Claims
- 1. A closed loop mixture control system for an internal combustion engine of a roadway vehicle, comprising:
- a two-barrel carburetor having a primary barrel having a venturi and throttle and a secondary barrel in said carburetor for both receiving fuel and air when depression at the venturi of said primary barrel falls below a predetermined value, the cross-sectional dimension of the primary barrel being smaller than that of the secondary barrel so that evaporation of fuel inducted to the primary barrel is promoted as compared to the evaporation of fuel inducted to the secondary barrel;
- means for producing a control signal corresponding to the difference between an air-fuel ratio of the mixture combusted in the engine and a stoichiometric air-fuel ratio of the mixture;
- primary and secondary metering systems associated with the primary and secondary barrels, respectively, for proportioning air and fuel supplied to said engine, said primary metering system comprising a main mixture supply nozzle disposed in the venturi of the primary barrel, means defining an auxiliary mixture supply port disposed in the closed position of the throttle of the primary barrel, a first mixture control valve associated with said main mixture supply nozzle, a second mixture control valve associated with said auxiliary mixture supply port, a throttle position detector operatively connected to the throttle of the primary barrel, and means for selectively coupling said control signal to said first and second control valves in response to a predetermined throttle position of the primary barrel and effective so that said control signal is applied to the second control valve for part throttle operation and to the first control valve for full throttle operation; and
- means for controlling said primary metering system in accordance with said control signal.
- 2. A closed loop mixture control system for an internal combustion engine of a roadway vehicle, comprising:
- a two-barrel carburetor having a primary barrel having a venturi and throttle and a secondary barrel in said carburetor for both receiving fuel and air when depression at the venturi of said primary barrel falls below a predetermined value, the cross-sectional dimension of the primary barrel being smaller than that of the secondary barrel so that evaporation of fuel inducted to the primary barrel is promoted as compared to the evaporation of fuel inducted to the secondary barrel;
- means for producing a control signal corresponding to the difference between an air-fuel ratio of the mixture combusted in the engine and a stoichiometric air-fuel ratio of the mixture;
- primary and secondary metering systems associated with the primary and secondary barrels, respectively, for proportioning air and fuel supplied to said engine, said primary metering system including a main mixture supply nozzle disposed in the venturi of the primary barrel, means defining an auxiliary mixture supply port disposed in the closed position of the throttle of the primary barrel, a first mixture control valve associated with said main mixture supply nozzle, a second mixture control valve associated with said auxiliary mixture supply port, an engine speed sensor, and means for selectively coupling said control signal to said first and second control valves in response to a predetermined engine speed effective so that said control signal is applied to the second control valve at lower engine speeds and to the first control valve at higher engine speeds; and
- means for controlling said primary metering system in accordance with said control signal.
- 3. A mixture control system as claimed in claim 2, wherein said means for producing a control signal comprises means for sensing a composition of the exhaust emissions from said engine to produce an output having a sharp characteristic change in amplitude at the stoichiometric air-fuel mixture ratio, means for modulating the amplitude of the output from the composition sensing means in accordance with predetermined amplification characteristics, and means for converting the amplitude-modulated signal to a train of pulses of which the pulse duration is dependent on said amplitude.
- 4. A mixture control system as claimed in claim 3, wherein said pulse converting means comprises a pulse width modulator coupled to said amplitude modulating means, and a source of generating a train of constant duration pulses to supply the same to said pulse width modulator to convert the amplitude modulated signal to a train of pulses at a frequency differing from the revolution per unit time of said engine.
- 5. A mixture control system as claimed in claim 4, wherein said pulse generating source comprises a first pulse generator generating pulses at a first frequency, a second pulse generator generating pulses at a second frequency differing from the first frequency, said first frequency being higher than the revolution per unit time of the engine at lower speeds, the second frequency being outside of the revolution per unit time of the engine at medium and higher speeds, and means coupling said first and second pulse generators selectively to said pulse width modulator in response to the throttle position of the primary barrel.
- 6. A mixture control system as claimed in claim 1, wherein said selectively coupling means includes means for coupling said control signal simultaneously to the first and second mixture control valves at said predetermined throttle position when the throttle of the primary barrel changes between part throttle position and full throttle position.
- 7. A mixture control system as claimed in claim 2, wherein said selectively coupling means includes means for coupling said control signal simultaneously to the first and second mixture control valves at said predetermined engine speed when the engine speed changes between lower and higher speeds.
Priority Claims (1)
Number |
Date |
Country |
Kind |
50-39116 |
Mar 1975 |
JPX |
|
Parent Case Info
This is a division of application Ser. No. 636,184, filed Nov. 28, 1975, and now U.S. Pat. No. 4,060,058.
US Referenced Citations (9)