Closed-loop-controlled voltage generating apparatus and method for operating a closed-loop-controlled voltage generating apparatus

Information

  • Patent Grant
  • 10804827
  • Patent Number
    10,804,827
  • Date Filed
    Thursday, December 21, 2017
    7 years ago
  • Date Issued
    Tuesday, October 13, 2020
    4 years ago
  • Inventors
  • Original Assignees
    • Siemens Mobility GmbH
  • Examiners
    • Cuevas; Pedro J
    Agents
    • Greenberg; Laurence
    • Stemer; Werner
    • Locher; Ralph
Abstract
A controllable voltage-generating apparatus includes a mechanically driven, separately excited generator. An electric output voltage of the generator is rectified by a rectifier. The voltage-generating apparatus can be controlled by a control system. A voltage-control device of the control system has a calculation device, by way of which an electric excitation signal for the generator can be calculated by way of a defined interpolation from measurement values of the electric excitation signals of the voltage-generating apparatus.
Description

The invention relates to a closed-loop-controlled voltage generating apparatus and a method for operating such an apparatus.


BACKGROUND OF THE INVENTION
Field of the Invention

Closed-loop-controlled voltage generating apparatuses for generating a voltage for consumers are known. Here, use is made of voltage controllers and current controllers, with load variations being able to be taken account of by means of a characteristic, parameters for the characteristic often only being obtainable with very much outlay, for example from data sheets of a generator involved.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide an improved closed-loop-controlled voltage generating apparatus.


According to a first aspect, the object is achieved by a closed-loop-controlled voltage generating apparatus, comprising:

    • a mechanically drivable, separately excited generator device;
    • wherein an output voltage of the generator device is rectifiable by means of a rectifier device;
    • wherein the voltage generating apparatus is closed-loop-controlled by means of a regulating apparatus;
    • wherein a voltage regulating device of the regulating apparatus comprises an ascertainment device, by means of which an electric excitation signal for the generator device is ascertainable by means of a defined interpolation from measured values of the electric excitation signals of the voltage generating apparatus.


This can advantageously realize disturbance variable feedforward control, by means of which load changes of the voltage generating apparatus can be compensated dynamically. As a result, this does not require a complicated ascertainment of a characteristic of the ascertainment device using simulation technology. As a result, knowledge of parameters is not necessary for simulating the characteristic of the ascertainment device. All that needs to be done for ascertaining the excitation signals by measurement technology is to drive to working points that are driven to in any case during the operation of the voltage generating apparatus.


According to a second aspect, the object is achieved by a method for operating a closed-loop-controlled voltage generating apparatus comprising a mechanically driven, separately excited generator device and a rectifier device interconnected with the generator device, said method including the steps of:

    • generating a rectified output voltage of the generator device;
    • capturing an excitation signal of the generator device under defined boundary conditions using measurement technology; and
    • mathematically ascertaining the electric excitation signal of the generator device by way of a defined interpolation from the excitation signals ascertained by means of measurement technology.


In this way, a mathematical ascertainment of the characteristic for the closed-loop-controlled voltage generating apparatus can advantageously be carried out on the basis of measurement data. Complicated model formation and simulation processes are advantageously not required as a result thereof.


A preferred embodiment of the apparatus according to the invention is distinguished in that the ascertainment device can be supplied with a calculated power value and a rotational speed setpoint value of the generator device, with a setpoint value of an electric excitation current for an exciter device of the generator device being ascertainable by means of the ascertainment device. As a result, the electric excitation signal can be ascertained with a high accuracy.


A further preferred embodiment of the voltage generating apparatus is distinguished in that the ascertainment device can be supplied with a calculated power value and a rotational speed setpoint value of the generator device, with a setpoint value of an excitation voltage for an exciter device of the generator device being ascertainable by means of the ascertainment device. In this way, little additional outlay is advantageously required for ascertaining the electric excitation signal in the form of the excitation voltage.


A further preferred embodiment of the voltage generating apparatus is distinguished in that the generator device is operable at at least two defined rotational speeds, in each case when idling and at rated load, wherein the value of the electric excitation current or of the excitation voltage is ascertainable from a linear interpolation of four value triples obtained thereby, wherein a value triple consists of excitation current or voltage, rotational speed and load. In this way, the excitation signal can be easily ascertained mathematically with little computational outlay.


A further preferred embodiment of the closed-loop-controlled voltage providing apparatus is distinguished in that the rotational speed range of the generator device is traversable at defined intervals for the purposes of ascertaining the value triples of the electric excitation current or excitation voltage. In this way, a rotational speed range of the generator device is driven through uniformly with a defined number of working points, as a result of which the electric excitation signal can be ascertained even more precisely.


A further preferred embodiment of the closed-loop-controlled voltage generating apparatus is distinguished in that a second setpoint value of the electric excitation current or of the excitation voltage, which forms a setpoint value of the electric excitation current or excitation voltage together with the first setpoint value, provided by the ascertainment device, of the electric excitation current or the excitation voltage, is ascertainable by means of an auxiliary regulating device, which can be supplied with a measured value of the output voltage of the rectifier device and a setpoint value of the output voltage of the rectifier device. In this way, the characteristic of the ascertainment device is finely adjusted by means of the auxiliary regulating device and hence an optimized value of the excitation signal is provided.


A further preferred embodiment of the voltage generating apparatus is distinguished in that the generator device is drivable by means of an internal combustion engine, wherein a rotational speed of the generator device can be set in defined fashion in each case by means of the internal combustion engine. In this way different rotational speeds for the generator device are provided in simple fashion.


A further preferred embodiment of the closed-loop-controlled voltage generating apparatus is distinguished in that the rated load can be set by a resistor at the output of the rectifier device. In this way, braking resistance of a traction motor can advantageously be exploited, and hence little additional outlay is required for driving to a defined working point of the voltage generating apparatus.


What is considered particularly advantageous in the case of the invention is that simple technical means render it possible to compensate load variations of the voltage generating apparatus in a simple manner. To this end, use need advantageously not be made of complicated additional devices; instead, driving to defined working points using measurement technology and ascertaining measured values for ascertaining the characteristic of an ascertainment device of the regulating apparatus using measurement technology are sufficient for ascertaining electric actuation signals (excitation current or excitation voltage).


The above-described properties, features and advantages of the invention and the manner in which these are achieved, will become clearer and more easily understandable in conjunction with the following description of the exemplary embodiments, which are explained in more detail in conjunction with the figures.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING


FIG. 1 shows a block diagram of a proposed voltage generating apparatus in basic representation;



FIG. 2 shows a basic scheme for ascertaining the electric excitation current according to the proposed principle;



FIG. 3 shows a physical meaning of a functionality of the proposed method in basic representation;



FIG. 4 shows different measured values of an embodiment of the proposed closed-loop-controlled voltage generating apparatus; and



FIG. 5 shows a basic procedure of an embodiment of the method according to the invention.





DESCRIPTION OF THE INVENTION


FIG. 1 shows a basic block diagram of an embodiment of a closed-loop-controlled voltage generating apparatus 100. It is possible to identify a separately excited generator device 10 (e.g., in the form of a separately excited synchronous generator), which is electrically excited by means of an exciter device 20. A three-phase output voltage of the generator device 10 is supplied to a rectifier device 30, which is preferably in the form of a B6 bridge circuit. A rectified output voltage ud is available at the output of the rectifier device 30 at a DC link capacitor Cd, a load (not illustrated), for example in the form of an electrical traction motor of a locomotive, being connectable to said output voltage.


A regulating apparatus 40, 50 is identifiable in the lower section of FIG. 1, an excitation voltage uerr being provided for the exciter device 20 by means of said regulating apparatus. It is possible to identify a voltage regulating device 40, which is functionally interconnected with a current regulating device 50. Measured current values iG1, iG3 of the generator device 10 and the output voltage ud of the rectifier device 30 are supplied to a calculation device 41 of the voltage regulating device 40. The calculation device 41 is used to ascertain a power PGen of the generator device 10 by calculation. An output variable of the measured power value is supplied to an ascertainment device 42, which is also supplied with a rotational speed setpoint value nd,Setpoint of the generator device 10. In a way that is defined in more detail below, the ascertainment device 42 ascertains a first setpoint value of the excitation current ierr,Setpoint1 and supplies the latter to a summing point 44.


A second setpoint value i,err,Setpoint2 of the excitation current is also supplied to the summing point 44. Said second setpoint value is an output variable of an auxiliary regulating device 43, which ascertains the specified second setpoint value i,err,Setpoint2 from the output voltage ud of the rectifier device 30 and a setpoint value of the output voltage ud,Setpoint of the rectifier device 30 from a defined mapping of a rotational speed setpoint value nd,Setpoint.


In this way, an output signal ierr,Setpoint supplied from the voltage regulating device 40 to the current regulating device 50, the latter forming an electric actuation signal in the form of the excitation voltage u,err for the exciter device 20 therefrom.


Conventionally, complicated simulations are necessary for realizing the ascertainment device 42, said simulations also requiring knowledge about the generator device 10 and various component parameters of various components from the entire voltage regulating apparatus 100. For this purpose, a dynamic model of the aforementioned controlled system is conventionally created on the basis of complex, nonlinear differential equations. Parameters of the model arise after intermediate calculations from specifications from the manufacturer and the system design. Simulations of the generator equations using simulation software are required at various non-specified working points, up to the respective steady-state condition. Here, the auxiliary regulating device 43 ensures that the relationship ud,actual=ud,Setpoint is satisfied. From this, a node arises for each working point AP according to the following relationship:

ierr=f(PGen,nd,Setpoint)  (1)

ierr . . . excitation current


PGen . . . generator power


nd,Setpoint . . . rotational speed setpoint value


Subsequently, the parameters of a second order surface:

iFläche=x0+xp1*PGen+xp2*PGen2+xn1*nd,Setpoint+xn2*nd,Setpoint2   (2)

are optimized in such a way that the electric excitation current at the working points iFläche deviates as little as possible from the excitation current ierr at the working point as calculated by the simulation.


The explained surface equation in equation (2) and the associated parameters are conventionally implemented in control software.


The present invention proposes an ascertainment of a characteristic of the ascertainment device 42 in a simple manner on the basis of measured data.


To this end, provision is made for the voltage generating apparatus 100 to have to be driven to a defined, small number of working points. By way of example, it is sufficient to drive the voltage generating apparatus 100 to 8 to 10 working points, with a measured value of an excitation current ierr, depending on a defined rotational speed nd and a defined generator load PGen, being recorded at each working point in each case. Here, the working points comprise a rotational speed range of the generator device 10 in the region of approximately 600 to approximately 1800 rpm, with at least two different rotational speeds at the edges of the overall region being driven to.


A measured value of the excitation current ascertained thus can be input into the regulating apparatus as a parameter, as a result of which the ascertainment device 42 is defined in a simple manner.


Preferably, by setting defined rotational speeds of the generator device 10 (e.g., by means of a diesel generator set driving the generator device 10), M working points should be set to the following values:

nd,Setpoint for x∈[0 . . . M−1].  (3)


Here, the auxiliary regulating device 43 ensures the following applies:

ud,actual=ud,Setpoint   (4)


where:


ud,ist . . . actual value of the DC link voltage


ud,Setpoint . . . Setpoint value of the DC link voltage


The electric excitation current ierr is measured in a stationary state in each case, once in the case without load (idling) and once at the rated load. In order to set the rated load, an adjustable ohmic resistor (not illustrated), for example in the form of a braking resistor of a traction motor employed during regular operation of the voltage generating apparatus 100, is set in suitable fashion at the output of the rectifier device 30.


As a result, 2M parameter sets or value triples or numerical triples t arise; these can be input directly into the ascertainment device 42.



FIG. 2 shows a basic illustration of the ascertainment principle, explained above, for the electric excitation current ierr. It is possible to identify a three-axis Cartesian coordinate system, having the axes of generator power PGen, electric excitation current ierr and rotational speed nd.


It is possible to identify that, respectively for the values of idling and rated load, value triples t are ascertained for the specified values, as a result of which four of the aforementioned value triples t arise in each case, wherein an electric excitation current emerges per value triple t, depending on a defined power and a defined rotational speed of the generator device 10. The first setpoint value of the electric excitation current ierr,Setpoint1 is ascertained by linear interpolation from four adjacent, ascertained value triples tLL.x, tLL.x+1, tN.x, tN.x+1, with the following value triples:

  • tLL.x . . . nd,setpoint.x, ierr,LL.x, PGen at a working point X during idling
  • tLL.x+1 . . . nd,setpoint.x+1, ierr,LL.x+1, PGen at a working point X+1 during idling
  • tN.x . . . nd,setpoint.x, ierr,N.x, PGen at a working point X at rated load
  • tN.x+1 . . . nd,setpoint.x+1, ierr,N.x+1, PGen at a working point X+1 at rated load


As a result, the totality of the value triples t consequently represents a surface in space, wherein each point of the surface represents a first setpoint value of the electric excitation current ierr depending on a defined generator power and a defined rotational speed.


This realizes a mathematical function that maps a power value and a rotational speed value of the voltage generating apparatus 100 to a value of the electric excitation current ierr for the exciter device 20 of the generator device 10. A level of a surface point or a node of the surface in space corresponds to a specific value of a first setpoint value of the electric excitation current ierr, Setpoint1 in this case. Here, the rotational speed of the generator device 10 is controlled by a control device (not illustrated) of the generator device 10, with a diesel injection amount for a diesel generator set being metered accordingly, for example.


A characteristic for the ascertainment device 42 can be provided in a simple manner in this way, with associated interpolation algorithms being able to be implemented in a simple manner in the regulating apparatus, preferably in the form of software with suitable program code means.



FIG. 3 shows a diagram with a physical background of the present invention. The explanations below relate to a fixed generator rotational speed.



FIG. 3 shows three profiles of the electric excitation current ierr1, ierr2, ierr3, which is required at a certain load to keep the DC link voltage ud at a setpoint value. Conventionally, the profileTerri is obtained by forming a model and subsequently simulating the generator device 10.


ierr2 represents measured points of the electric excitation current with the same generator device 10, which current was measured with much outlay at many working points, with the shown relationships between load and excitation current arising.


ierr3 shows a characteristic for specific rotational speed, formed according to the invention. Upon startup, the generator device 10 is loaded in any case with the rated load PN within the scope of the so-called “Self Load Test”.


Thus, it is possible to identify that the straight line according to ierr3, as proposed according to the invention, represents a sufficiently precise map of the real physical conditions according to ierr2. Here, it is possible to identify that the straight line of the electric excitation current according to ierr3, obtained by interpolation, even reflects reality better than the parabolic characteristic of the excitation current according to ierr1, which was determined with much outlay in conventional fashion.


The physical relationships illustrated in FIG. 3 thus show that a linear interpolation of the required electric excitation current ierr between full load and idling leads to higher accuracy than the model formation with simulations, which was carried out with much outlay in conventional fashion. The linear interpolation of the excitation current ierr3 does not deviate from the real (measured) value by more than approximately 10% for any load. Advantageously, the described behavior is exhibited at all measured rotational speeds.


The load changes of the generator device 10 between idling and rated load must be compensated “quickly”, i.e., with a frequency in the kHz range, since the aforementioned load changes are represented by electric time constants. This is ensured by the characteristic.


The auxiliary regulating device 43 does not suffice to this end. Compared thereto, the rotational speed changes of the generator device 10 are comparatively “slow”, i.e., with a change frequency of approximately 10 Hz, as these are represented by a mechanical time constant. Inaccuracies in the ascertainment by calculation of the electrical excitation current ierr between the rotational speed nodes can therefore easily be compensated by the superposed auxiliary regulating device 43 on account of its dynamic response. Consequently, the auxiliary regulating device 43 is fast enough to dynamically track or compensate the changes in rotational speed, which tend to be slow.


Advantageously, an operation of a voltage generating apparatus, in which the generator device 10 is unknown in terms of its technical properties and the conventionally required manufacturer specifications are not obtainable or not obtainable with appropriate outlay, can be realized by means of the invention.


In an alternative embodiment, the excitation voltage uerr, too, can be calculated by means of a characteristic of the ascertainment device 42 instead of the electrical excitation current ierr.



FIG. 4 shows a plurality of time profiles with measurement results after application of the proposed method.


The uppermost profile in FIG. 4 shows a time profile of the rotational speed nd of the generator device 10.


The second profile from the top in FIG. 4 shows a time profile of the DC link voltage ud.


The third profile from the top in FIG. 4 shows a time profile of the generator power PGen.


The first setpoint value of the excitation current ierr,Setpoint1, ascertained by means of the characteristic of the ascertainment device 42, in the lowermost profile of FIG. 4 corresponds to the required stationary setpoint value of the electric excitation current ierr,Setpoint to such a great extent that a superposed controller in the form of the auxiliary regulating device 43 (“feedback controller”) hardly needs to carry out corrections.


Advantageously, the number of parameters required to represent the ascertainment device 42 is very low, with the measurement being implemented at working points that are driven to in any case when starting up the voltage generating apparatus 100. As a result of this, no off-site engineering is required prior to or during a starting-up project and, advantageously, no specifications (e.g., from the manufacturer) about the generator device 10 are necessary either.


As a result, there is advantageously no need to keep available the necessary expert knowledge and software licenses. Therefore, in principle, a completely unknown generator device 10 can be put into operation.


The measured parameters can be adopted directly into the software without intermediate calculations.


The parameters have physical meaning and can therefore be adapted to possible requirements in situ.


Control software is slimmed down and easier to read and maintain.


Advantageously, the method according to the invention can be implemented as software, which is executed on a microcomputer of the regulating apparatus. Such an implementation advantageously renders possible a simple modification or adaptation of the method according to the invention.



FIG. 5 shows a basic flowchart of an embodiment of the method according to the invention for operating a voltage generating apparatus 100 comprising a mechanically driven, separately excited generator device 10 and a rectifier device 30 interconnected with the generator device 10.


In a step 200, generating a rectified output voltage of the generator device 10 is carried out.


In a step 210, capturing an excitation signal of the generator device 10 under defined boundary conditions is carried out using measurement technology.


In a step 220, mathematically ascertaining the electric excitation signal of the generator device 10 is carried out by way of a defined interpolation from the excitation signals ascertained by means of measurement technology.


In conclusion, the present invention achieves a measured data-based realization of a closed-loop-controlled voltage source with a separately excited synchronous generator and a rectifier bridge, which advantageously facilitates a highly dynamic compensation of different loads in a simple manner.


Even though the invention was illustrated and described more closely in detail by preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by a person skilled in the art without departing from the scope of protection of the invention.

Claims
  • 1. A closed-loop-controlled voltage generating apparatus, comprising: a mechanically driven, separately excited generator;an exciter for electrically exciting said generator;a rectifier connected to said generator and configured to rectify an an output voltage of said generator;a regulating apparatus configured to provide an excitation voltage (uerr) for said exciter, said regulating apparatus including a voltage regulator and a current regulator, said voltage regulator being functionally interconnected with said current regulator;said voltage regulator including a calculation device, an ascertainment device, an auxiliary regulator, and a summing point;said calculation device of said voltage regulator being configured to receive measured current values of output currents of the generator and an output voltage of said rectifier, to calculate a power of said generator and supplying the power to said ascertainment device as output variable of a measured power value;said ascertainment device further receiving a rotational speed setpoint value of the generator, ascertaining a first setpoint value of the excitation current and supplying the first setpoint value to said summing point;said auxiliary regulator being configured to ascertain a second setpoint value of the excitation current from the output voltage of said rectifier and a setpoint value of the output voltage of said rectifier from a defined mapping of a rotational speed setpoint value;said summing point receiving the first setpoint value and the second setpoint value of the excitation current, the second setpoint value being an output variable of said auxiliary regulator;said summing point being configured to form an output signal of said voltage regulator by summation, said output signal being supplied to said current regulator, and said current regulator forming therefrom an electric actuation signal being the excitation voltage for said exciter; andwherein said generator is operated at at least two defined rotational speeds, respectively when idling and at rated load, wherein a value of the excitation voltage is ascertained from a linear interpolation of four value triples obtained thereby, a value triple consisting of the excitation current, the rotational speed, and the load.
  • 2. The voltage generating apparatus according to claim 1, wherein a rotational speed range of said generator is traversed at defined intervals for ascertaining the value triples of the excitation voltage.
  • 3. The voltage generating apparatus according to claim 1, wherein said generator is driven by an internal combustion engine, and wherein a rotational speed of said generator is defined by way of the internal combustion engine.
  • 4. The voltage generating apparatus according to claim 1, wherein the rated load is set by a resistor connected at an output of said rectifier.
Priority Claims (1)
Number Date Country Kind
10 2017 201 687 Feb 2017 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/084005 12/21/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/141463 8/9/2018 WO A
US Referenced Citations (84)
Number Name Date Kind
3768002 Drexler Oct 1973 A
4031407 Reed Jun 1977 A
4536126 Reuther Aug 1985 A
4553516 Hasegawa Nov 1985 A
4723106 Gibbs Feb 1988 A
4967097 Mehl Oct 1990 A
4977529 Gregg Dec 1990 A
5055765 Rozman Oct 1991 A
5068590 Glennon Nov 1991 A
5097195 Raad Mar 1992 A
5430362 Carr Jul 1995 A
5488286 Rozman Jan 1996 A
5493200 Rozman Feb 1996 A
5594322 Rozman Jan 1997 A
5929612 Eisenhaure Jul 1999 A
6300746 Mueller et al. Oct 2001 B1
6707275 Okahara Mar 2004 B2
6900618 Maehara May 2005 B2
6998726 Sarlioglu Feb 2006 B2
7071656 Taniguchi Jul 2006 B2
7081725 Seely Jul 2006 B2
7294991 Kimura Nov 2007 B2
7309974 Sarlioglu Dec 2007 B2
7355367 Sarlioglu Apr 2008 B2
7394227 Uematsu Jul 2008 B2
7423351 Maehara Sep 2008 B2
7592785 Kimura Sep 2009 B2
8022677 Laufenberg et al. Sep 2011 B2
8299762 Rozman Oct 2012 B2
8378641 Rozman Feb 2013 B2
8427116 Rozman Apr 2013 B2
8541988 Horihata Sep 2013 B2
8773081 Akita Jul 2014 B2
8847558 Schmidt Sep 2014 B2
8975876 Rozman Mar 2015 B2
9209741 Gao Dec 2015 B2
9325229 Rozman Apr 2016 B2
9431943 Moreau Aug 2016 B2
9548691 Rozman Jan 2017 B1
9590545 Frampton Mar 2017 B2
9660563 Rozman May 2017 B2
9716456 Maruyama Jul 2017 B2
9935571 Frampton Apr 2018 B2
9998045 Frampton Jun 2018 B2
10205415 Blackwelder Feb 2019 B2
10256758 Frampton Apr 2019 B2
10263553 Blackwelder Apr 2019 B2
10498275 Blackwelder Dec 2019 B2
20020027426 Okahara Mar 2002 A1
20030075997 Keim et al. Apr 2003 A1
20030178973 Maehara Sep 2003 A1
20040108726 Sarlioglu Jun 2004 A1
20070085512 Maehara Apr 2007 A1
20070102935 Sarlioglu May 2007 A1
20070268005 Sarlioglu Nov 2007 A1
20080186000 Kimura Aug 2008 A1
20080191482 Okuno Aug 2008 A1
20080303490 Xu Dec 2008 A1
20100308582 Rozman Dec 2010 A1
20110260698 Peuser et al. Oct 2011 A1
20120007428 Rozman Jan 2012 A1
20120007568 Horihata Jan 2012 A1
20120146593 Akita Jun 2012 A1
20120153904 Albsmeier Jun 2012 A1
20130033038 Rozman Feb 2013 A1
20130313828 Moreau Nov 2013 A1
20140265744 Rozman Sep 2014 A1
20140266078 Rozman Sep 2014 A1
20150229248 Richards Aug 2015 A1
20150244303 Gao Aug 2015 A1
20150311848 Maruyama Oct 2015 A1
20160149527 Frampton May 2016 A1
20160149528 Frampton May 2016 A1
20160268942 Rozman Sep 2016 A1
20160301345 Frampton Oct 2016 A1
20160373038 Rozman Dec 2016 A1
20170170762 Blackwelder Jun 2017 A1
20170170764 Blackwelder Jun 2017 A1
20170170765 Blackwelder Jun 2017 A1
20180131301 Frampton May 2018 A1
20180131302 Frampton May 2018 A1
20190173403 Blackwelder Jun 2019 A1
20190190418 Frampton Jun 2019 A1
20190207542 Blackwelder Jul 2019 A1
Foreign Referenced Citations (10)
Number Date Country
3407209 Aug 1984 DE
19632891 Feb 1998 DE
19733221 Feb 1999 DE
10361215 Jul 2005 DE
102008043509 May 2010 DE
102010040863 Mar 2012 DE
102012223516 Mar 2014 DE
1063764 Dec 2000 EP
2948512 Jan 2011 FR
2011223762 Nov 2011 JP
Related Publications (1)
Number Date Country
20200044589 A1 Feb 2020 US