anchor heads of the tissue anchors coupled along the medial scallop (P3) touches any of the other anchor heads of the tissue anchors.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, (a) a first number of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touch at least one longitudinally-adjacent anchor head, and (b) a second number of the anchors heads of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, the second number greater than the first number.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, (a) a second number of the anchor heads of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, and (b) a third number of the anchors heads of the tissue anchors coupled along the medial scallop (P3) touch at least one longitudinally-adjacent anchor head, the second number greater than the third number.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve:
a first number of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touch at least one longitudinally-adjacent anchor head,
a second number of the anchors heads of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, and
a third number of the anchors heads of the tissue anchors coupled along the medial scallop (P3) touch at least one longitudinally-adjacent anchor head, the second number greater than the first number, and the second number greater than the third number.
For some applications, the sleeve has first and second sleeve ends, and placing the sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other.
For some applications, placing the sleeve includes arranging the sleeve entirely around the annulus to form a closed loop, after introducing the flexible sleeve into the left atrium while the first and the second sleeve ends are not coupled to each other.
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
There is additionally provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve and (b) a contracting assembly, which includes a longitudinal contracting member;
during a percutaneous transcatheter procedure, placing the flexible sleeve at least partially around an annulus of a mitral valve of a subject;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to the annulus, such that:
a first set of exactly three of the tissue anchors is disposed in succession along the longitudinal contracting member with a first distance between longitudinal-end tissue anchors of the first set, measured along the annulus, and
a second set of exactly three of the tissue anchors is disposed in succession along the longitudinal contracting member with a second distance between longitudinal-end tissue anchors of the second set, measured along the annulus, wherein the first distance equals at least twice the second distance, and wherein the first and the second sets do not share any common tissue anchors; and
thereafter, contracting a longitudinal portion of the sleeve by causing the longitudinal contracting member to apply a contracting force to the longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve by causing the longitudinal contracting member to apply the contracting force to the longitudinal portion of the sleeve.
There is yet additionally provided, in accordance with an application of the present invention, apparatus including an annuloplasty ring, which includes:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly;
a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended;
a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended; and
an elongated springy element, which is disposed entirely within a longitudinal portion of the sleeve, wherein the springy element has (a) a first springy-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second springy-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended,
wherein the springy element is configured to press the longitudinal portion of the sleeve against tissue.
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, which is configured to lock the longitudinal contracting member with respect to the contracting assembly.
For some applications, the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve, and the contracting assembly is configured to contract at least a portion of a second longitudinal portion of the sleeve, which second longitudinal portion is entirely longitudinally distinct from the first longitudinal portion.
For some applications, a first end of the elongated springy element includes the first coupling element.
There is also provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, having first and second sleeve ends, (b) a contracting assembly, (c) a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended, (d) a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended, and (e) an elongated springy element, which is disposed entirely within a first longitudinal portion of the sleeve, wherein the springy element has (a) a first springy-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second springy-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended;
during a percutaneous transcatheter procedure, placing the flexible sleeve around a portion of an annulus of an atrioventricular valve of a subject, which portion includes a posterior portion of the annulus;
placing the first longitudinal portion of the sleeve along an anterior portion of the annulus between fibrous trigones of the valve;
fastening the flexible sleeve to the portion of the annulus, such that the springy element presses the first longitudinal portion of the sleeve against tissue;
coupling the first and the second coupling elements together; and
contracting at least a portion of a second longitudinal portion of the sleeve, which second longitudinal portion is entirely longitudinally distinct from the first longitudinal portion.
For some applications, the contracting assembly further includes a locking mechanism, and the method further includes, after contracting the at least a portion of the second longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the at least a portion of the second longitudinal portion of the sleeve includes actuating the contracting assembly to contract the at least a portion of the second longitudinal portion of the sleeve.
For some applications, a first end of the elongated springy element includes the first coupling element.
There is further provided, in accordance with an application of the present invention, apparatus including an annuloplasty ring, which includes:
a flexible sleeve; and
an elongated radial-force application element, which (a) is disposed entirely within a longitudinal portion of the sleeve, (b) which has a length of no more than 6 cm, measured when the sleeve is fully longitudinally extended, and (c) is configured to apply a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the elongated radial-force application element is rotationally asymmetric and not helically symmetric.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 100% of a perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 50% of the perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force with a variation of less than 20% along a length of the elongated radial-force application element.
For some applications, the sleeve has first and second sleeve ends.
For some applications, the annuloplasty ring further includes:
a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended; and
a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications:
the annuloplasty ring further includes a contracting assembly, which includes a housing that is fixed to the sleeve, and
the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the housing, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the housing, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element is configured to push the longitudinal portion of the sleeve against atrial tissue.
For some applications, the annuloplasty ring further includes a substantially longitudinally non-extensible linking member, which has first and second linking-member ends and is at least partially disposed within the longitudinal portion of the sleeve, and the second linking-member end includes the first coupling element.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, at least the longitudinal portion of the sleeve is substantially longitudinally non-extensible, and the first coupling element is fixed to the wall of the sleeve within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element includes a springy element.
For some applications, where at least a portion of the springy element is curved at least partially about an inner surface of the wall of the sleeve.
For some applications, at least a portion of the springy element is serpentine.
For some applications, the at least a portion of the springy element is curved at least partially about the inner surface of the wall in a single circumferential direction.
For some applications, at least a first portion of the springy element is curved at least partially about the inner surface of the wall in a first circumferential direction, and at least a second portion of the springy element is curved at least partially about the inner surface of the wall in a second circumferential direction circumferentially opposite the first circumferential direction.
For some applications, at least a portion of the springy element is serpentine.
For some applications, springy element includes a coiled spring.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications,
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve, and
the annuloplasty ring further includes a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes the longitudinal contracting member and a contracting mechanism.
For some applications, a first average internal diameter of the first longitudinal portion of the sleeve is greater than a second average internal diameter of the second longitudinal portion of the sleeve, when both the first and the second longitudinal portions are fully radially expanded.
For some applications, the first longitudinal portion of the sleeve is radially elastic, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve are substantially longitudinally non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve have a same diameter when the first longitudinal portion is not elastically stretched.
For some applications, the first and the second longitudinal portions of the sleeve are woven, and the first longitudinal portion of the sleeve is more loosely woven than the second longitudinal portion of the sleeve.
For some applications, the first longitudinal portion of the sleeve is radially stretchable, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the annuloplasty ring further includes a plurality of tissue anchors, at least two of which are coupled to the sleeve at respective, different longitudinal sites alongside the elongated radial-force application member.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is fixed to the sleeve within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the longitudinal contracting member includes at least one wire.
For some applications, the elongated radial-force application member includes metal.
For some applications, the metal includes Nitinol.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
There is still further provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve and (b) an elongated radial-force application element, which is disposed entirely within a longitudinal portion of the sleeve;
during a percutaneous transcatheter procedure, placing the flexible sleeve entirely around an annulus of an atrioventricular valve of a subject, such that the longitudinal portion of the sleeve is disposed along an anterior portion of the annulus between fibrous trigones of the valve; and
fastening the flexible sleeve at least to a posterior portion of the annulus, such that the elongated radial-force application element applies a force against the wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the elongated radial-force application element is rotationally asymmetric and not helically symmetric.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 100% of a perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 50% of the perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force with a variation of less than 20% along a length of the elongated radial-force application element.
For some applications, the flexible sleeve has first and second sleeve ends, and placing the flexible sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other; and thereafter, in the left atrium, arranging the flexible sleeve entirely around the annulus to form the closed loop.
For some applications:
For some applications, the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended,
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications:
the annuloplasty ring further includes a contracting assembly, which includes a housing that is fixed to the sleeve, and
the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the housing, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the housing, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications, placing the elongated radial-force application element includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element pushes the longitudinal portion of the sleeve against atrial tissue.
For some applications, the annuloplasty ring further includes a substantially longitudinally non-extensible linking member, which has first and second linking-member ends and is at least partially disposed within the longitudinal portion of the sleeve, and the second linking-member end includes the first coupling element.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, at least the longitudinal portion of the sleeve is substantially longitudinally non-extensible, and the first coupling element is fixed to the wall of the sleeve within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element includes a springy element.
For some applications, placing the longitudinal portion of the sleeve includes twisting the longitudinal portion of the sleeve after fastening the sleeve to the portion of the annulus.
For some applications, placing the longitudinal portion of the sleeve includes twisting the springy element after fastening the sleeve to the portion of the annulus.
For some applications, where at least a portion of the springy element is curved at least partially about an inner surface of the wall of the sleeve.
For some applications, at least a portion of the springy element is serpentine.
For some applications, the at least a portion of the springy element is curved at least partially about the inner surface of the wall in a single circumferential direction.
For some applications, at least a first portion of the springy element is curved at least partially about the inner surface of the wall in a first circumferential direction, and at least a second portion of the springy element is curved at least partially about the inner surface of the wall in a second circumferential direction circumferentially opposite the first circumferential direction.
For some applications, at least a portion of the springy element is serpentine.
For some applications, springy element includes a coiled spring.
For some applications, the longitudinal portion of the sleeve is a first longitudinal portion, and the method further includes, after fastening the flexible sleeve at least to a posterior portion of the annulus, contracting a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve.
For some applications, the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve, and the annuloplasty ring further includes a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes the longitudinal contracting member and a contracting mechanism.
For some applications, a first average internal diameter of the first longitudinal portion of the sleeve is greater than a second average internal diameter of the second longitudinal portion of the sleeve, when both the first and the second longitudinal portions are fully radially expanded.
For some applications, the first longitudinal portion of the sleeve is radially elastic, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve are substantially longitudinally non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve have a same diameter when the first longitudinal portion is not elastically stretched.
For some applications, the first and the second longitudinal portions of the sleeve are woven, and the first longitudinal portion of the sleeve is more loosely woven than the second longitudinal portion of the sleeve.
For some applications, the first longitudinal portion of the sleeve is radially stretchable, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is fixed to the sleeve within 30 mm of the second sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the longitudinal contracting member includes at least one wire.
For some applications, the springy member includes metal.
For some applications, the metal includes Nitinol.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
There is additionally provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly;
an elongated linking member, having a first and second linking member ends, which second linking member end includes a first coupling element, wherein the linking member is coupled to the sleeve such that (a) at least a portion of the linking member is disposed within the sleeve, and (b) the first linking member end is longitudinally between the second linking member end and the first sleeve end, exclusive; and
a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the implantable structure within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the contracting assembly is configured to longitudinal contract the sleeve.
For some applications, the implantable structure further includes a plurality of tissue anchors, at least two of which are coupled to the sleeve at respective, different longitudinal sites alongside the linking member.
For some applications, the contracting assembly includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is coupled to the sleeve within 1.5 cm of the first sleeve end.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the longitudinal contracting member includes at least one wire.
For some applications, the linking member is configured as a spring.
For some applications, the linking member is curved.
For some applications, the linking member has a length of between 2 and 6
cm.
For some applications, the linking member includes metal.
For some applications, the metal includes Nitinol.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, at least 30% of a length of the linking member is disposed within the sleeve.
For some applications, at least 75% of the length of the linking member is disposed within the sleeve.
For some applications, the flexible sleeve is a first flexible sleeve, the implantable structure further includes a second flexible sleeve, and at least 20% of a length of the linking member is disposed within the second flexible sleeve.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
For some applications, the at least a portion of the linking member is disposed within a longitudinal portion of the sleeve, and the implantable structure further includes an elongated springy element, which is disposed within the longitudinal portion of the sleeve, and which is configured to apply a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the linking member is not configured as a spring.
For some applications, the linking member is configured not to apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the springy element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
the contracting assembly includes (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve, and
the springy element is disposed entirely within the first longitudinal portion of the sleeve.
For some applications, the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the first sleeve end.
There is yet additionally provided, in accordance with an application of the present invention, a method including:
providing an implantable structure, which includes (a) a flexible sleeve, having first and second sleeve ends, (b) a contracting assembly, (c) an elongated linking member, having a first and second linking member ends, which second linking member end includes a first coupling element, wherein the linking member is coupled to the sleeve such that (i) at least a portion of the linking member is disposed within the sleeve, and (ii) the first linking member end is longitudinally between the second linking member end and the first sleeve end, exclusive, and (d) a second coupling element, which is coupled to the implantable structure within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended;
during a percutaneous transcatheter procedure, placing the flexible sleeve around a portion of an annulus of an atrioventricular valve of a subject, which portion includes a posterior portion of the annulus;
placing the linking member along an anterior portion of the annulus between fibrous trigones of the valve;
fastening the flexible sleeve to the portion of the annulus;
coupling the first and the second coupling elements together; and
contracting a longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the second longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, fastening includes fastening the sleeve to the annulus using a plurality of tissue anchors, including coupling at least two of the anchors to the sleeve and tissue of the annulus at respective, different longitudinal sites alongside the linking member.
For some applications, the contracting assembly includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is coupled to the sleeve within 1.5 cm of the first sleeve end.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the linking member is configured as a spring.
For some applications, the linking member is curved.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, the linking member includes metal.
For some applications, the metal includes Nitinol.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, at least 30% of a length of the linking member is disposed within the sleeve.
For some applications, at least 75% of the length of the linking member is disposed within the sleeve.
For some applications, the flexible sleeve is a first flexible sleeve, the implantable structure further includes a second flexible sleeve, and at least 20% of a length of the linking member is disposed within the second flexible sleeve.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
For some applications:
the at least a portion of the linking member is disposed within a longitudinal portion of the sleeve,
the implantable structure further includes an elongated springy element, which is disposed within the longitudinal portion of the sleeve, and
placing the linking member includes placing the springy element along the anterior portion of the annulus, such that the springy element applies a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the linking member is not configured as a spring.
For some applications, placing the linking member includes placing the linking member such that the linking member does not apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the springy element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
the contracting assembly includes (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve, and
the springy element is disposed entirely within the first longitudinal portion of the sleeve.
For some applications, the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the first sleeve end, and placing the linking member along the anterior portion of the annulus includes setting an effective length of the linking member while coupling the first and the second coupling elements together.
There is also provided, in accordance with an application of the present invention, apparatus including an annuloplasty system, which includes:
an implantable structure, which includes a flexible sleeve, having first and second sleeve ends;
a linking bridge element, which includes first and second bridge coupling interfaces, which are configured to be coupled to the sleeve in order to link the first and the second sleeve ends via the linking bridge element; and
first and second flexible longitudinal guide members, which (a) are removably coupled to the sleeve within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended, and (b) extend from the first and the second sleeve ends, respectively, away from the sleeve, and (c) removably pass through respective openings defined by the linking bridge member, so as to guide the first and the second bridge coupling interfaces to corresponding locations on the sleeve.
For some applications, the respective openings defined by the linking bridge member are defined by the first and the second bridge coupling interfaces, respectively.
For some applications, the sleeve includes first and second sleeve coupling interfaces, to which the first and the second bridge coupling interfaces are configured to be coupled, respectively.
For some applications, the first and the second sleeve coupling interfaces are disposed within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, the linking bridge element has a length of between 1 and 5 cm.
For some applications, the implantable structure includes a longitudinal contracting member, which is configured to longitudinally contract a longitudinal portion of the sleeve, and the first and the second flexible longitudinal guide members are separate and distinct from the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members do not longitudinally overlap the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, no portion of either the first flexible longitudinal guide member or the second flexible longitudinal guide member is disposed more than 1.5 cm from the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members are collectively disposed along less than 30% of a length of the sleeve, measured when the sleeve is fully longitudinally extended.
There is further provided, in accordance with an application of the present invention, a method including:
during a percutaneous transcatheter procedure, placing a flexible sleeve of an implantable structure partially around an annulus of a mitral valve of a subject, such that first and second flexible longitudinal guide members, which are removably coupled to the sleeve, extend from first and second sleeve ends of the sleeve, respectively, away from the sleeve, wherein the longitudinal guide members are removably coupled to the sleeve within 1.5 cm of the first and the second sleeve ends of the sleeve, respectively, measured when the sleeve is fully longitudinally extended;
advancing a linking bridge element into a left atrium of the subject, while the longitudinal guide members removably pass through respective openings defined by the linking bridge member;
using the first and the second longitudinal guide members to guide first and second bridge coupling interfaces of the linking bridge member to corresponding locations on the sleeve; and
For some applications, the respective openings defined by the linking bridge member are defined by the first and the second bridge coupling interfaces, respectively.
For some applications, the sleeve includes first and second sleeve coupling interfaces, and coupling the first and the second bridge coupling interfaces to the sleeve includes coupling the first and the second bridge coupling interfaces to the sleeve to the first and the second sleeve coupling interfaces, respectively.
For some applications, the first and the second sleeve coupling interfaces are disposed within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, the linking bridge element has a length of between 1 and 5 cm.
For some applications:
the implantable structure includes a longitudinal contracting member,
the first and the second flexible longitudinal guide members are separate and distinct from the longitudinal contracting member, and
the method further includes, after coupling the linking bridge member to the sleeve, contracting a longitudinal portion of the sleeve by causing the longitudinal contracting member to apply a contracting force to the longitudinal portion of the sleeve.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members do not longitudinally overlap the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, no portion of either the first flexible longitudinal guide member or the second flexible longitudinal guide member is disposed more than 1.5 cm from the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members are collectively disposed along less than 30% of a length of the sleeve, measured when the sleeve is fully longitudinally extended.
There is still further provided, in accordance with an application of the present invention, apparatus including an annuloplasty system, which includes:
an implantable structure, which includes a flexible sleeve, having first and second sleeve ends; and
first and second flexible longitudinal guide members, which (a) are removably coupled to the sleeve within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended, and (b) extend from the first and the second sleeve ends, respectively, away from the sleeve.
For some applications, the implantable structure includes a longitudinal contracting member, which is configured to longitudinally contract a longitudinal portion of the sleeve, and the first and the second flexible longitudinal guide members are separate and distinct from the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members do not longitudinally overlap the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, no portion of either the first flexible longitudinal guide member or the second flexible longitudinal guide member is disposed more than 1.5 cm from the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members are collectively disposed along less than 30% of a length of the sleeve, measured when the sleeve is fully longitudinally extended.
The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:
For some applications, implantable structure 22 comprises a partial annuloplasty ring. In these applications, sleeve 26 is configured to be placed only partially around the valve annulus (i.e., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. For other applications, sleeve 26 is configured to be implanted entirely around the valve annulus in a closed loop, such as described hereinbelow with reference to
Implantable structure 22 further comprises a contracting assembly 40, which facilitates contracting of the implantable structure. Contracting assembly 40 typically comprises a contracting mechanism 28, and a longitudinal contracting member 30, which is coupled to contracting mechanism 28, extends along a portion of the sleeve, and is typically flexible. For example, contracting member 30 may comprise at least one wire. Contracting assembly 40 is configured to contract a longitudinal portion of sleeve 26, and is described in more detail hereinbelow. In addition, the implantable structure typically comprises a plurality of tissue anchors 38, typically between about 5 and about 20 anchors, such as about 10 or about 16 anchors. In
Flexible sleeve 26 may comprise a braided, knitted, or woven mesh or a tubular structure comprising ePTFE. For some applications, the braid comprises metal and fabric fibers. The metal fibers, which may comprise Nitinol for example, may help define the shape of the sleeve, e.g., hold the sleeve open to provide space for passage and manipulation of deployment manipulator 24 within the sleeve. The fabric fibers may promote tissue growth into the braid. Typically, sleeve 26 is substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. Alternatively, the sleeve is somewhat elastic, which gives the sleeve a tendency to longitudinally contract, thereby helping tighten the sleeve. For example, the sleeve may be bellows- or accordion-shaped.
For some applications, the sleeve is configured to have a tendency to assume a straight shape when in its relaxed, non-contracted state. This straightness may help the surgeon locate the next site for each subsequent anchor during the implantation procedure. For example, because the sleeve assumes a generally straight shape, the sleeve may help provide an indication of distance between adjacent anchoring sites. For some applications, the sleeve is configured to have a controllably variable stiffness. For example, a somewhat stiff wire may be placed in the sleeve to provide the stiffness, and subsequently be removed at the conclusion of the implantation procedure when the stiffness is no longer useful.
For some applications, sleeve 26 comprises a plurality of radiopaque markers 39, which are positioned along the sleeve at respective longitudinal sites. The markers may provide an indication in a radiographic image (such as a fluoroscopy image) of how much of the sleeve has been deployed at any given point during an implantation procedure, in order to enable setting a desired distance between anchors 38 along the sleeve. For some applications, the markers comprise a radiopaque ink.
Typically, at least a portion (e.g., at least three, such as all) of the longitudinal sites are longitudinally spaced at a constant interval. Typically, the longitudinal distance between the distal edges of adjacent markers, and/or the distance between the proximal edges of adjacent markers, is set equal to the desired distance between adjacent anchors. For example, the markers may comprise first, second, and third markers, which first and second markers are adjacent, and which second and third markers are adjacent, and the distance between the proximal and/or distal edges of the first and second markers equal the corresponding distance between the proximal and/or distal edges of the second and third markers. For example, the distance may be between 3 and 15 mm, such as 6 mm, and the longitudinal length of each marker may be between 0.1 and 14 mm, such as 2 mm. (If, for example, the distance were 6 mm and the length were 2 mm, the longitudinal gaps between adjacent markers would have lengths of 4 mm.)
Longitudinal contracting member 30 comprises a wire, a ribbon, a rope, or a band, which typically comprises a flexible and/or superelastic material, e.g., nitinol, polyester, HDPE, stainless steel, or cobalt chrome. For some applications, the wire comprises a radiopaque material. For some applications, longitudinal contracting member 30 comprises a braided polyester suture (e.g., Ticron). For some applications, longitudinal contracting member 30 is coated with polytetrafluoroethylene (PTFE). For some applications, contracting member 30 comprises a plurality of wires that are intertwined to form a rope structure. For some applications, implantable structure 22 comprises a plurality of contracting members 30, which may extend along generally the same longitudinal portion of sleeve 26, or along respective, different portions of sleeve 26 (e.g., as described with reference to
For some applications, contracting member 30 is positioned at least partially within a lumen of the sleeve 26, such as entirely within the lumen (as shown in
For some applications of the present invention, contracting mechanism 28 comprises a rotatable structure, such as a spool 46. The rotatable structure is arranged such that rotation thereof applies a longitudinal contracting force, thereby contracting at least a longitudinal portion of implantable structure 22. Typically, in these applications, contracting mechanism 28 further comprises a housing 44 in which the rotatable structure, e.g., the spool, is positioned. Contracting member 30 has first and second member ends, and a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the contracting member. For some applications, the first member end portion, e.g., the first member end of contracting member 30, is coupled to contracting mechanism 28, such as the rotatable structure, e.g., the spool (alternatively, although the first member end portion is coupled to the contracting mechanism, the first member end protrudes beyond the contracting mechanism). For example, spool 46 may be shaped to provide a hole 42 or other coupling mechanism for coupling the first end of contracting member 30 to the spool, and thereby to contracting mechanism 28. Contracting assembly 40 is arranged such that rotation of the spool winds a portion of the contracting member around the spool. Alternatively, contracting member 30 may comprise at least one wire (e.g., exactly one wire) that passes through a coupling mechanism of spool 46, in order to couple the wire to the spool. The ends of the wire are brought together, and together serve as a second end 53 of contracting member 30. In this configuration, approximately the longitudinal center of the wire serves as the first end of the contracting member.
Alternatively, contracting mechanism 28 may comprise a ratchet contracting mechanism, which typically comprises a ratchet-coupling housing. Contracting member 30 is shaped so as to define engaging structures, such as grooves or teeth. Techniques may be used that are described in International Application PCT/IL2009/000593, filed Jun. 15, 2009, which published as PCT Publication WO 10/004546, and in U.S. application Ser. No. 12/996,954, which published as US Patent Application Publication 2011/0166649, in the national stage thereof, all of which applications and publications are incorporated herein by reference.
Further alternatively, contracting mechanism 28 may comprise a housing or other structure (e.g., a ring or an eyelet) which is shaped so as to define an opening therethrough. Contracting member 30 is drawn through the opening (such that the first member end protrudes beyond the opening), and, once a desired length has been achieved, is locked, such as using a locking bead, or by crimping or knotting.
Contracting member 30 extends along less than the entire length of sleeve 26. Contracting mechanism 28 (e.g., housing 44 thereof) is disposed at a first site 34 of sleeve 26 that is a first longitudinal distance D1 from a first end of the sleeve, either a proximal end 49 of sleeve 26, as shown in
Typically, contracting member 30 extends along (i.e., a distance along the sleeve between first and second sites 34 and 36 equals) no more than 80% of the length of the sleeve, e.g., no more than 60% or no more than 50% of the length. Typically, contracting member 30 extends along no more than 80% of a circumference of the loop when the sleeve is placed around the annulus (i.e., the total length of the loop less the length of any overlapping portion). Typically, contracting member 30 extends along (i.e., a distance along the sleeve between first and second sites 34 and 36 equals) at least 20% of the length of the sleeve, e.g., at least than 40% or at least than 50% of the length. Typically, contracting member 30 extends along at least 20% of the circumference of the loop when the sleeve is placed around the annulus, e.g., at least 30% or at least 50%.
For some applications, first longitudinal distance D1, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm; no greater than 20 mm, such as no greater than 15 mm; and/or between 5 and 20 mm, such as between 9 and 15 mm. Alternatively or additionally, for some applications, second longitudinal distance D2, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm; no greater than 20 mm, such as no greater than 15 mm; and/or between 5 and 20 mm, such as between 9 and 15 mm. Further alternatively or additionally, first longitudinal distance D1, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is no greater than 20%, such as no greater than 10% of a total length of the sleeve, measured when sleeve 26 is in a straight, relaxed, non-contracted state. Further alternatively or additionally, second longitudinal distance D2, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is no greater than 30%, such as no greater than 20%, e.g., no greater than 10% of the total length of the sleeve measured, when sleeve 26 is in a straight, relaxed, non-contracted state. For some applications, the total length of the sleeve, measured when the sleeve is in a straight, relaxed, non-contracted state is at least 5 cm, no more than 25 cm, and/or between 5 and 25 cm. For some applications in which the sleeve is implanted in a closed loop, the total length of the sleeve is selected to be between 1.3 and 1.4 times a circumference of the annulus, in order to provide overlapping portion 114, described hereinbelow with reference to
For some applications, at least one of tissue anchors 38 (e.g., exactly one, at least two, exactly two, at least three, exactly three, or at least four, or no more than four) is coupled to sleeve 26 longitudinally between contracting mechanism 28 (e.g., housing 44 thereof) and the first sleeve end (i.e., the end of the sleeve to which contracting mechanism 28 is closest), exclusive, and at least 3, such as at least 6, of tissue anchors 38 are coupled to the sleeve alongside contracting member 30, longitudinally between first site 34 and second site 36 (second member end 53), exclusive. (As used in the present application, including in the claims, “exclusive,” when used with respect to a range of locations, means excluding the endpoints of the range.)
Alternatively or additionally, for some applications, at least one of tissue anchors 38 (e.g., exactly one, at least two, exactly two, at least three, exactly three, or at least four, or no more than four) is coupled to sleeve 26 longitudinally between second site 36 (second member end 53) and the second sleeve end (i.e., the end of the sleeve to which second member end 53 is closest), exclusive, and at least 3, such as at least 6, of tissue anchors 38 are coupled to the sleeve alongside contracting member 30, longitudinally between first site 34 and second site 36 (second member end 53), exclusive.
In the exemplary configuration shown in
Providing the one or more anchors beyond first and second sites 34 and 36 (i.e., beyond the contracting portion of contracting member 30) generally distributes force applied by contraction of contracting assembly 40 over these anchors. In contrast, in some configurations of implantable structure 22 in which anchors are not provided beyond first and second sites 34 and 36, the force applied by the contracting assembly is applied predominantly to the single anchor nearest the first end of the contracting member, and the single anchor nearest to second end of the contracting member.
For some applications, anchors 38 are positioned along sleeve 26 with a longitudinal distance of between 4.5 and 9 mm, such as 6 mm, between each pair of longitudinally-adjacent anchors.
It is noted that the anchors may be positioned as described above by a surgeon during an implantation procedure, such as described hereinbelow with reference to
Reference is now made to
The procedure typically begins by advancing a semi-rigid guidewire 102 into a right atrium 120 of the patient, as shown in
As shown in
For some applications, sheath 104 is advanced through an inferior vena cava 122 of the patient (as shown) and into right atrium 120 using a suitable point of origin typically determined for a given patient.
Sheath 104 is advanced distally until the sheath reaches the interatrial septum.
As shown in
The advancement of sheath 104 through the septum and into the left atrium is followed by the extraction of the dilator and needle 106 from within sheath 104, as shown in
As shown in
As shown in
As shown in
For some applications, in order to provide the second and subsequent anchors, anchor driver 68 is withdrawn from the subject's body via sheath 104 (typically while leaving outer tube 66 of the deployment manipulator in place in the sleeve), provided with an additional anchor, and then reintroduced into the subject's body and into the outer tube. Alternatively, the entire deployment manipulator, including the anchor driver, is removed from the body and subsequently reintroduced upon being provided with another anchor. Further alternatively, deployment manipulator 24 is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time at the selected sites.
As shown in
For applications in which contracting mechanism 28 comprises spool 46, a rotation tool is typically used to rotate spool 46 of contracting mechanism 28, in order to tighten implantable structure 22. For some applications, the rotation tool is used that is described and shown in the above-mentioned '604 publication, with reference to
Contracting assembly 40 typically comprises a locking mechanism that locks contracting member 30 with respect to contracting assembly 40, thereby preventing loosening (and typically tightening) of contracting member 30. For some applications, spool 46 comprises the locking mechanism that prevents rotation of the spool after contracting member 30 has been tightened. For example, locking techniques may be used that are described and shown in US Application Publication 2010/0161047, which is incorporated herein by reference, with reference to
For some applications, a rotation handle is used to tighten the implantable structure, such as described and shown in the above-mentioned '604 publication, with reference to
For some applications, sleeve 26 is filled with a material (e.g., polyester, polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), or expanded polytetrafluoroethylene (ePTFE)) after being implanted. The material is packed within at least a portion, e.g., 50%, 75%, or 100%, of the lumen of sleeve 26. The filler material functions to prevent (1) formation within the lumen of sleeve 26 of clots or (2) introduction of foreign material into the lumen which could obstruct the sliding movement of contracting member 30.
For some applications, proximal end 49 of sleeve 26 is closed upon completion of the implantation procedure. Alternatively, the proximal end of the sleeve may have a natural tendency to close when not held open by deployment manipulator 24.
For some applications, following initial contraction of implantable structure 22 during the implantation procedure, the structure may be further contracted or relaxed at a later time after the initial implantation, such as between several weeks and several months after the initial implantation. Using real-time monitoring and tactile feedback, optionally in combination with fluoroscopic imaging, a rotation tool or anchor driver of a deployment manipulator may be reintroduced into the heart and used to contract or relax implantable structure 22.
Reference is now made to
In this configuration, sleeve 26 is implanted in a closed loop. More particularly, a first portion 110 of sleeve 26 longitudinally extends from the first sleeve end (i.e., the end of the sleeve to which contracting mechanism 28, e.g., housing 44 thereof, is closest) toward contracting mechanism 28, e.g., housing 44 thereof (but typically does not extend all of the way to the contracting mechanism), and a second portion 112 of the sleeve longitudinally extends from the second sleeve end (i.e., the end of the sleeve to which second member end 53 is closest) toward second member end 53 (but typically does not extend all of the way to the second member end). As shown in
For some applications, at least one of tissue anchors 38 (labeled as 38E in
This configuration of implantable structure 22 may be implanted using the procedure described hereinabove with reference to
For some applications, during the implantation procedure, the first sleeve end (i.e., the end of the sleeve to which contracting mechanism 28, e.g., housing 44 thereof, is closest) is placed along at least a portion of anterior portion 116 and first portion 110 is extended along this portion. At least one anchor 38D is deployed through the wall of first portion 110 of sleeve 26 into cardiac tissue at the anterior portion of the annulus. Additional anchors 38A and/or 38C are deployed through the wall of the sleeve around the non-anterior remainder of the annulus, including the posterior portion thereof, as described hereinabove with reference to
A portion of the sleeve is placed on at least a portion of anterior portion 116 of the annulus, and, typically, one or more anchors 38B are deployed through the wall of the sleeve into tissue at the anterior portion of the annulus.
The sleeve is further extended around the annulus until second portion 112 overlaps with previously-deployed first portion 110 at overlapping portion 114, forming a complete ring. At least one anchor 38E is deployed from within second portion 112 through the wall of the sleeve and into the cardiac tissue, typically at anterior portion 116 of the annulus, or at a portion of the annulus near anterior portion 116. Typically, anchor 38E is deployed such that it additionally passes through previously-deployed first portion 110 (passing through the wall of first portion 110 twice). (Optionally, anchors 38B and/or 38E are of a different configuration than anchors 38A, 38C, and/or 38D, such as described with reference to FIGS. 5A-I in above-mentioned US Patent Application Publication 2012/0330411; anchors 38B and 38E may be of the same configuration as one another, or of different configurations.)
Alternatively, the second sleeve end (i.e., the end of the sleeve to which second member end 53 is closest) is first placed at least partially along anterior portion 116, in which case second portion 112 is deployed before first portion 110, and anchor 38E is deployed from within first portion 110.
The sleeve may be deployed in either a clockwise direction or a counterclockwise direction, as viewed from the atrium.
Contracting assembly 40 is actuated, e.g., the rotatable structure of contracting mechanism 28 is rotated, in order to tighten implantable structure 22, as described hereinabove with reference to
For some applications, the non-contractible portion of sleeve 26 (the portion without contracting member 30) extends somewhat beyond one or both of trigones 142 or 144 (in the posterior direction, away from anterior portion 116 of the annulus), such as up to 20 mm, such as up to 10 mm. In general, since the non-contractible portions of the sleeve are preset, the surgeon is able to decide during the implantation procedure the lengths of the anterior non-contractible area and the posterior contractible area, by selecting the length of overlapping portion 114. The greater the length of overlapping portion 114, the greater the relative length of the posterior contractible portion, and the lesser the relative length of the non-contractible portion.
For some applications, at least one anchor 38C is coupled to cardiac tissue on the posterior side of right fibrous trigone 144, between the trigone and the end of contracting member 30. Similarly, at least one anchor 38C may be coupled to cardiac tissue on the posterior side of left fibrous trigone 142, between the trigone and the other end of contracting member 30 (which, for some applications, is coupled to contracting mechanism 28, as shown in
For some applications, at least one (either one or both) of first and second longitudinal distances D1 and D2 (described hereinabove with reference to
Reference is still made to
For these applications, anchors 38 include a plurality of first tissue anchors of a first configuration, and a plurality of second tissue anchors of a second configuration different from the first configuration. (The first tissue anchors are labeled 38A and 38C in
For these applications, sleeve 26 is typically arranged as a loop. For example, as described hereinabove with reference to
Reference is made to
Typically, contracting member 30 does not extend along the portion of sleeve 26 deployed along anterior portion 116 of the annulus. The portion of the sleeve deployed along anterior portion 116 of the annulus (between the trigones) is thus non-contractible. Tightening of implantable structure 22 therefore tightens at least a portion of the posterior portion of the annulus, while preserving the length of anterior portion 116 of the annulus. (The anterior portion of the annulus should generally not be contracted because its tissue is part of the skeleton of the heart.) However, the portion of the sleeve deployed along the anterior portion of the annulus prevents dilation of the anterior annulus, because the sleeve is anchored at both ends of the anterior annulus, and, as mentioned above, the sleeve typically comprises a longitudinally non-extensible material. This deployment configuration may help prevent long-term resizing of the anterior annulus, which sometimes occurs after implantation of partial annuloplasty rings, such as C-bands.
For some applications, the non-contractible portion of sleeve 26 (the portion without contracting member 30) extends somewhat beyond one or both of trigones 142 or 144 (in the posterior direction, away from anterior portion 116 of the annulus), such as up to 20 mm, such as up to 10 mm.
For some applications, at least one anchor 38 is coupled to cardiac tissue on the posterior side of right fibrous trigone 144, between the trigone and the end of contracting member 30. Similarly, at least one anchor 38 may be coupled to cardiac tissue on the posterior side of left fibrous trigone 142, between the trigone and the other end of contracting member 30 (which, for some applications, is coupled to contracting mechanism 28, as shown in
Reference is now made to
Linking member 250 has first and second linking member ends 252 and 254. Second linking member end 254 comprises (e.g., is shaped so as to define, or is fixed to) a first coupling element 256. First linking member end 252 is disposed longitudinally between second linking member end 254 and a first sleeve end (either proximal end 49, as shown, or distal end 51, not shown), exclusive. Second linking member end 254 either protrudes from the second end of the sleeve, or is recessed within the second end of the sleeve (as shown, the second end of the sleeve is distal end 51). A longitudinal portion of linking member 250 in a vicinity of first linking member end 252 is coupled to the sleeve. For example, the portion may be threaded through the fabric of the sleeve, and/or sewn (e.g., sutured) to the fabric of the sleeve to hold the linking member in place during deployment, and the linking member may be held in place after implantation by one or more of anchors 38, such as two or more anchors 38F. Optionally, the linking member is not initially coupled to the sleeve, but is instead held in place by a delivery tool during the implantation procedure, until being coupled to the sleeve by one or more of the anchors, for example. The coupled longitudinal portion may have a length of between 2 and 10 mm, and optionally includes first linking member end 252 of the linking member.
Implantable structure 22 further comprises a second coupling element 260, which is configured to be coupleable to first coupling element 256. Second coupling element 260 typically is coupled to implantable structure 22 within 1.5 cm of the first end of sleeve 26 (opposite the end mentioned above near which first linking member end 252 is fixed), measured when the sleeve is fully longitudinally extended. As mentioned above, in the configuration shown in
For some applications, such as shown in
Typically, linking member 250 is substantially longitudinally non-extensible, i.e., its length is fixed. Typically, linking member 250 comprises metal, such as Nitinol or stainless steel. For some applications, the linking member has a length of at least 2 cm, no more than 6 cm, and/or between 2 and 6 cm.
For some applications, the linking member is configured as a spring, which is typically curved, so as to be elastic in a radial direction, i.e., to be compressible like a bow or deflected beam. In these applications, the linking member is oriented such that it is pressed by elasticity against the anterior portion of the mitral annulus, i.e., the outer wall of the aorta, thereby holding the sleeve covering the linking member against the aortic wall.
For some applications, at least two of tissue anchors 38 are coupled to sleeve 26 at respective, different longitudinal sites alongside linking member 250, within 6 cm of first linking member end 252, such as within 2 to 6 cm of the first end. These tissue anchors may help set the proper direction of curvature of the linking member, for applications in which the linking member is curved.
Reference is made to
For some applications, first and second coupling elements 256 and 260 are configured to provide an adjustable-length connection between linking member 250 and the first end of sleeve. Such an adjustable-length connection allows the effective length of linking member 250 to be set during the implantation procedure in order to accommodate variations in individual patient anatomy. For some applications, such as shown in
Reference is now made to
In these configurations, implantable structure 22 further comprises elongated radial-force application element 482, which is disposed entirely within a first longitudinal portion of sleeve 26. Elongated radial-force application element 482 is configured to apply a force against a wall of the first longitudinal portion of sleeve 26 in at least one radially-outward direction. The applied force pushes the first longitudinal portion of sleeve 26 against tissue of the left atrium, such as against tissue of the annulus and/or the atrial wall, so as to inhibit blood flow between sleeve 26 and the tissue. It is generally desirable to inhibit blood flow between sleeve 26 and the annulus on anterior side, to avoid creating turbulence.
For some applications, elongated radial-force application element 482 is configured to apply a force against the wall of at least 20 gram-force, no more than 1 kg-force, and/or between 20 gram-force and 1 kg-force, such as at least 50 gram-force, no more than 500 gram-force (e.g., no more than 300 gram-force), and/or between 50 gram-force and 500 gram-force (e.g., between 50 gram-force and 300 gram-force). For some applications, elongated radial-force application element 482 is configured to apply the force generally constantly along the length of elongated radial-force application element 482, e.g., with a variation of less than 20% along the length.
When implanting implantable structure 22, elongated radial-force application element 482 is placed along anterior portion 116 of the annulus, between fibrous trigones 142 and 144 (a portion of elongated radial-force application element 482 may extend beyond one or both of the trigones, such as for coupling to anchors 38F, as described hereinbelow). If, upon initial placement, radial-force application element 482 does not apply the force against the wall of sleeve 26 in the desired radial direction (e.g., in the direction of the atrial wall), the healthcare professional may rotate the radial-force application element 482 within the sleeve, and/or rotate (e.g., twist) the first longitudinal portion of sleeve 26. Typically, longitudinal portion 480 extends along at least 20 mm of anterior portion 116 of the annulus, and/or along at least 20%, no more than 100%, and/or between 20% and 100% of anterior portion 116 of the annulus, such as at least 30%, no more than 60%, and/or between 30% and 60% of anterior portion 116. Typically, in the configuration of implantable structure 22 shown in
Typically, elongated radial-force application element 482 has a length of no more than 6 cm, measured when sleeve 26 is fully longitudinally extended.
For some applications, elongated radial-force application element 482 is rotationally asymmetric and not helically symmetric, such as shown in
For some applications, such as shown in
For some applications (such as when elongated radial-force application element 482 comprises springy element 484), as labeled in
For some applications, offset section(s) 512 are at least partially straight, such as shown in
For some applications, the at least a portion of springy element 484 is curved at least partially about the inner surface of the wall of sleeve 26 in a single circumferential direction, such as shown in
For some applications, such as shown in Section A-A of
For some applications, such as shown in
Reference is again made to
Reference is made to
For some applications, first and second longitudinal portions 480 and 492 collectively extend along an entire length of sleeve 26. This configuration, as well as the various options described below, may be used in combination with any of the configurations described herein with reference to
For some applications, first average internal diameter D1 of first longitudinal portion 480 of sleeve 26 is greater than second average internal diameter D2 of second longitudinal portion 492 of sleeve 26, when both first and second longitudinal portions 480 and 492 are fully radially expanded (in these applications, typically both first and second longitudinal portions 480 and 492 are substantially radially non-extensible).
For some other applications, first longitudinal portion 480 of sleeve 26 is radially elastic and thus able to stretch from an initial smaller average internal diameter to first average internal diameter D1, and second longitudinal portion 492 of sleeve 26 is substantially radially non-extensible, and thus cannot expand to a diameter beyond second average internal diameter D2. For example, first longitudinal portion 480 may comprise a first plurality of substantially non-extensible fibers that extend longitudinally along the first longitudinal portion, and a second plurality of elastic fibers that are arranged circumferentially around the first longitudinal portion (typically, woven with the first plurality of fibers). Typically, first and second longitudinal portions 480 and 492 of sleeve 26 are substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. Optionally, first and second longitudinal portions 480 and 492 of sleeve 26 have a same diameter (equal to second average internal diameter D2) when first longitudinal portion 480 is not elastically stretched. Alternatively, for some applications, first and second longitudinal portions 480 and 492 of sleeve 26 are woven, and first longitudinal portion 480 of sleeve 26 is more loosely woven than second longitudinal portion 492 of sleeve 26. Further alternatively, for some applications, first longitudinal portion 480 of sleeve 26 is radially stretchable, and second longitudinal portion 492 of sleeve 26 is substantially radially non-extensible. For example, first longitudinal portion 480 may comprise a first plurality of substantially non-extensible fibers that extend longitudinally along the first longitudinal portion, and a second plurality of stretchable fibers that are arranged circumferentially around the first longitudinal portion (typically, woven with the first plurality of fibers).
For some applications, such as shown in
For some applications, such as shown in
Elongated radial-force application element 482 is typically fixed to sleeve 26 at least near first radial-force-application-element longitudinal end 496, such that elongated radial-force application element 482 is arranged as a cantilever. Typically, elongated radial-force application element 482 is fixed to sleeve 26 at least near first radial-force-application-element longitudinal end 496, such that first radial-force-application-element longitudinal end 496 is rotationally fixed with respect to the sleeve, in order to allow twisting of elongated radial-force application element 482 to store spring energy in elongated radial-force application element 482 near first radial-force-application-element longitudinal end 496. The shape of first radial-force-application-element longitudinal end 496 may aid in rotationally fixing the end with respect to the sleeve. For example, first radial-force-application-element longitudinal end 496 may include a circumferentially-oriented component, as shown in the figures.
A portion of elongated radial-force application element 482 may be threaded through the fabric of the sleeve, and/or sewn (e.g., sutured) to the fabric of the sleeve to hold the elongated radial-force application element in place during deployment, and/or the elongated radial-force application element may be held in place after implantation by one or more of anchors 38, such as two or more anchors 38F.
For some applications, such as shown in
For some applications, such as shown in
Linking member 450 has first and second linking-member ends 452 and 454. Linking member 450 is at least partially disposed within and covered by first longitudinal portion 480 of sleeve 26. Typically, at least 30%, such as at least 75% or at least 90% of a length of linking member 450 is disposed within and covered by first longitudinal portion 480 of sleeve 26. Over time after implantation, linking member 450 becomes fixed to anterior portion 116 of the annulus. Second linking-member end 454 comprises (e.g., is shaped so as to define, or is fixed to) first coupling element 456. Second linking-member end 454 either protrudes from first sleeve end 51, or is recessed within first sleeve end 51. A longitudinal portion of linking member 450 in a vicinity of first linking-member end 452 is typically coupled to sleeve 26. For example, the portion may be threaded through the fabric of the sleeve, and/or sewn (e.g., sutured) to the fabric of the sleeve to hold the linking member in place during deployment. Optionally, a longitudinal portion of linking member 450 in a vicinity of first linking-member end 452 is held in place after implantation by one or more of anchors 38, such as two or more anchors 38F (configuration not shown). Optionally, the linking member is not initially coupled to the sleeve, but is instead held in place by a delivery tool during the implantation procedure, until being coupled to the sleeve during the implantation procedure. Typically, linking member 250 has a length of at least 2 cm, no more than 6 cm, and/or between 2 and 6 cm.
For some applications, at least first longitudinal portion 480 of sleeve 26 is substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. In these applications, first longitudinal portion 480 typically helps prevent long-term dilation of the anterior annulus.
For some applications, such as shown in
Reference is made to
Reference is still made to
Reference is again made to
Reference is made to
For some applications, such as shown in
For some applications, as shown in
Reference is now made to
For some applications, as shown in
Reference is now made to
Sleeve 26 is fastened to the annulus by coupling a plurality of tissue anchors 38 to the annulus. Tissue anchors 38 are coupled with:
The first longitudinal density is greater than the second longitudinal density. For some applications, the first longitudinal density is at least twice the second longitudinal density, such as at least 2.5 the second longitudinal density, e.g., at least 3 times the second longitudinal density. For example, tissue anchors 38A (and, optionally 38C) may be fastened along the posterior portion of the annulus, and tissue anchors 38B may be fastened along the anterior portion of the annulus. After the tissue anchors are fastened to the annulus, a longitudinal portion of the sleeve is contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating contracting assembly 40.
Alternatively or additionally, for some applications, sleeve 26 comprises a plurality of radiopaque markers 39, which are positioned along the sleeve at respective longitudinal sites, such as described hereinabove with reference to
For some applications, as shown in
Reference is now made to
Sleeve 26 is fastened to the annulus by coupling a plurality of tissue anchors 38 to the annulus, including first, second, and third tissue anchors 38G, 38H, and 38I, as follows:
Tissue anchors 38 may optionally comprise additional tissue anchors other than tissue anchors 38G, 38H, and 38I, not coupled along the posterior leaflet. After the tissue anchors are fastened to the annulus, a longitudinal portion of sleeve 26 is contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating contracting assembly 40.
The longitudinal densities are characterized by at least one of the following: (a) the second longitudinal density is at least twice the first longitudinal density (such as at least 2.5 the first longitudinal density, e.g., at least 3 times the first longitudinal density), and (b) the second longitudinal density is at least twice the third longitudinal density (such as at least 2.5 the third longitudinal density, e.g., at least 3 times the third longitudinal density). For some applications, both (a) the second longitudinal density is at least twice the first longitudinal density (such as at least 2.5 the first longitudinal density, e.g., at least 3 times the first longitudinal density), and (b) the second longitudinal density is at least twice the third longitudinal density (such as at least 2.5 the third longitudinal density, e.g., at least 3 times the third longitudinal density).
For some applications, as shown in
Reference is now made to
Tissue anchors 38, including second tissue anchors 38H, comprise respective anchor heads 320 and tissue coupling elements 322. Typically, anchor heads 320 are circular; alternatively, they have another shape, such as of an ellipse or a polygon (e.g., a hexagon or a square). The plurality of tissue anchors 38 are coupled to the annulus such that, after the longitudinal portion of sleeve 26 has been contracted (such as by actuating contracting assembly 40 to contract the longitudinal portion), each of anchor heads 320 of at least two of second tissue anchors 38H coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head 320; for example, each of anchor heads 320 of at least three of tissue anchors 38H touches at least one longitudinally-adjacent anchor head 320.
Typically, before the longitudinal portion of sleeve 26 has been contracted, anchor heads 320 of the at least two of second tissue anchors 38H do not touch any longitudinally-adjacent anchor heads 320. Before the longitudinal portion of sleeve 26 has been contracted, the anchors are coupled to the sleeve and tissue at distances between the anchors that are less than the planned distances that the anchors move toward each other during contraction of the longitudinal portion of sleeve 26. As a result, the anchor heads touch each other upon such contraction.
By way of example,
This touching of longitudinally-adjacent anchor heads 320 inhibits longitudinal contraction of sleeve 26 in the longitudinal area of these anchors, so as to facilitate reshaping of the annulus in a desired manner. These longitudinally-adjacent anchor heads 320 thus are dual-function, and serve to both anchor their respective anchors to the sleeve and to inhibit contraction of the sleeve.
For some applications, as shown in
For some applications, the plurality of tissue anchors 38 are coupled to the annulus such that, after the longitudinal portion of sleeve 26 has been contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating contracting assembly 40:
For some applications, as shown in
Reference is now made to
In this configuration, flexible sleeve 26 is placed at least partially around an annulus of mitral valve 130, such as partially around the annulus, as shown in
Sleeve 26 is fastened to the annulus by coupling a plurality of tissue anchors 38 to the annulus, including tissue anchors 38J and 38K, such that:
First distance D9 equals at least twice second distance D10, such as at least 2.5 times second distance D10, e.g., at least 3 times second distance D10. First distance D9 is measured between closest portions of the longitudinal-end tissue anchors of first set 324, and second distance D10 is measured between closest portions of the longitudinal-end tissue anchors of second set 328. First and second sets 324 and 328 do not share any common tissue anchors 38. Typically, the plurality of tissue anchors 38 comprises additional tissue anchors other than tissue anchors 38J and 38K. After the tissue anchors are fastened to the annulus, a longitudinal portion of sleeve 26 is contracted by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating contracting assembly 40. Providing the greater number of anchoring points with second set 328 better distributes forces among the anchors of this set.
For some applications, as shown in
Reference is now made to
In this configuration, system 20 further comprises a linking bridge element 200, which is configured to be coupled to sleeve 26 in order to link first and second sleeve ends 51 and 49 of sleeve 26 of implantable structure 22 via linking bridge element 200. To this end, linking bridge element 200 typically comprises first and second bridge coupling interfaces 210A and 210B, which are configured to be coupled to corresponding first and second sleeve coupling interfaces 212A and 212B of sleeve 26, which are disposed within 1.5 cm of first and second sleeve ends 51 and 49, respectively, measured when the sleeve is fully longitudinally extended, such as at first and second sleeve ends 51 and 49, respectively. For example, first and second bridge coupling interfaces 210A and 210B may comprise female interfaces (as shown), and first and second sleeve coupling interfaces 212A and 212B may comprise male interfaces (as shown), which are configured to snap into the female interfaces. Alternatively, first and second sleeve coupling interfaces 212A and 212B may comprise female interfaces, such as rings (e.g., comprising a metal or a plastic) integrated into the wall of sleeve 26 (configurations not shown), and first and second bridge coupling interfaces 210A and 210B may comprise male interfaces (configuration not shown), which are configured to snap into the female interfaces. Further alternatively, the interfaces comprise other coupling structures, as is known in the art, such as coupling structures that snap together.
Typically, linking bridge element 200 has a length of at least 1 cm, no more than 5 cm, and/or between 1 and 5 cm, such as at least 1.5 cm, no more than 3.5 cm, and/or between 1.5 and 3.5 cm, e.g., 2 cm. Typically, first and second bridge coupling interfaces 210A and 210B are disposed within 1 cm (such as within 0.5 cm) of first and second ends 216A and 216B of linking bridge element 200, respectively, e.g., between 0.5 cm and 1 cm of first and second ends 216A and 216B of linking bridge element 200, respectively. For some applications, linking bridge element 200 comprises a metal or a polymer that provides longitudinal stability while maintaining some flexibility in other directions. Optionally, linking bridge element 200 further comprises a fabric or other coating for tissue growth enhancement. For some applications, linking bridge element 200 comprises elongated radial-force application element 482, such as described hereinabove with reference to
For some applications, system 20 comprises first and second flexible longitudinal guide members 214A and 214B, which are removably coupled to sleeve 26 within 1.5 cm of first and second sleeve ends 51 and 49 (e.g., with 0.5 cm of the sleeve ends, or at the sleeve ends), respectively, measured when the sleeve is fully longitudinally extended. First and second flexible longitudinal guide members 214A and 214B extend from first and second sleeve ends 51 and 49, respectively, away from sleeve 26. First and second flexible longitudinal guide members 214A and 214B may be directly or indirectly coupled to sleeve 26. For configurations in which first and second flexible longitudinal guide members 214A and 214B are indirectly coupled to sleeve 26, the longitudinal guide members may be coupled to respective intermediary elements at locations beyond the end of the sleeve (but still within 1.5 cm of the respective sleeve ends). For example, first and second flexible longitudinal guide members 214A and 214B may be (a) removably coupled to first and second sleeve coupling interfaces 212A and 212B, respectively (in which case the longitudinal guide members may be indirectly coupled to the sleeve), and/or (b) the wall of sleeve 26 (in which case the longitudinal guide members are directly coupled to the sleeve). For example, first and second flexible longitudinal guide members 214A and 214B may comprise respective sutures, wires, or strings.
The longitudinal guide members are configured to guide first and second bridge coupling interfaces 210A and 210B to corresponding locations on sleeve 26, such as first and second sleeve coupling interfaces 212A and 212B, during an implantation procedure, as shown in
For some applications, each of the longitudinal guide members is doubled over and threaded through its respective sleeve coupling interface and/or sleeve end. After the linking bridge element has been coupled to sleeve 26 of implantable structure 22, the longitudinal guide members are removed by pulling on one end of each of the longitudinal guide members, typically from outside of the patient's body. Alternatively, each of the longitudinal guide members is decoupled from the sleeve in some other manner, such as using techniques described in the above-mentioned '604 application for decoupling longitudinal member 86 from contracting mechanism 40.
Typically, as described hereinabove, implantable structure 22 comprises longitudinal contracting member 30, which is configured to longitudinally contract a longitudinal portion of sleeve 26, as described hereinabove. Longitudinal contracting member 30 may be disposed with respect to the sleeve in any of the arrangements described hereinabove, including those regarding the extent to which the contracting member extends along the length of sleeve. First and second flexible longitudinal guide members 214A and 214B are separate and distinct from longitudinal contracting member 30; in other words, first and second flexible longitudinal guide members 214A and 214B are not fixed to longitudinal contracting member 30, and are not parts of a common longitudinal member.
Typically, when first and second flexible longitudinal guide members 214A and 214B are removably coupled to sleeve 26 of implantable structure 22:
Alternatively, for some applications, system 20 comprises a single flexible longitudinal guide member 214 which removably passes through the entire sleeve 26 (configuration not shown). After the linking bridge element has been coupled to sleeve 26 of implantable structure 22, the longitudinal guide member is removed by pulling on one end of the longitudinal guide member, typically from outside of the patient's body. Alternatively, the longitudinal guide member is decoupled from the sleeve in some other manner, such as using techniques described in the above-mentioned '604 application for decoupling longitudinal member 86 from contracting mechanism 40.
After first and second bridge coupling interfaces 210A and 210B have been guided over first and second flexible longitudinal guide members 214A and 214B to corresponding first and second sleeve coupling interfaces 212A and 212B, as shown in
For applications in which implantable structure 22 comprises longitudinal contracting member 30, the implantation method typically comprises:
Thus, the contracting of the sleeve is not performed simultaneously with the coupling of the linking bridge element to the sleeve. Moreover, longitudinal contracting member 30 does not serve as either of first and second flexible longitudinal guide members 214A and 214B.
Optionally, for some applications, system 20 comprises one or more bridge anchors 224 (e.g., one, two, or three bridge anchors 224), which are used to couple linking bridge element 200 to tissue at the anterior portion of the annulus. For some applications, the one or more bridge anchors 224 are deployed using anchor deployment manipulator 24, described hereinabove.
Reference is now made to
In this configuration, first and second bridge coupling interfaces 210A and 210B are male interfaces, which are configured to pierce the wall of sleeve 26, thereby becoming coupled to the sleeve. For example, the coupling elements may be shaped as harpoons or other barbed structures. In this configuration, sleeve 26 typically does not comprise any coupling interfaces or coupling elements.
Reference is now made to
Reference is made to
Valve 410 further comprises an annular base 432, to which artificial leaflets 430 are coupled. Annular base 432 is configured to be couplable to base ring 422 during an implantation procedure. For example, as shown in
Base ring 422 implements one or more of the techniques of implantable structure 22 described hereinabove. In particular, base ring 422 may be coupled to the annulus of the native diseased valve using the anchoring techniques described hereinabove. In addition, base ring 422 typically comprises sleeve 26 and contracting mechanism 28, which may, for some applications, comprise a rotatable structure, such as a spool 46, which is typically implemented using techniques described herein. The contracting mechanism is arranged to contract base ring 422, e.g., the rotatable structure is arranged such that rotation thereof contracts base ring 422, typically using techniques described herein. Such tightening may serve to couple base ring 422 to annular base 432, as shown in
For some applications, as shown in
Valve prosthesis assembly 400 is typically implanted in a minimally invasive transcatheter or percutaneous procedure. The procedure begins with the introduction and implantation of base ring 422 into the heart, such as using techniques for implanting implantable structure 22, described hereinabove with reference to
For some applications, system 20 further comprises a closure mechanism, such as described in above-mentioned US Patent Application Publication 2012/0330411, with reference to FIGS. 16-17B thereof.
For some applications, system 20 further comprises a flexible pusher element, such as described and shown in US Patent Application Publication 2010/0286767, which is incorporated herein by reference, with reference to FIG. 8 thereof. The pusher element aids with accurately positioning successive anchors 38 during an implantation procedure, such as described hereinabove with reference to
For some applications of the present invention, system 20 is used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve. For these applications, implantable structure 22 and other components of system 20 described hereinabove as being placed in the left atrium are instead placed in the right atrium. Although implantable structure 22 is described hereinabove as being placed in an atrium, for some application the implantable structure is instead placed in either the left or right ventricle.
The scope of the present invention includes applications described in the following applications, which are incorporated herein by reference. In an application, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
3604488 | Wishart et al. | Sep 1971 | A |
4042979 | Angell | Aug 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4290151 | Massana | Sep 1981 | A |
4434828 | Trincia | Mar 1984 | A |
4602911 | Ahmadi | Jul 1986 | A |
4712549 | Peters et al. | Dec 1987 | A |
4917698 | Carpentier et al. | Apr 1990 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5300034 | Behnke et al. | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5474518 | Farrer Velazquez | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5702398 | Tarabishy | Dec 1997 | A |
5810882 | Bolduc | Sep 1998 | A |
5876373 | Giba et al. | Mar 1999 | A |
5935098 | Blaisdell et al. | Aug 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5984959 | Robertson | Nov 1999 | A |
6042554 | Rosenman | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6143024 | Campbell | Nov 2000 | A |
6165119 | Schweich, Jr. et al. | Dec 2000 | A |
6183411 | Mortier | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6402780 | Williamson, IV | Jun 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6451054 | Stevens | Sep 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6524338 | Gundry | Feb 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6547801 | Dargent | Apr 2003 | B1 |
6564805 | Garrison et al. | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6579297 | Bicek et al. | Jun 2003 | B2 |
6589160 | Schweich, Jr. et al. | Jul 2003 | B2 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6651671 | Donlon et al. | Nov 2003 | B1 |
6652556 | VanTasel | Nov 2003 | B1 |
6682558 | Tu et al. | Jan 2004 | B2 |
6689125 | Keith et al. | Feb 2004 | B1 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709385 | Forsell | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6786924 | Ryan et al. | Sep 2004 | B2 |
6786925 | Schoon | Sep 2004 | B1 |
6797002 | Spence et al. | Sep 2004 | B2 |
6802319 | Stevens et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6855126 | Flinchbaugh | Feb 2005 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6960217 | Bolduc | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7077862 | Vidlund | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7226647 | Kasperchik et al. | Jun 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7297150 | Cartledge et al. | Nov 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7311729 | Mathis | Dec 2007 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7404824 | Webler et al. | Jul 2008 | B1 |
7431692 | Zollinger | Oct 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7455690 | Cartledge et al. | Nov 2008 | B2 |
7485143 | Webler et al. | Feb 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7682369 | Seguin | Mar 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7748389 | Salahieh | Jul 2010 | B2 |
7753924 | Starksen et al. | Jul 2010 | B2 |
7758632 | Hojeibane et al. | Jul 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7871368 | Zollinger et al. | Jan 2011 | B2 |
7942927 | Kaye | May 2011 | B2 |
7955377 | Melsheimer | Jun 2011 | B2 |
7992567 | Hirotsuka | Aug 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8070804 | Hyde | Dec 2011 | B2 |
8123800 | McCarthy | Feb 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8142495 | Hasenkam | Mar 2012 | B2 |
8147542 | Maisano et al. | Apr 2012 | B2 |
8152844 | Rao | Apr 2012 | B2 |
8187299 | St. Goar et al. | May 2012 | B2 |
8202315 | Hlavka | Jun 2012 | B2 |
8226711 | Mortier | Jul 2012 | B2 |
8241351 | Cabiri | Aug 2012 | B2 |
8252050 | Maisano et al. | Aug 2012 | B2 |
8287591 | Keidar | Oct 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8343173 | Starksen et al. | Jan 2013 | B2 |
8343174 | Goldfarb | Jan 2013 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8353956 | Miller | Jan 2013 | B2 |
8382829 | Call et al. | Feb 2013 | B1 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8460370 | Zakay et al. | Jun 2013 | B2 |
8460371 | Hlavka et al. | Jun 2013 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8523940 | Richardson | Sep 2013 | B2 |
8545553 | Zipory | Oct 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8628569 | Benichou et al. | Jan 2014 | B2 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8728097 | Sugimoto et al. | May 2014 | B1 |
8728155 | Montorfano et al. | May 2014 | B2 |
8734467 | Miller et al. | May 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8747463 | Fogarty | Jun 2014 | B2 |
8778021 | Cartledge | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790367 | Nguyen et al. | Jul 2014 | B2 |
8795298 | Hernlund et al. | Aug 2014 | B2 |
8795355 | Alkhatib et al. | Aug 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808366 | Braido et al. | Aug 2014 | B2 |
8808371 | Cartledge | Aug 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8845723 | Spence et al. | Sep 2014 | B2 |
8852261 | White | Oct 2014 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
8864822 | Spence et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870949 | Rowe | Oct 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8894702 | Quadri et al. | Nov 2014 | B2 |
8911461 | Traynor et al. | Dec 2014 | B2 |
8926695 | Gross et al. | Jan 2015 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8932343 | Alkhatib et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8940042 | Miller et al. | Jan 2015 | B2 |
8945211 | Sugimoto | Feb 2015 | B2 |
8951285 | Sugimoto et al. | Feb 2015 | B2 |
8951286 | Sugimoto et al. | Feb 2015 | B2 |
8961595 | Alkhatib et al. | Feb 2015 | B2 |
8961602 | Kovach et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011530 | Reich et al. | Apr 2015 | B2 |
9023100 | Quadri et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9180005 | Lashinski et al. | Nov 2015 | B1 |
9192472 | Gross et al. | Nov 2015 | B2 |
9326857 | Cartledge et al. | May 2016 | B2 |
9427316 | Schweich, Jr. et al. | Aug 2016 | B2 |
9474606 | Zipory et al. | Oct 2016 | B2 |
20010021874 | Carpentier et al. | Sep 2001 | A1 |
20020022862 | Grafton et al. | Feb 2002 | A1 |
20020042621 | Liddicoat | Apr 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020133180 | Ryan et al. | Sep 2002 | A1 |
20020151961 | Lashinski | Oct 2002 | A1 |
20020169358 | Mortier et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020188301 | Dallara et al. | Dec 2002 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030083742 | Spence | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233142 | Morales et al. | Dec 2003 | A1 |
20040019377 | Taylor | Jan 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133274 | Webler | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040176788 | Opolski | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040236419 | Milo | Nov 2004 | A1 |
20040267358 | Reitan | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050010787 | Tarbouriech | Jan 2005 | A1 |
20050055087 | Starksen | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065601 | Lee | Mar 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050085903 | Lau | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119734 | Spence et al. | Jun 2005 | A1 |
20050125011 | Spence et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050159728 | Armour et al. | Jul 2005 | A1 |
20050171601 | Cosgrove et al. | Aug 2005 | A1 |
20050177180 | Kaganov | Aug 2005 | A1 |
20050187613 | Bolduc et al. | Aug 2005 | A1 |
20050197696 | Gomez Duran | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050288776 | Shaoulian et al. | Dec 2005 | A1 |
20050288781 | Moaddeb et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060025855 | Lashinski et al. | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060041319 | Taylor et al. | Feb 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060074486 | Liddicoat et al. | Apr 2006 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060122633 | To et al. | Jun 2006 | A1 |
20060184240 | Jiminez | Aug 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis | Jan 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070027536 | Mihaljevic et al. | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070080188 | Spence et al. | Apr 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070112359 | Kimura et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070213582 | Zollinger et al. | Sep 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070233239 | Navia | Oct 2007 | A1 |
20070244555 | Rafiee | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070244557 | Rafiee et al. | Oct 2007 | A1 |
20070255397 | Ryan | Nov 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070270943 | Solem et al. | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20070282429 | Hauser et al. | Dec 2007 | A1 |
20070295172 | Swartz | Dec 2007 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080027483 | Catrledge et al. | Jan 2008 | A1 |
20080051703 | Thornton | Feb 2008 | A1 |
20080058595 | Snoke et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080086138 | Stone et al. | Apr 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080167714 | St. Goar | Jul 2008 | A1 |
20080177382 | Hyde | Jul 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275551 | Alfieri | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20090043153 | Zollinger et al. | Feb 2009 | A1 |
20090054969 | Salahieh et al. | Feb 2009 | A1 |
20090093877 | Keidar et al. | Apr 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090105816 | Olsen | Apr 2009 | A1 |
20090149872 | Gross et al. | Jun 2009 | A1 |
20090177274 | Scorsin | Jun 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090177277 | Milo | Jul 2009 | A1 |
20090222083 | Nguyen et al. | Sep 2009 | A1 |
20090248148 | Shaolian | Oct 2009 | A1 |
20090259307 | Gross et al. | Oct 2009 | A1 |
20090287231 | Brooks et al. | Nov 2009 | A1 |
20090287304 | Dahlgren | Nov 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100010538 | Juravic | Jan 2010 | A1 |
20100023117 | Yoganathan | Jan 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100094248 | Nguyen | Apr 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100152845 | Bloom | Jun 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100161042 | Maisano et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100161047 | Cabiri | Jun 2010 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100211166 | Miller et al. | Aug 2010 | A1 |
20100217382 | Chau | Aug 2010 | A1 |
20100249920 | Bolling | Sep 2010 | A1 |
20100280603 | Maisano et al. | Nov 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100280605 | Hammer et al. | Nov 2010 | A1 |
20100286767 | Zipory et al. | Nov 2010 | A1 |
20100305475 | Hinchliffe et al. | Dec 2010 | A1 |
20110004210 | Johnson et al. | Jan 2011 | A1 |
20110071626 | Wright et al. | Mar 2011 | A1 |
20110082538 | Dahlgren | Apr 2011 | A1 |
20110106245 | Miller et al. | May 2011 | A1 |
20110106247 | Miller et al. | May 2011 | A1 |
20110118832 | Punjabi | May 2011 | A1 |
20110166649 | Gross et al. | Jul 2011 | A1 |
20110190879 | Bobo et al. | Aug 2011 | A1 |
20110202130 | Cartledge | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110238088 | Bolduc | Sep 2011 | A1 |
20110257633 | Cartledge | Oct 2011 | A1 |
20110276062 | Bolduc | Nov 2011 | A1 |
20110282361 | Miller | Nov 2011 | A1 |
20120022644 | Reich et al. | Jan 2012 | A1 |
20120078355 | Zipory | Mar 2012 | A1 |
20120089022 | House et al. | Apr 2012 | A1 |
20120109155 | Robinson et al. | May 2012 | A1 |
20120123531 | Tsukashima | May 2012 | A1 |
20120136436 | Cabiri | May 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120191182 | Hauser et al. | Jul 2012 | A1 |
20120197388 | Khairkhahan et al. | Aug 2012 | A1 |
20120226349 | Tuval et al. | Sep 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120283757 | Miller | Nov 2012 | A1 |
20120296417 | Hill | Nov 2012 | A1 |
20120310330 | Buchbinder | Dec 2012 | A1 |
20120330410 | Hammer | Dec 2012 | A1 |
20120330411 | Gross | Dec 2012 | A1 |
20130023758 | Fabro | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130096672 | Reich | Apr 2013 | A1 |
20130116780 | Miller | May 2013 | A1 |
20130131791 | Hlavka et al. | May 2013 | A1 |
20130131792 | Miller | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130190863 | Call et al. | Jul 2013 | A1 |
20130190866 | Zipory | Jul 2013 | A1 |
20130226289 | Shaolian | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130268069 | Zakai et al. | Oct 2013 | A1 |
20130289718 | Tsukashima et al. | Oct 2013 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20130325118 | Cartledge | Dec 2013 | A1 |
20140018914 | Zipory et al. | Jan 2014 | A1 |
20140088368 | Park | Mar 2014 | A1 |
20140094826 | Sutherland et al. | Apr 2014 | A1 |
20140094906 | Spence et al. | Apr 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140142619 | Serina et al. | May 2014 | A1 |
20140142695 | Gross et al. | May 2014 | A1 |
20140148849 | Serina et al. | May 2014 | A1 |
20140148898 | Gross | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140163670 | Alon et al. | Jun 2014 | A1 |
20140188108 | Goodine et al. | Jul 2014 | A1 |
20140188140 | Meier et al. | Jul 2014 | A1 |
20140194976 | Starksen et al. | Jul 2014 | A1 |
20140222137 | Miller et al. | Aug 2014 | A1 |
20140243859 | Robinson | Aug 2014 | A1 |
20140243894 | Groothuis et al. | Aug 2014 | A1 |
20140243963 | Sheps et al. | Aug 2014 | A1 |
20140275757 | Goodwin et al. | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140303649 | Nguyen et al. | Oct 2014 | A1 |
20140303720 | Sugimoto et al. | Oct 2014 | A1 |
20140309661 | Sheps et al. | Oct 2014 | A1 |
20140309730 | Alon | Oct 2014 | A1 |
20140343668 | Zipory et al. | Nov 2014 | A1 |
20140379006 | Sutherland et al. | Dec 2014 | A1 |
20150012087 | Miller et al. | Jan 2015 | A1 |
20150018940 | Quill et al. | Jan 2015 | A1 |
20150051697 | Spence et al. | Feb 2015 | A1 |
20150081014 | Gross et al. | Mar 2015 | A1 |
20150127097 | Neumann et al. | May 2015 | A1 |
20150182336 | Zipory | Jul 2015 | A1 |
20150230924 | Miller | Aug 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20160113767 | Miller et al. | Apr 2016 | A1 |
20160317302 | Madjarov et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
0611561 | Aug 1994 | EP |
0954257 | Aug 2000 | EP |
1258437 | Nov 2002 | EP |
0871417 | Oct 2003 | EP |
1266641 | Oct 2004 | EP |
1034753 | Feb 2005 | EP |
1562522 | Dec 2008 | EP |
1258232 | Jan 2009 | EP |
1420723 | Jan 2009 | EP |
1903991 | Sep 2009 | EP |
1418865 | Oct 2009 | EP |
2119399 | Nov 2009 | EP |
1531762 | Apr 2010 | EP |
1450733 | Feb 2011 | EP |
1861045 | Mar 2015 | EP |
1465555 | May 2015 | EP |
9933414 | Jul 1999 | WO |
9963907 | Dec 1999 | WO |
9963910 | Dec 1999 | WO |
0009048 | Feb 2000 | WO |
0126586 | Apr 2001 | WO |
02085251 | Oct 2002 | WO |
02085252 | Oct 2002 | WO |
03028558 | Apr 2003 | WO |
2003049647 | Jun 2003 | WO |
03105667 | Dec 2003 | WO |
2004012583 | Feb 2004 | WO |
2004019816 | Mar 2004 | WO |
2004019826 | Mar 2004 | WO |
2006097931 | Sep 2006 | WO |
2006116558 | Nov 2006 | WO |
2007136783 | Nov 2007 | WO |
2008014144 | Jan 2008 | WO |
2008031103 | Mar 2008 | WO |
2008068756 | Jun 2008 | WO |
2010004546 | Jan 2010 | WO |
WO 2010004546 | Jan 2010 | WO |
10044851 | Apr 2010 | WO |
2010065274 | Jun 2010 | WO |
2010073246 | Jul 2010 | WO |
2010085649 | Jul 2010 | WO |
2010128502 | Nov 2010 | WO |
2010128503 | Nov 2010 | WO |
2011051942 | May 2011 | WO |
2011067770 | Jun 2011 | WO |
2011148374 | Dec 2011 | WO |
2012068541 | May 2012 | WO |
2012176195 | Dec 2012 | WO |
2013069019 | May 2013 | WO |
2013088327 | Jun 2013 | WO |
2014064694 | May 2014 | WO |
2014064695 | May 2014 | WO |
2014087402 | Jun 2014 | WO |
2014195786 | Dec 2014 | WO |
2015059699 | Apr 2015 | WO |
2016087934 | Jun 2016 | WO |
Entry |
---|
Office Action dated Aug. 4, 2010, issued in U.S. Appl. No. 12/341,960. |
Office Action dated Oct. 6, 2010, issued in U.S. Appl. No. 12/484,512. |
Examiner Interview Summary Record dated Jul. 27, 2011 issed in U.S. Appl. No. 12/341,960. |
Supplementary European Search Report dated Feb. 1, 2011, issued in European Patent Application No. 07849540. |
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closure of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008. |
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closure, AGA Medical Corporation, Apr. 2008. |
O'Reilly et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006). |
Dieter, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” App. in Imaging, Cardiac Interventions, Supported by an edu grant from Amersham Health pp. 11-14 (2003). |
Odell et al., “Early Results of a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995). |
Swain et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994). |
Tajik et al. “Two-Dimensional Real-Time Ultrasonic Imaging of the Heart and Great Vessels,” Mayo Clinic Proceedings, vol. 53: 271-303, 1978. |
Office Action dated Apr. 6, 2010, issued in U.S. Appl. No. 12/484,512. |
Maisano et al., “The double-orifice technique as a standard approach to treat mitral regurigitation due to severe myxomatous disease: surgical technique,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205. |
U.S. Appl. No. 60/873,075, filed Dec. 5, 2006. |
U.S. Appl. No. 60/902,146, filed Feb. 16, 2007. |
U.S. Appl. No. 61/001,013, filed Oct. 29, 2007. |
U.S. Appl. No. 61/132,295, filed Jun. 16, 2008. |
U.S. Appl. No. 61/207,908, filed Feb. 17, 2009. |
U.S. Appl. No. 61/265,936, filed Dec. 2, 2009. |
An Office Action dated Jun. 13, 2012, which issued during the prosecution of U.S. Appl. No. 12/437,103. |
An Office Action dated Jul. 20, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412. |
An International Search Report and a Written Opinion both dated Feb. 22, 2013, which issued during the prosecution of Applicant's PCT/IL2012/050451. |
Supplementary European Search Report dated Mar. 28, 2013, which issued during the prosecution of EP Patent Application No. 10772091. |
An Office Action dated May 6, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,693. |
An Office Action dated Apr. 1, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,476. |
An International Search Report and a Written Opinion both dated Dec. 6, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000250. |
An Office Action dated Nov. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635. |
Supplementary European Search Report dated Dec. 4, 2012, which issued during the prosecution of European Patent Application No. 09834225. |
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,444. |
An Office Action dated Jun. 7, 2013, which issued during the prosecution of U.S. Appl. No. 13/141,606. |
An Office Action dated Aug. 23, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,444. |
An Office Action issued in U.S. Appl. No. 13/666,262 dated Dec. 16, 2013. |
An Office Action issued in U.S. Appl. No. 13/167,476 dated Nov. 21, 2013. |
An Office Action issued in U.S. Appl. No. 13/666,141 dated Dec. 18, 2013. |
An Office Action issued in U.S. Appl. No. 14/027,934 dated Dec. 19, 2013. |
Office Action, dated Feb. 3, 2014, issued by the United States Patent and Trademark Office, in counterpart U.S. Appl. No. 12/689,693. |
International Search Report and Written Opinion, dated Apr. 9, 2014, issued by the International Search Authority, in counterpart Application No. PCT/IL13/50860. |
An Office Action dated Jun. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
An Office Action dated Jun. 4, 2014, which issued during the prosecution of U.S. Appl. No. 12/840,463. |
An English translation of an Office Action dated Apr. 23, 2014 which issued during the prosecution of Chinese Patent Application No. 201080059948.4. |
An Office Action dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
Notice of Allowance dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693. |
Notice of Allowance dated Jun. 25, 2014, which issued during the prosecution of U.S. Appl. No. 13/666,262. |
Communication dated Jul. 25, 2014, issued by the State Intellectual Property Office of the P.R. of China, in counterpart Application No. 200980157331.3. |
Communication dated Aug. 22, 2014, issued by the United States Patent and Trademark Office in counterpart U.S. Appl. No. 14/027,934. |
Communication dated Aug. 26, 2014, issued by the United States Patent and Trademark Office in counterpart U.S. Appl. No. 13/167,444. |
A Supplementary European Search Report dated Jan. 20, 2015, which issued during the prosecution of European Patent Application No. 12803037.6. |
A Notice of Allowance dated Jul. 30, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007. |
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 14/551,951. |
An Office Action dated Oct. 14, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
An Office Action dated Aug. 7, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
An Office Action dated Sep. 19, 2014, which issued during the prosecution of U.S. Appl. No. 13/044,694. |
An Office Action dated Oct. 5, 2015, which issued during the prosecution of U.S. Appl. No. 14/246,417. |
An Office Action dated Mar. 23, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013. |
An Office Action dated Jun. 10, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492. |
An Office Action dated Oct. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/749,153. |
Supplementary European Search Report dated Oct. 23, 2014 which issued during the prosecution of Applicant's European App No. 10826224.7. |
An International Search Report & Written Opinion both dated Mar. 21, 2014, which issued during the prosecution of Applicant's PCT/IL13/50992. |
An International Search Report & Written Opinion both dated Mar. 31, 2014, which issued during the prosecution of Applicant's PCT/IL14/050027. |
An Office Action dated Mar. 16, 2015, which issued during the prosecution of U.S. Appl. No. 14/084,426. |
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226. |
Supplementary European Search Report dated Sep. 25, 2015 which issued during the prosecution of Applicant's European App No. 09794095.1. |
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
Invitation to Pay Additional Fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861. |
Invitation to Pay Additional Fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050860. |
An English translation of an Office Action dated Jun. 15, 2015 which issued during the prosecution of Chinese Patent Application No. 201080059948.4. |
A communication from the European Patent Office dated Jun. 11, 2015 which issued during the prosecution of European Application No. 11811934.6. |
European Search Report dated Mar. 23, 2015, which issued during the prosecution of Applicant's European App No. 09834225. |
European Search Report dated Apr. 29, 2015, which issued during the prosecution of Applicant's European App No. 14200202. |
An International Search Report and a Written Opinion both dated May 12, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050914. |
Supplementary European Search Report dated Mar. 23, 2015, which issued during the prosecution of Applicant's European App No. 11792047. |
An Office Action dated May 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
An Office Action dated Apr. 2, 2015, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
An Office Action dated May 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153. |
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954. |
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/084,426. |
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934. |
An Office Action dated Jan. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
An International Search Report and a Written Opinion both dated Jan. 25, 2016, which issued during the prosecution of Applicant's PCT/IL2015/051027. |
An Office Action dated Nov. 17, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226. |
European Search Report dated Nov. 4, 2015 which issued during the prosecution of Applicant's European App No. 10772091.4. |
European Search Report dated Nov. 16, 2015 which issued during the prosecution of Applicant's European App No. 10826224.7. |
An English Translation of an Office Action dated Nov. 24, 2015, which issued during the prosecution of Israel Patent Application No. 223448. (the relevant part only). |
International Search Report and a Written Opinion, both dated Aug. 17, 2010, issued in PCT/IL10/00357. |
International Search Report and a Written Opinion, both dated Nov. 8, 2010, issued in PCT/IL10/00358. |
International Preliminary Report dated Jun. 29, 2011, issued in PCT/IL09/1209. |
International Search Report and a Written Opinion dated Jun. 10, 2010, issued in PCT/IL09/01209. |
International Search Report dated Sep. 8, 2009, issued in PCT/IL09/00593. |
An Office Action dated Jan. 20, 2017, which issued during the prosecution of U.S. Appl. No. 14/650,114. |
An Office Action dated Feb. 10, 2017, which issued during the prosecution of U.S. Appl. No. 14/990,172. |
Notice of Allowance dated Dec. 30, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030. |
An Office Action dated Dec. 20, 2016, which issued during the prosecution of UK Patent Application No. 1611910.9. |
Notice of Allowance dated Jan. 3, 2017, which issued during the prosecution of U.S. Appl. No. 14/128,756. |
Notice of Allowance dated Dec. 19, 2016, which issued during the prosecution of U.S. Appl. No. 14/242,151. |
An Office Action dated Dec. 13, 2016, which issued during the prosecution of European Patent Application No. 11786226.8. |
An Office Action dated Mar. 24, 2017, which issued during the prosecution of U.S. Appl. No. 14/273,155. |
An Office Action dated Apr. 6, 2017, which issued during the prosecution of U.S. Appl. No. 14/437,062. |
Notice of Allowance dated Apr. 13, 2017, which issued during the prosecution of U.S. Appl. No. 14/650,114. |
An Office Action dated Jan. 25, 2017, which issued during the prosecution of Applicant's Chinese App No. 201510681407.X. |
Notice of Allowance dated Mar. 1, 2017, which issued during the prosecution of U.S. Appl. No. 14/357,040. |
Dabritz, S., et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52. |
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon 36.06 (1988): 313-319. |
Ahmadi, Ali, et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522. |
Communication from United States Patent and Trademark Office dated Jul. 20, 2016 in U.S. Appl. No. 14/246,417. |
Communication dated Jul. 8, 2016, from the European Patent Office in counterpart European Application No. 13849843.1. |
Communication dated Jul. 15, 2016, from the European Patent Office in counterpart European Application No. 13849947.0. |
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014); Chapter 10 pp. 149-179. |
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology 52.6 (1998): 1151-1154. |
Park, Sang C., et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484. |
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545. |
An Invitation to pay additional fees dated Aug. 18, 2016 which issued during the prosecution of Applicant's PCT/IL2016/050433. |
Communication dated Jul. 1, 2016, from the European Patent Office in counterpart European Application No. 12847363. |
An English Translation of an Office Action dated Sep. 15, 2016, which issued during the prosecution of Israel Patent Application No. 243837. |
Swenson, O. and Malinin, T.I., 1978: “An improved mechanical device for control of urinary incontinence,” Investigative urology, 15(5), pp. 389-391. |
Swenson, O.: “An experimental implantable urinary sphincter,” Invest Urol. Sep. 1976;14(2):100-3. |
An International Search Report and a Written Opinion both dated Oct. 17, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050433. |
An Office Action dated Oct. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/567,472. |
Number | Date | Country | |
---|---|---|---|
20150112432 A1 | Apr 2015 | US |