The present invention generally relates to systems for controlling the position of a variable position valve, and more specifically to systems for controlling the position of an Exhaust Gas Recirculation (EGR) valve for an internal combustion engine.
When combustion occurs in an environment with excess oxygen and high combustion temperatures, the formation of unwanted emissions such as oxides of nitrogen (NOx) occurs. This problem is aggravated through the use of turbocharger machinery operable to increase the mass of fresh air flow, which increases the concentrations of oxygen and nitrogen present in the combustion chamber when temperatures are high during or after a combustion event.
One known technique for reducing unwanted emissions such as NOx involves introducing chemically inert gases into the fresh air flow stream for subsequent combustion. By reducing the oxygen concentration of the resulting charge to be combusted, the fuel burns slower and peak combustion temperatures are reduced, thereby lowering the production of NOx.
In an internal combustion engine environment, such chemically inert gases are readily abundant in the form of exhaust gases, and one known method for achieving the foregoing result is through the use of an EGR system operable to introduce (i.e., recirculate) the exhaust gas from the exhaust manifold into the fresh air stream flowing to the intake manifold. EGR operation is typically not required under all engine operating conditions, and known EGR systems accordingly include a device, commonly referred to as an EGR valve, for specifically and controllably introducing the exhaust gas to the intake manifold.
Some EGR control strategies use an on-board microprocessor to control the EGR valve as a function of information supplied by a number of engine operational sensors. Other strategies control the EGR valve through the use of delta pressure sensors across an orifice or air mass flow sensors. All of these strategies, however, are prone to errors across wide ranges of operation and environmental conditions. Accordingly, what is needed in the art is a control strategy that overcomes these problems.
The present invention provides a system and method for controlling the EGR valve using water content measurement. In accordance with one aspect of the present invention, an internal combustion engine system includes an internal combustion engine having an intake manifold fluidly coupled to a compressor adapted to receive ambient air through an air conduit of the engine, a first sensor positioned at least one of inside and outside the air conduit and configured to measure a first water content in the ambient air, and a second sensor positioned at least one of inside the intake manifold and upstream of the intake manifold and configured to measure a second water content in the intake manifold.
In accordance with another aspect of the present invention, the internal combustion engine system includes an internal combustion engine having an intake manifold fluidly coupled to a compressor adapted to receive ambient air through an air conduit of the engine, a first sensor positioned at least one of inside and outside the air conduit and configured to measure a first water content in the ambient air, a second sensor positioned at least one of inside the intake manifold and upstream of the intake manifold and configured to measure a second water content therein, the second sensor adapted to generate an intake manifold water content signal corresponding to the second water content, and a controller coupled to the first sensor and to the second sensor and configured to use the ambient air water content signal and the intake manifold water content signal to determine a water intake content value.
In accordance with still aspect of the present invention, the internal combustion engine system includes an internal combustion engine having an intake manifold fluidly coupled to a compressor adapted to receive ambient air through an air conduit of the engine; and a means positioned at least one of inside and outside the intake manifold and configured to measure a gaseous content in the intake manifold.
In accordance with still another aspect of the present invention, a method of controlling a valve device includes the steps of measuring a first water content in the ambient air, measuring a second water content in the intake manifold, comparing the first and second water contents to a desirable water content, and controlling the valve device corresponding to a difference between the first and second water contents and the desirable water content.
The above-mentioned and other features of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present invention.
The embodiments disclosed below are not intended to be exhaustive or limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings.
Turbocharger compressor 16 is mechanically coupled to turbocharger turbine 26 via driveshaft 28, wherein turbine 26 is fluidly coupled to exhaust manifold 30 via exhaust manifold conduit 32 and is further in fluid connection with ambient air via exhaust conduit 34. Exhaust manifold conduit 32 is fluidly coupled to intake conduit 20 via EGR conduit 36 having valve 38 disposed in line therewith. EGR cooler 40 may be disposed between valve 38 and intake conduit 20.
Exhaust gas exiting engine 12 through exhaust manifold 30 passes through valve 38 (or any other device useful for regulating the flow of gaseous material, e.g., a throttle, intake valve, exhaust valve or variable valve) of known construction, and a portion of the exhaust gas may be diverted through EGR cooler 40 disposed between valve 38 and intake conduit 20. Valve 38 is close-loop controlled to regulate the EGR quantity so as to achieve an EGR ratio set in accordance with the operating conditions of internal combustion engine 12. AP sensor 60 is disposed across valve 38 to sense a pressure change, or delta pressure, across valve 38.
System 10 includes electronic EGR controller 42. Controller 42 has a first input receiving a signal indicative of desired EGR position, and has a first output electrically connected to valve 38 via signal path 37. Controller 42 is configured to apply the EGR position signal directly to valve 38. Controller 42 also includes a second input receiving a signal indicative of a desired delta pressure value, or ΔP target, and a third input electrically connected to ΔP sensor 60 via signal path 62 and receiving a signal indicative of sensed delta pressure (ΔP). The ΔP value is subtracted from the ΔP target value at summing node 45, and a produced ΔP error value is applied to proportional-integral (PI) controller 46. An output of controller 42 (not shown) then produces a signal that is used to control the efficiency of turbocharger 18 by way of known techniques. Charge flow to intake manifold 14, i.e., the sum of fresh air flow into intake conduit 20 and EGR flow into intake conduit 20, is controlled by the position of valve 38 and the pressure differential between exhaust conduit 32 and intake conduit 20.
Closed loop EGR system 100 of the present invention is shown in
Turbocharger compressor 16 is mechanically coupled to turbocharger turbine 26 via driveshaft 28, wherein turbine 26 is fluidly coupled to exhaust manifold 30 via exhaust manifold conduit 32 and is further in fluid connection with ambient air via exhaust conduit 34. Exhaust manifold conduit 32 is fluidly coupled to intake conduit 20 via EGR conduit 36 having valve 38 disposed in line therewith. EGR cooler 40 may be disposed between valve 38 and intake conduit 20.
System 100 includes ambient air sensor 110 and intake air sensor 112. Ambient air sensor 110 is positioned so as to be in contact with ambient air received by internal combustion engine 12. Accordingly, ambient air sensor 110 may be positioned upstream of compressor 16, upstream of intake air cooler 24, or anywhere upstream of mixer 13. Ambient air sensor 110 can also be positioned outside of the vehicle in which system 100 is included. Intake air sensor 112 may be positioned in intake manifold 14 or anywhere upstream of intake manifold 14 and downstream of mixer 13.
System 100 further includes engine controller 140. Controller 140 may be any of a number of known control units, including, for example, an electronic or engine control module, an electronic or engine control unit, or a general control circuit capable of performing the functions described below. In accordance with one aspect of the present invention, engine controller 140 includes logic block 142, logic block 143 and logic block 144. Logic blocks 142, 143, 144 may be implemented in software as one or more control algorithms responsive to a number of engine operating conditions. Logic block 142 includes a number of inputs for interfacing with various sensors and systems coupled to engine 12 and receives multiple input signals, including, but not limited to, engine speed, throttle command, coolant temperature, diagnostics indicative of no faults, intake manifold pressure and intake manifold temperature. Logic block 142 uses these input signals to produce a commanded charge flow (CCF) value and an EGR fraction (EGRF) value.
Ambient air sensor 110 is electrically connected to ambient air water input (Wa) (referred to as yA herein) of logic block 143, and air intake sensor 112 is electrically connected to intake air water input (Wi) (referred to as ymix herein) of logic block 143. Sensors 110, 112 measure water in fresh air and in the exhaust stream, respectively. In other embodiments of the present invention, sensor 112 is operable to measure CO2 content, thereby enabling system 100 to operate without ambient air sensor 110.
Sensor 110 produces an ambient air water content signal on signal path 120 indicative of the water content in the ambient air, and air intake sensor 112 produces an intake air water content signal on signal path 122 indicative of the water content in intake manifold 14. Logic block 143 then determines a water content value by using data provided by the ambient air water content signal and the intake air water content signal as is further described below.
In a general sense, the non-reacting mixing process associated with EGR may be expressed as:
where
yi,j≡Mole fraction of species i in the jth non-reacting stream
Yfuel≡Moles of upstream mixed fuel per mole of fresh air
YEGR≡Moles EGR per mole of fresh air
In the case of no upstream mixed fuel, Yfuel=0. Therefore, (1) becomes (when solving for YEGR)
Then, the mass fraction of EGR becomes
Following substitution of (2) and (4) into (3) yields
In a system, such as system 100, that senses H2O in (2), the substitution yields
where
For a fuel of type CHB, (where B=moler hydrogen to carbon ratio) then MWEGR is determined by the following:
The number of moles combustion air (fresh air) per mole of fuel carbon is
Where
MWC=molecular weight of carbon
MWH=molecular weight of Hydrogen
MWH
Pvap=vapor pressure
Pbaro=barometric pressure
The number of moles of water vapor in the combustion air (fresh air) per mole of fuel carbon is
Thus, the exhaust gas (EGR) water vapor concentration is
Similarly for CO2, O2, N2, and Argon
Controller 140 controls system 100 to achieve a desired EGR fraction denoted as X
From equation (5), it can be determined that
Solving for YEGR yeilds
From equation (2), where H2O is tracked (hereinafter, the species notation is omitted), it can be determined that
Equating (17) and (18) yields
Thus, solving for ymix (hereinafter denoted as the desired ymix=ymixT)
Equation (19) permits derivation of the desired water concentration in the intake, ymix
Thus, given a target XEGR
Logic block 144 subtracts the intake air water input (Wi) from the desirable water content value (Di) at summing node 145, and the produced delta water content value is applied to PI controller 146. An output of PI controller 146 then produces a signal on signal line 62 that is used to control valve 38 via valve actuator 61.
Referring now to
After controller 140 calculates the desirable water content value, algorithm 200 instructs ambient air sensor 110 at step 206 to measure the water content in the ambient air and instructs intake air sensor 112 at step 208 to measure the water content in the intake manifold.
Controller 140 at step 210 estimates the water content in the exhaust as described above. In estimating the water concentration in the exhaust, controller 140 uses data regarding the fuel injection quantity of engine 12, estimated intake charge mass, ambient air temperature, EGR cooler 40 temperature, intake manifold 14 temperature, coolant temperature, intake manifold 14 pressure, exhaust manifold 30 pressure, and the previous concentration of water in intake manifold 14. At step 212, controller 140 determines a difference between the desirable water content value and the water content value from data corresponding to the ambient air water signal and the intake air water signal received at respective inputs Wa, Wi. Controller 140 then uses the error between the desirable water content value and the water content value to provide a corresponding signal via signal path 62 to control valve 38. At step 214, controller 142 determines whether to continue to operate the EGR based on the conditions evaluated at step 202. If controller 140 determines to continue the operation of the EGR, execution of algorithm 200 returns to step 204. In one embodiment, controller 140 executes the above-described algorithm every 10-20 milliseconds. If controller 140 determines to discontinue the operation of the EGR, execution of algorithm 200 ends at step 216.
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
Number | Name | Date | Kind |
---|---|---|---|
4168683 | Hata et al. | Sep 1979 | A |
5846831 | Silvis | Dec 1998 | A |
5968452 | Silvis | Oct 1999 | A |
6062204 | Cullen | May 2000 | A |
6467469 | Yang et al. | Oct 2002 | B2 |
6480782 | Brackney et al. | Nov 2002 | B2 |
6647972 | Sato et al. | Nov 2003 | B2 |
6725848 | Ramamurthy et al. | Apr 2004 | B2 |
6748936 | Kinomura et al. | Jun 2004 | B2 |
6823268 | Silvis et al. | Nov 2004 | B2 |
6837227 | Jaliwala et al. | Jan 2005 | B2 |
6899090 | Arnold | May 2005 | B2 |
6918362 | Cullen | Jul 2005 | B2 |
6934621 | Bhargava et al. | Aug 2005 | B2 |
6954693 | Brackney et al. | Oct 2005 | B2 |
6966303 | Harunari et al. | Nov 2005 | B2 |
7104228 | Cullen | Sep 2006 | B2 |
20030069703 | Rendahl et al. | Apr 2003 | A1 |
20050032232 | Silvis et al. | Feb 2005 | A1 |
20050072404 | Cullen | Apr 2005 | A1 |
20070095328 | Brehob | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080053418 A1 | Mar 2008 | US |