A closed-loop hydraulic drilling system uses a wellbore sealing system, one or more components of which are sometimes referred to individually or collectively as a managed pressure drilling (“MPD”) system, to actively manage wellbore pressure during drilling and other operations.
In onshore and certain shallow water applications, a conventional blowout preventer (“BOP”) is disposed on the surface above the wellbore. The MPD system typically includes an annular sealing system, or functional equivalent thereof, affixed to the top of, and in fluid communication with, the BOP. The annular sealing system typically includes a rotating control device (“RCD”), an active control device (“ACD”), or other type of annular sealing system that seals the annulus surrounding the drill string while the drill string is rotated. A side return port, either integrated into the housing of the annular sealing system itself or configured as a separate component interposed between the BOP and the annular sealing system, diverts returning fluids from the annulus below the annular seal to the drilling rig. The side return port is in fluid communication with a choke valve that is in fluid communication with a mud-gas separator, shale shaker, or other fluids processing system configured to receive returning fluids to be recycled and reused. The encapsulation of the annulus allows for the application of surface backpressure, and thereby control of wellbore pressure, through manipulation of the choke valve that diverts the returning fluids to the rig.
In offshore, including deepwater, applications, a subsea blowout preventer (“SSBOP”) is typically disposed at or near the sea floor above the wellbore. The MPD system typically includes an annular sealing system, a drill string isolation tool, and a flow spool, or functional equivalents thereof, in fluid communication with the SSBOP by way of a marine riser system. The annular sealing system typically includes an RCD, ACD, or other type of annular sealing system that seals the annulus surrounding the drill string while the drill string is rotated. The drill string isolation tool, or equivalent thereof, is disposed directly below the annular sealing system and includes an annular packer that controllably encapsulates the well and maintains annular pressure when rotation has stopped or the annular sealing system, or components thereof, are being installed, serviced, removed, or otherwise disengaged. The flow spool, or equivalent thereof, is disposed directly below the drill string isolation tool and, as part of the pressurized fluid return system, controllably diverts returning fluids from the annulus below the annular seal to the surface. The flow spool includes a side return port that is in fluid communication with a choke valve, typically disposed on a platform of the floating rig, that is in fluid communication with a mud-gas separator, shale shaker, or other fluids processing system configured to receive returning fluids to be recycled and reused. The encapsulation of the annulus allows for the application of surface backpressure, and thereby control of wellbore pressure, through manipulation of the choke valve that diverts returning fluids to the rig.
In both onshore and offshore applications, the pressure tight seal on the annulus allows for control of wellbore pressure by manipulation of the choke valve position, which is directly related to the choke aperture, of the choke valve and the corresponding application of surface backpressure. For example, in certain applications, an MPD system may be used to maintain wellbore pressure within a pressure gradient bounded by the pore pressure and the fracture pressure to avoid the unintentional influx of unknown formation fluids, sometimes referred to as a kick, into the well or marine riser or fracture the formation resulting in the loss of expensive drilling fluids to the formation. Similarly, in other exemplary applications, applied surface backpressure (“ASBP”), commonly referred to as ASBP-MPD, may be used to augment the annular pressure profile and improve the response capability to drilling contingencies. As drillers take on more challenging well plans, the ability to control wellbore pressure is becoming increasingly more important to the feasibility, economic viability, and safety of operations. However, the cost and complexity of such systems is a barrier to adoption, particularly in low-specification and low-cost applications.
According to one aspect of one or more embodiments of the present invention, an improved closed-loop drilling system includes a primary fluid pumping system capable of injecting drilling fluids into a wellbore through a drill string, an annular sealing system that seals an annulus surrounding the drill string, a side return port disposed below the annular sealing system that diverts returning fluids from the annulus to a choke valve via a fluid return line, a wellbore isolation valve that controllably isolates the fluid return line from the annulus, a secondary fluid pumping system that controllably injects calibration fluids into the fluid return line towards the choke valve, a first meter disposed in line with the fluid return line and upstream of the choke valve that provides a measurement of a fluid density or specific gravity or data thereof to a data acquisition and control system, a first pressure sensor disposed upstream of the choke valve that provides a measurement of upstream pressure to the data acquisition and control system, and a second pressure sensor disposed downstream of the choke valve that provides a measurement of downstream pressure to the data acquisition and control system. The data acquisition and control system generates a choke performance curve, choke characteristic curve, or data thereof by closing the wellbore isolation valve, engaging the secondary fluid pumping system, varying a commanded choke setting of the choke manifold through a plurality of set points, and recording a pressure drop across the choke valve at each of the set points.
According to one aspect of one or more embodiments of the present invention, a method of closed-loop drilling includes sealing an annulus surrounding a drill string with an annular sealing system, isolating a fluid return line from the annulus with a wellbore isolation valve, injecting calibration fluids from a secondary fluid pumping system into the fluid return line towards a choke valve, determining a fluid density or specific gravity with a first meter disposed in line with the fluid return line upstream of the choke valve, determining a first pressure upstream of the choke valve, and determining a second pressure downstream of the choke valve. A commanded choke setting of the choke valve is varied through a plurality of set points and a pressure drop across the choke valve at each of the set points is recorded. A choke performance curve, choke characteristic curve, or data thereof, is generated showing the commanded choke setting and corresponding pressure drop across the choke valve for a given fluid density and injection flow rate of the calibration fluids.
Other aspects of the present invention will be apparent from the following description and claims.
One or more embodiments of the present invention are described in detail with reference to the accompanying figures. For consistency, like elements in the various figures are denoted by like reference numerals. In the following detailed description of the present invention, specific details are set forth in order to provide a thorough understanding of the present invention. In other instances, well-known features to one of ordinary skill in the art are purposefully not described to avoid obscuring the description of the present invention.
Drill string isolation tool 150, or equivalent thereof, may be disposed directly below annular sealing system 110b and provides an additional sealing element 152 (not shown, reference numeral depicting general location only) that encapsulates the well and seals the annulus surrounding the drill string (not shown), typically when rotation has stopped or annular sealing system 110b, or components thereof, are being installed, serviced, maintained, removed, or otherwise disengaged. For example, when sealing elements 112, 114 (not shown, reference numeral depicting general location only) require replacement while the marine riser (not independently illustrated) is pressurized, such as, for example, during hole sections in between bit runs, drill string isolation tool 150 may be engaged to maintain annular pressure while annular sealing system 110 is taken offline. To ensure the safety of operations, sealing element 152 (not shown, reference numeral depicting general location only) may seal the annulus surrounding the drill string while sealing elements 112, 114 (not shown, reference numeral depicting general location only) of annular sealing system 110b are removed and replaced. Flow spool 160, or an equivalent thereof, may be disposed directly below drill string isolation tool 150 and, as part of the pressurized fluid return system, divert returning fluids from below the annular seal 110b to the surface. Flow spool 160 may include one or more side return ports 162 that are in fluid communication with a choke valve (not shown), typically disposed on the floating platform of the rig (not shown), that is in fluid communication with a mud-gas separator (not shown), shale shaker (not shown), or other fluids processing system (not shown) on the rig (not shown) that recycles returning fluids for reuse. The annular pressure may be managed by manipulating a choke aperture of the choke valve (not shown) disposed on the rig (not shown). Offshore, especially deepwater, applications are typically considered high-specification and high-cost applications because of the complexity of operations, risk mitigation, and substantial economic investment required to field such MPD equipment offshore.
One of ordinary skill in the art will recognize that the conventional Applied Surface Back Pressure MPD systems 100 depicted and described herein are merely exemplary and may vary in the type or kinds of components used in accordance with one or more embodiments of the present invention. However, all such embodiments seal the annulus surrounding the drill string and divert returning fluids from the annulus below the annular seal to a choke valve that controllably applies surface backpressure to control wellbore pressure.
A conventional MPD system (e.g., 100 of
During conventional drilling operations, a data acquisition and control system 270 may receive pressure sensor 275a data and flow meter 250 data, control the flow rate of the mud pumps 235, and command the choke valve 255 to a desired choke aperture setting. The pressure tight seal on the annulus provided by annular sealing system 110 allows for the control of wellbore pressure by manipulation of the choke aperture of the choke valve 255 and the corresponding application of surface backpressure. The choke aperture of the choke valve 255 corresponds to an amount, typically represented as a percentage, that the choke valve 255 is open. For example, a choke position of 0% indicates the choke is fully closed and a choke position of 100% indicates the choke is fully opened with intermediate settings, either discrete or continuous, referring to some degree of openness. If the driller wishes to increase wellbore pressure, the choke aperture of the choke valve 255 may be reduced to further restrict fluid flow and apply additional surface backpressure. Similarly, if the driller wishes to decrease wellbore 215 pressure, the choke aperture of the choke valve 255 may be increased to increase fluid flow and reduce the amount of applied surface backpressure. As such, the driller typically manages wellbore pressure by manipulating the choke aperture of choke valve 255 based merely on pressure sensor 275a reading. Similarly, the driller typically monitors return flow rate, vis-à-vis flow rate through choke 255, by measuring flow with flow meter 250 comparing the return flow rate value measured to the known mud injection rate as measured at the primary fluid pumping system. The driller may determine that a kick has occurred if flow out of the well is greater than flow into the well or the driller may determine that a loss has occurred if the flow out of the well is less than flow into the well.
While conducting operations through monitoring and controlling discrete devices has proven effective, it lacks precision, ignores meaningful drilling feedback and other information, and tends to result in increased capital costs and operating costs for overbuilt MPD systems that provide unnecessary redundancy or functionality. In addition, choke valves are prone to erode and tend to fail over time such that reliance on a correlation between a commanded choke valve position and expected choke aperture and its effect on wellbore pressure is unreliable at best and extremely dangerous at worst. While an astute driller actively monitoring or managing operations may recognize that a commanded choke valve position is not achieving the desired wellbore pressure, the delay in recognizing and taking corrective measures, which may or may not be intuitive, may result in a dangerous kick of unknown fluids, potentially including explosive gases, into the wellbore (or marine riser for offshore applications) or potentially fracture the formation resulting in the loss of expensive drilling fluids. As such, there is a long felt, but unsolved, need in the industry for an improved closed-loop hydraulic drilling system and method to more precisely manage wellbore pressure and enable condition monitoring of critically important components of the system.
Accordingly, in one or more embodiments of the present invention, an improved closed-loop hydraulic drilling system and method thereof generates one or more choke characteristic (Cv) curves or corresponding data thereof that more accurately reflects the relationship between the commanded choke valve position (%choke), and the resulting pressure drop across the choke valve for a given flow rate and fluid density. Specifically, one or more choke characteristic (Cv) curves may be generated through a calibration procedure and then used during non-calibration operations to more accurately monitor return flow and manage wellbore pressure by generating a set of choke performance curves from the generated choke characteristic (Cv) curves and the relationship between fluid specific gravity (SG), pressure drop (ΔP) across the choke valve, and commanded choke valve position (%choke). The specific gravity (SG) of an injected calibration fluid and pressure drop (ΔP) across the choke valve may be determined and correlated to the current choke valve position (%choke) to reflect the choke characteristic (Cv) curve in situ, thereby providing for more precise control of wellbore pressure and enabling condition monitoring of the choke valve. Using the more accurate and recent choke characteristic (Cv) curve, the driller may also determine if the return flow rate matches expectations based on the known fluid specific gravity (SG), measured pressure drop (ΔP) across the choke valve, and known choke valve position (%choke) without using a secondary flow measurement device. Advantageously, when the driller wishes to achieve a desired wellbore pressure, a choke valve position (%choke) setting may be commanded, either manually or automatically, that more accurately achieves the desired wellbore pressure in less time than trial and error-based targeting methods. In addition, in certain embodiments, an improved closed-loop hydraulic drilling system does not require a flow meter, enabling the adoption of MPD systems in low-specification and economically constrained applications.
In one or more embodiments of the present invention, the volumetric flow rate (Q), choke characteristic (Cv) value, mud specific gravity (SG), and pressure across the choke (ΔP) are recognized as interrelated variables. The choke characteristic (Cv) curve may be described as a continuous set of choke characteristic (Cv) values which correlate to the choke valve position (%choke) and which is valid in at least one direction of travel. The mud specific gravity (SG) describes the mud density (ρ) in a unitless form. The volumetric flow rate (Q) may be calculated as a function of the choke characteristic (Cv) value associated with the current choke valve position (%choke), mud specific gravity (SG), and pressure across the choke (ΔP). In high specification systems, the calculated volumetric flow rate (Q) may be considered a secondary variable. However, in low specification systems, the calculated volumetric flow rate (Q) may be considered a primary variable.
In one or more embodiments of the present invention, the relationship between the volumetric flow rate (Q), choke characteristic (Cv) value associated with the current choke valve position (%choke), mud specific gravity (SG), and pressure drop across the choke (ΔP) may be described by a choke performance curve. The choke characteristic (Cv) value associated with the current choke valve position (%choke) provides a measure of proportion to the relationship between the interrelated variables as represented in Equation 1:
Where (Cv) is the choke characteristic value associated with the current choke position, (Q) is the volumetric flow rate, (ΔP) is the pressure across the choke, and (SG) is the specific gravity. One of ordinary skill in the art will recognize that the specific gravity (SG) represents the mud density (ρ) in unitless form where (ρ ∝ SG). In one or more embodiments of the present invention, the pressure across the choke (ΔP) may be obtained with one or more pressure sensors disposed on opposing sides of the choke valve. The fluid properties, while typically known, may be measured with a flow meter as discussed in more detail herein. Manufacturers of choke valves typically provide a set of static choke characteristic (Cv) values for a choke valve. However, the choke characteristic (Cv) values vary over the lifecycle of the choke valve due to erosion affecting the relationship between choke aperture and choke position. When no erosion of the choke is occurring, the choke characteristic (Cv) curve is typically constant. A modified form of Equation 1 may be represented as set forth in Equation 2:
Another modified form of Equation 1 may be represented as set forth in Equation 3:
In one or more embodiments of the present invention, using a calibration pump, the choke characteristic (CV) curve may be adjusted for fluid at known flow rate (Q), specific gravity (SG), and choke pressure drop (ΔP) values. One or more samples may be taken continuously or intermittently and recorded by a data acquisition and control system.
In one or more embodiments of the present invention, an improved closed-loop drilling system for drilling a subterranean wellbore in onshore, shallow water, or offshore applications is described. However, application-specific aspects, that are well known to one of ordinary skill in the art, are purposefully not described to avoid obscuring the description of the present invention. Notwithstanding, in the description that follows, in onshore or shallow water applications the BOP (not shown) may be disposed over, and in fluid communication with, a wellhead (not shown) disposed above, and in fluid communication with, a wellbore (not shown). Alternatively, in offshore, including deepwater, applications, the BOP (not shown) may be a SSBOP disposed on or near the subsea surface (not shown) and in fluid communication with a wellhead (not shown) disposed over, and in fluid communication with, a subsea wellbore (not shown). The BOP (not shown) may be, for example, disposed below, and in fluid communication with, a marine riser system (not shown) that fluidly communicates with aspects of the MPD system (not shown). One of ordinary skill in the art will recognize that that following description, while applicable to onshore, shallow water, and offshore applications, will be focused on aspects of the improved closed-loop hydraulic drilling system that are applicable in all such applications.
In one or more embodiments of the present invention, during calibration operations, primary fluid pumping system 235 may be stopped. A wellbore isolation valve 310 may controllably isolate fluid return line 245a from the annulus (not shown). While wellbore isolation valve 310 may be disposed close to the wellbore (not shown), it may be disposed elsewhere along fluid return line 245. System 300 may also include a secondary fluid pumping system 335 that controllably injects calibration fluids (not shown) into fluid return line 245a, on the side that remains in fluid communication with choke valve 255, that are directed towards choke valve 255 during calibration. In certain embodiments, secondary fluid pumping system 335 may be a positive displacement pump system. A poor man's density meter 350 may be disposed in line with fluid return lines 245a and 245b upstream of choke valve 255 that may provide a measurement of a fluid density or specific gravity or data thereof to data acquisition and control system 270. Data acquisition and control system 270 may acquire (in the case of a type or kind of flow meter that communicates fluid density or specific gravity directly) or calculate fluid density or specific gravity of the injected calibration fluids (not shown) based off of measurements and the pressure drop across poor man's density meter 350 when secondary fluid pumping system 335 is engaged.
In certain embodiments, such as the one depicted in
System 300 may include a plurality of pressure sensors 275 to measure hydrostatic pressure at various points within system 300. For example, a first pressure sensor 275c may be disposed upstream of choke valve 255 that provides a measurement of upstream pressure to data acquisition and control system 270. A second pressure sensor 275d may be disposed downstream of choke valve 255 that provides a measurement of downstream pressure to data acquisition and control system 270. Data acquisition and control system 270 may generate a choke characteristic (CV) curve or data thereof by stopping the primary fluid pumping system 235, closing wellbore isolation valve 310, engaging secondary fluid pumping system 335 to inject calibration fluids (not shown) into fluid return line 245a, varying a commanded choke aperture, f(%choke), setting of choke valve 255 through a plurality of set points, and recording a pressure differential across choke valve 255. After calibration, data acquisition and control system 270 may the control the commanded choke position (%choke) setting to affect the choke aperture of choke valve 255 according to the choke characteristic (CV) curve or data thereof, thereby more accurately achieving a desired pressure.
One of ordinary skill in the art will recognize that data acquisition and control system 270 may acquire, measure, calculate, and/or control other data as part of a manual or automated MPD system including, but not limited to, an injection flow rate of the injected drilling fluids into drill string 225, the injection flow rate of the injected calibration fluids into the fluid return line 245, and other acquired, measured, or calculated data generated from one or more sensors based on an application and design.
While the above-noted embodiments are exemplary, one of ordinary skill in the art will recognize that any configuration that allows for measurement of fluid density or specific gravity of the injected calibration fluids and measurement of the pressure drop across the choke valve may be used in accordance with one or more embodiments of the present invention.
In each embodiment, the annulus surrounding the drill string is sealed with an annular sealing system. A fluid return line, attached to a side return port disposed below the annular seal, is isolated from the annulus with a wellbore isolation valve. During calibration operations, the primary fluid pumping system is stopped, and calibration fluids are injected from a secondary fluid pumping system into the fluid return line towards a choke valve. A flow or density meter, regardless of the type of kind, disposed in line with the fluid return line upstream of the choke valve, may be used to determine a fluid density or specific gravity of the injected calibration fluids. A first pressure upstream of the choke valve may be determined by a first pressure sensor disposed upstream of the choke valve. A second pressure downstream of the choke valve may be determined by a second pressure sensor disposed downstream of the choke valve. A data acquisition and control system may vary a commanded choke aperture of the choke valve through a plurality of set points and record a pressure drop across the choke valve at each of the set points. One or more improved choke characteristic curves, or data thereof, may be generated showing the commanded choke aperture setting and the corresponding pressure drop across the choke valve for a given fluid density and injection flow rate of the calibration fluids. A choke performance curve may be generated from the generated choke characteristic (Cv) curves and the relationship between fluid specific gravity (SG), pressure drop (ΔP) across the choke valve, and commanded choke position (%choke). During normal operations, the choke valve may be operated according to the choke characteristic curves or choke performance curve to more accurately achieve a desired pressure with the calibrated choke valve.
CPU 1105 may be a general-purpose computational device typically configured to execute software instructions. CPU 1105 may include an interface 1108 to host bridge 1110, an interface 1118 to system memory 1120, and an interface 1123 to one or more 10 devices, such as, for example, one or more GPUs 1125. GPU 1125 may serve as a specialized computational device typically configured to perform graphics functions related to frame buffer manipulation. However, one of ordinary skill in the art will recognize that GPU 1125 may be used to perform non-graphics related functions that are computationally intensive. In certain embodiments, GPU 1125 may interface 1123 directly with CPU 1125 (and interface 1118 with system memory 1120 through CPU 1105). In other embodiments, GPU 1125 may interface 1121 with host bridge 1110 (and interface 1116 or 1118 with system memory 1120 through host bridge 1110 or CPU 1105 depending on the application or design). In still other embodiments, GPU 1125 may interface 1133 with IO bridge 1115 (and interface 1116 or 1118 with system memory 1120 through host bridge 1110 or CPU 1105 depending on the application or design). The functionality of GPU 1125 may be integrated, in whole or in part, with CPU 1105.
Host bridge 1110 may be an interface device that interfaces between the one or more computational devices and IO bridge 1115 and, in some embodiments, system memory 1120. Host bridge 1110 may include an interface 1108 to CPU 1105, an interface 1113 to IO bridge 1115, for embodiments where CPU 1105 does not include an interface 1118 to system memory 1120, an interface 1116 to system memory 1120, and for embodiments where CPU 1005 does not include an integrated GPU 1125 or an interface 1123 to GPU 1125, an interface 1121 to GPU 1125. The functionality of host bridge 1110 may be integrated, in whole or in part, with CPU 1105. IO bridge 1115 may be an interface device that interfaces between the one or more computational devices and various IO devices (e.g., 1140, 1145) and IO expansion, or add-on, devices (not independently illustrated). IO bridge 1115 may include an interface 1113 to host bridge 1110, one or more interfaces 1133 to one or more IO expansion devices 1135, an interface 1138 to keyboard 1140, an interface 1143 to mouse 1145, an interface 1148 to one or more local storage devices 1150, and an interface 1153 to one or more network interface devices 1055. The functionality of IO bridge 1115 may be integrated, in whole or in part, with CPU 1105 or host bridge 1110. Each local storage device 1150, if any, may be a solid-state memory device, a solid-state memory device array, a hard disk drive, a hard disk drive array, or any other non-transitory computer readable medium. Network interface device 1155 may provide one or more network interfaces including any network protocol suitable to facilitate networked communications.
Data acquisition and control system 1100 may include one or more network-attached storage devices 1160 in addition to, or instead of, one or more local storage devices 1150. Each network-attached storage device 1160, if any, may be a solid-state memory device, a solid-state memory device array, a hard disk drive, a hard disk drive array, or any other non-transitory computer readable medium. Network-attached storage device 1160 may or may not be collocated with data acquisition and control system 1100 and may be accessible to data acquisition and control system 1100 via one or more network interfaces provided by one or more network interface devices 1155.
One of ordinary skill in the art will recognize that data acquisition and control system 1100 may be a conventional computing system or an application-specific computing system (not shown). In certain embodiments, an application-specific computing system (not shown) may include one or more ASICs (not shown) that perform one or more specialized functions in a more efficient manner. The one or more ASICs (not shown) may interface directly with CPU 1105, host bridge 1110, or GPU 1125 or interface through IO bridge 1115. Alternatively, in other embodiments, an application-specific computing system (not shown) may be reduced to only those components necessary to perform a desired function in an effort to reduce one or more of chip count, printed circuit board footprint, thermal design power, and power consumption. The one or more ASICs (not shown) may be used instead of one or more of CPU 1105, host bridge 1110, IO bridge 1115, or GPU 1125. In such systems, the one or more ASICs may incorporate sufficient functionality to perform certain network and computational functions in a minimal footprint with substantially fewer component devices.
As such, one of ordinary skill in the art will recognize that CPU 1105, host bridge 1110, IO bridge 1115, GPU 1125, or ASIC (not shown) or a subset, superset, or combination of functions or features thereof, may be integrated, distributed, or excluded, in whole or in part, based on an application, design, or form factor in accordance with one or more embodiments of the present invention. Thus, the description of data acquisition and control system 1100 is merely exemplary and not intended to limit the type, kind, or configuration of component devices that constitute a data acquisition and control system 1100 suitable for performing computing operations in accordance with one or more embodiments of the present invention. Notwithstanding the above, one of ordinary skill in the art will recognize that data acquisition and control system 1100 may be a standalone, laptop, desktop, industrial, server, blade, or rack mountable system and may vary based on an application or design.
Advantages of one or more embodiments of the present invention may include, but is not limited to, one or more of the following:
In one or more embodiments of the present invention, an improved closed-loop drilling system and method thereof improve the ability to manage wellbore pressure in a more accurate manner. Advantageously, the increased precision by which wellbore pressure may be managed increases the safety of operations and allows drillers to execute more complicated and challenging well plans that would otherwise be possible.
In one or more embodiments of the present invention, an improved closed-loop drilling system and method thereof allow for the calibration of a choke valve such that normal operations may be conducted with reliable and predictable results that take into consideration the current condition and state of erosion of the choke valve.
In one or more embodiments of the present invention, an improved closed-loop drilling system and method thereof the choke valve may be calibrated such that a commanded choke valve position reliably results in a corresponding pressure drop across the choke valve. During normal operations, the appropriate commanded choke valve position setting may be selected, either manually or automatically, to achieve the desired pressure.
In one or more embodiments of the present invention, an improved closed-loop drilling system and method thereof enables condition monitoring of the choke valve. As such, the performance and remaining usable of life of the choke valve may be modeled and predicted based on the variance of the commanded choke valve position and the resulting pressure drop across the choke valve from standard values.
In one or more embodiments of the present invention, an improved closed-loop drilling system and method thereof reduces operational and maintenance costs of the choke valve.
In one or more embodiments of the present invention, an improved closed-loop drilling system and method thereof reduces non-productive downtime caused by unexpectedly failing choke valves or components thereof. Based on calibration data, the condition of the choke valve may be more accurately monitored in advance of failure.
In one or more embodiments of the present invention, an improved closed-loop drilling system and method thereof enables low-specification applications to adopt and implement MPD without requiring the use of an expensive flow meter.
While the present invention has been described with respect to the above-noted embodiments, those skilled in the art, having the benefit of this disclosure, will recognize that other embodiments may be devised that are within the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6176323 | Weirich et al. | Jan 2001 | B1 |
10883357 | Orbell | Jan 2021 | B1 |
20080041149 | Leuchtenberg | Feb 2008 | A1 |
20110114387 | Belcher et al. | May 2011 | A1 |
20140273831 | Walton | Sep 2014 | A1 |
20150240579 | Lovorn | Aug 2015 | A1 |
20160076322 | Oddie | Mar 2016 | A1 |
20160138351 | Dillard | May 2016 | A1 |
20160298401 | Cotten et al. | Oct 2016 | A1 |
20170328151 | Dillard | Nov 2017 | A1 |
20180163489 | Dillard | Jun 2018 | A1 |
20200318746 | Parthasarathy | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2018183861 | Oct 2018 | WO |
Entry |
---|
PCT International Search Report of International Search Authority (USPTO) for PCT International Application PCT/US2020/032481, filed May 12, 2020, dated Jul. 24, 2020. |
PCT Written Opinion of International Search Authority (USPTO) for PCT International Application PCT/US2020/032481, filed May 12, 2020, dated Jul. 24, 2020. |
USPTO notice of allowance issued in U.S. Appl. No. 17/523,506, filed Nov. 10, 2021, dated Mar. 25, 2022. |
USPTO non-final Office Action issued in U.S. Appl. No. 17/523,506, filed Nov. 10, 2021, dated Feb. 15, 2022. |
Number | Date | Country | |
---|---|---|---|
20220065099 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62848804 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2020/032481 | May 2020 | US |
Child | 17523570 | US |