Claims
- 1. A closed-loop fluidic control system for an internal combustion engine having a variable Venturi carburetor whose inlet is coupled to a source of combustion air, fuel being fed into the carburetor to intermingle with the air passing therethrough to produce an air-fuel mixture which is fed into the intake manifold of the engine, said Venturi including an axially-shiftable spool whose position affects flow velocity through the Venturi, said system automatically adjusting the axial position of the spool to produce a ratio of fuel-to-air that is optimum for prevailing conditions of engine speed and load, said system comprising:
- A. a vacuum amplifier coupled to the intake manifold and responsive to the existing pressure differential between the inlet and throat of the Venturi to derive from the prevailing vacuum in the manifold vacuum an amplified output vacuum which is a function of said pressure differential; and
- B. a bi-directional vacuum motor energized by said amplified output vacuum and operatively linked to the spool to vary the axial position thereof in a direction and to an extent providing the desired fuel-to-air ratio.
- 2. A system as set forth in claim 1, wherein said amplifier includes a large diaphragm supported in a casing to define a low pressure chamber coupled to said inlet and throat to cause deflection of the large diaphragm in accordance with said differential pressure, said amplifier further including a vacuum chamber coupled to the intake manifold, and means to derive an amplified vacuum output from said vacuum chamber whose magnitude depends on the magnitude of the differential pressure acting on the large diaphragm, said output vacuum actuating said vacuum motor accordingly.
- 3. A system as set forth in claim 2, wherein said vacuum chamber is defined by a small diaphragm supporting a valve cap that is linked to the large differential-pressure diaphragm, the valve cap cooperating with the end of an input tube coupled to said intake manifold to open and close said tube in accordance with the deflection of the large diaphragm until force balance is obtained with the output vacuum force imposed on the small diaphragm.
- 4. A system as set forth in claim 3, wherein the differential pressure diaphragm is spring-biased.
- 5. A system as set forth in claim 4, further including means to adjust said bias to vary the sensitivity of the amplifier.
- 6. A system as set forth in claim 5, further including means to spring-bias the valve cap supported on the small diaphragm.
- 7. A system as set forth in claim 1, wherein said vacuum motor includes a diaphragm-supported piston defining a vacuum chamber to which said vacuum signal is supplied, and a piston rod attached to said piston and operatively linked to the Venturi spool.
- 8. A system as set forth in claim 1, wherein said Venturi includes concentric passages within a casing constituted by a primary Venturi passage formed by a nozzle Venturi and a booster and leading to a secondary Venturi passage defined by said axially shiftable spool, and a tertiary Venturi passage between said casing and said spool, said inlet supplying air to all three passages, said fuel being introduced into said nozzle.
- 9. A system as set forth in claim 1, wherein said fuel is drawn from a chamber having a vertical fuel tube therein whose end is provided with a jet opening, the upper end of the tube being coupled by a duct to a nozzle disposed in said booster and having openings therein which spray the fuel into the booster.
- 10. A system as set forth in claim 1, wherein said fuel is injected into said Venturi booster under pressure through a vacuum fuel regulator which is operated by said output vacuum to vary the fuel pressure as a function of intake manifold vacuum.
- 11. A system as set forth in claim 1, further including a fuel-air ratio sensor in the exhaust of the engine to produce a voltage which depends on the ratio, and an electronic module for processing said sensor voltage to produce control signals which are applied to said fluidic system to effect correction thereof for deviations in the ratio from stoichiometric.
- 12. A system as set forth in claim 11, wherein said control signals include a first signal which operates a valve in the line between the Venturi inlet and the pressure chamber of the relay to adjust the pressure therein to lean the mixture, and a second signal which operates a bleed valve coupled to the pressure chamber to adjust the pressure therein to enrich the mixture.
- 13. A system as set forth in claim 12, wherein said sensor is a platinum-coated zirconium element.
- 14. A system as set forth in claim 1, wherein said engine includes a controllable throttle interposed between the Venturi carburetor and the intake manifold.
- 15. A system as set forth in claim 1, wherein said engine includes a controllable throttle interposed between the inlet to the Venturi carburetor and the source of combustion air.
RELATED APPLICATION
This application is a continuation-in-part of my copending application Ser. No. 115,551, filed Jan. 25, 1980, (now U.S. Pat. No. 4,250,856) entitled "Fuel-Air Ratio Automatic Control System Using Variable Venturi Structure", which in turn is a continuation-in-part of application Ser. No. 962,883, filed Nov. 22, 1978, (now U.S. Pat. No. 4,187,805), which in turn is a continuation-in-part of application Ser. No. 919,541, filed June 27, 1978, which in turn is a division of application Ser. No. 730,956, filed Oct. 9, 1976 (now U.S. Pat. No. 4,118,444).
US Referenced Citations (11)
Divisions (1)
|
Number |
Date |
Country |
Parent |
730956 |
Oct 1976 |
|
Continuation in Parts (3)
|
Number |
Date |
Country |
Parent |
115551 |
Jan 1980 |
|
Parent |
962883 |
Nov 1978 |
|
Parent |
919541 |
Jun 1978 |
|