1. Field of the Invention
Aspects of the present invention generally relate to apparatus and methods for handling wellbore fluids from a well. Specifically, the aspects of the present invention relate to apparatus and methods of recycling wellbore fluids during underbalanced drilling. The aspects of the present invention further relates to apparatus and methods of handling wellbore fluids during well testing.
2. Description of the Related Art
In conventional drilling of wellbores for the production of hydrocarbons, drilling mud is generally used as the circulating medium. The drilling mud is typically made up of a fluid mixture of water and a suitable additive. The drilling mud is injected under pressure through a tubing to the bottom of the wellbore. During operation, the drilling mud at the bottom is continuously circulated to the surface. One of the functions of the drilling fluid is to carry and remove any rock cuttings resulting from the drilling operation to the surface. Another function is to exert a hydrostatic pressure at the bottom of the wellbore to prevent hydrocarbons in the formation from entering the wellbore.
Because the hydrostatic pressure in the wellbore is greater than the formation pressure, the drilling mud will most likely penetrate into or invade the formations surrounding the wellbore. Drilling mud that has penetrated into the formation reduces the permeability of the wellbore, thereby impeding the flow of hydrocarbons into the wellbore. As a result, the productivity of the well can be adversely affected. This type of wellbore damage is generally known as “skin damage” and may extend from a few centimeters to several meters from the wellbore.
More recently, underbalanced drilling was developed to overcome this problem. Underbalanced drilling involves maintaining the equivalent circulating or hydrostatic pressure of the fluid in the wellbore below the formation pressure. This underbalanced condition may be achieved by using a “lightened” drilling fluid as the circulating medium. Examples of lightened drilling fluid include fluids mixed with a gas, such as air, nitrogen, or natural gas. The gas may be introduced at the surface into the drill string for delivery at the bottom of the wellbore. The lightened drilling fluid exerts a hydrostatic pressure at the bottom of the wellbore that is below the formation pressure. In this manner, the underbalanced condition may be maintained.
Drilling fluid returning to the surface typically contains the cuttings from the drilling. Because the underbalanced state may allow a net flow of gas or oil into the wellbore, the return fluid may also contain liquid and gaseous hydrocarbons mixed with the circulating mud when the well penetrates a formation containing hydrocarbons. Therefore, the return fluid reaching the surface may be made up of four phases: solids (cuttings), water, oil, and gas.
The return fluids are typically conveyed into a closed pressure vessel separator. In the separator, the return fluids are separated and delivered into separate streams. In most cases, the separated gas stream is delivered to a flare line or a vent line. When the separated gas stream contains nitrogen or hydrocarbons, valuable resources are unnecessarily wasted or destroyed. Moreover, the separated gas stream is typically disposed in an environmentally unfriendly manner such as flaring.
Therefore, there is a need for a method of recycling the separated gas stream to avoid unnecessary waste. There is also a need for an apparatus for handling multiphase return fluids and recycling the gas stream. There is a further need for an apparatus for handling multiphase return fluids with reduced flaring of the gas stream.
The present invention generally provides a system for handling fluids returning from a well. The system includes a separator in selective fluid communication with a well outlet and at least one multiphase pump in selective fluid communication with the separator.
In one embodiment, the system has a multiphase pump connected to the separator outlet. The multiphase pump outlet may be connected to the well inlet for recycling at least a portion of the return fluid. Alternatively, the multiphase pump outlet may be connected to an export line for capturing a portion of the return fluid. In another embodiment, the system may have a second multiphase pump disposed between the well outlet and the separator inlet.
In another aspect, the present invention provides a method of treating fluid returning from a well. The method includes introducing the fluid into a separator and introducing at least a portion of the fluid into at least one multiphase pump. In the separator, a gas component of the fluid may be separated from the fluid and may include more than one phase. The separated gas component may be recycled back to the well inlet or delivered to an export line.
So that the manner in which the above recited features of the present invention, and other features contemplated and claimed herein, are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Fluid returning from the wellbore annulus 35 (“return fluid”) exits the wellbore outlet 15 and is directed to a primary separator 110. The primary separator 110 preferably is a four-phase separator. Four phase separators are known in the art. An exemplary separator suitable for use with the present invention is disclosed in U.S. Pat. No. 5,857,522 issued to Bradfield, et al., which patent is herein incorporated by reference in its entirety. The wellstream is processed in the separator 110 to produced separate streams of solid, oil, liquid, and gas. Although a four phase separator is disclosed herein, other types of separators known to a person of ordinary skill in the art are equally applicable.
Generally, the return fluid entering into the separator 110 passes to a first stage of the separator 110. Solids (sludge), such as drilled cuttings, present in the return fluid are removed in the first stage by gravity forces that are aided by centrifugal action of a device (not shown) disposed in the separator 110. The device is capable of separating the solids from the return fluid and is known in the art. Because solids are heavier than the remaining fluids, the solids collect at the bottom of the separator 110 and are removed therefrom through line 85. The remaining return fluid is substantially free of solids when it passes to a second stage.
The second stage essentially acts as a three phase separator to separate gas, oil, and liquid present in the return fluid into different streams. The separated gas stream varies in composition but usually includes the gas in the drilling fluid and small amounts of entrained fine solids and liquids. Due to its composition, the gas stream is sometimes referred to as wet gas.
According to aspects of the present invention, the wet gas may be recycled and re-used in the drilling operation. As shown in
In one embodiment, a multiphase pump 200 may be connected to the wet gas line 60 to boost the pressure of the wet gas. The multiphase pump 200 is designed to handle fluids containing one or more phases, including solids, water, gas, oil, and combinations thereof.
The plungers 221, 222 are designed to move in alternating cycles. When the first plunger 221 is driven towards its retracted position, a pressure increase is triggered towards the end of the first plunger's 221 movement. This pressure spike causes a shuttle valve (not shown) to shift. In turn, a swash plate (not shown) of the compensated pump 240 is caused to reverse angle, thereby redirecting the hydraulic fluid to the second cylinder 212. As a result, the plunger 222 in the second cylinder 212 is pushed downward to its retracted position. The second cylinder 212 triggers a pressure spike towards the end of its movement, thereby causing the compensating pump 240 to redirect the hydraulic fluid to the first cylinder 211. In this manner, the plungers 221, 222 are caused to move in alternating cycles.
In operation, a suction is created when the first plunger 221 moves toward an extended position. The suction causes the return fluid to enter the multiphase pump 200 through a process inlet 230 and fill a first plunger cavity. At the same time, the second plunger 222 is moving in an opposite direction toward a retracted position. This causes the return fluid in the second plunger cavity to expel through an outlet 235. In this manner, the multiphase return fluid may be effectively moved to a separator 110. Although a pair of cylinders 211, 212 is disclosed, it is contemplated that the aspects of the present invention may be used with one cylinder or any number of cylinders.
Even though the wet gas contains three phases, the multiphase pump 200 may effectively increase the pressure of the wet gas in the wet gas line 60 and recycle the wet gas back to the well inlet 20. In this respect, the fluid handling circuit 5 according to aspects of the present invention may significantly reduce the requirements of separation equipment for recycling the wet gas. Moreover, the multiphase pump 200 will allow recovery or recycling of low pressure gas. In this manner, valuable return fluid gas such as nitrogen and natural gas may be recycled and/or recaptured.
The fluid handling circuit 5 may include a flare line 65 connected to the wet gas line 60. The flare line 65 may be used to discharge excess wet gas in the wet gas line 60. The flare line 65 may direct the excess wet gas to a flare stack or a collecting unit for other manners of disposal.
The oil contained in the return fluid is separated at the second stage. The separated oil collects in a tank (not shown) placed in the second stage of the separator 110. When the oil reaches a predetermined level in the tank, the oil is removed from the separator 110 through line 80. Typically, the oil is disposed in an oil tank for recovery.
Finally, liquid that is substantially free of oil collects in a chamber or reservoir (not shown). Typically, the liquid consists substantially of water. When the liquid reaches a predetermined level, it is discharged to the drilling fluid supply 50 through line 75. In this manner, the liquid may be recycled for use during the drilling operation. The circuit 5 may optionally include a secondary separator (not shown) to separate out any gas remaining in the liquid before delivering it to the drilling fluid supply 50. The separated gas may either be flared or delivered to the wet gas line 60 through a line (not shown) connecting line 75 to line 60. From the drilling fluid supply 50, the liquid may be delivered to the well inlet 20 by a pump 55.
In another embodiment, an export line 70 may be connected to the wet gas line 60. When natural gas is used as the lightening gas or the drilling occurs in a producing formation, the wet gas leaving the separator 110 will contain valuable natural gas. The multiphase pump may be used to increase the wet gas pressure to that of the export line. Thereafter, the wet gas may be captured and realized by directing the gas stream to the export line 70. As a result, the well 10 may start producing for an operator even before the well 10 is completed.
In operation, the return fluid exiting the well outlet 15 enters the separator 110 for separation as shown in
As shown in
In another embodiment (not shown), the wet gas leaving the multiphase pump 200 may be directed to a secondary separator. The secondary separator may be used to remove substantially all of the entrained solid and liquid. The separated streams of fluid may then be directed to their respective disposal line. The gas stream leaving the secondary separator will be substantially void of liquid or solid. If desired, another multiphase pump may be used to boost the pressure of the gas stream before it is redirected back to the well inlet 20.
In another embodiment, the export line 70 may alternatively be used as an import line 70. In this respect, the import line 70 may be connected to the wet gas line 60. The import line 70 may be used to supply gas into the wet gas line 60 for introduction into the well 10. In this manner, gas may be added to lighten the drilling fluid from an outside source.
Although the embodiments described above relates to underbalanced drilling, it must be noted that aspects of the present invention are equally applicable to a well not undergoing underbalanced operations. Rather, it is contemplated that aspects of the present invention are generally applicable to the management of wellbore fluids and pressures during wellbore operations without relying on fluid weight to achieve such management.
In another aspect, the fluid handling system 400 may be used to handle fluids from a wellbore during well testing.
During production testing, fluid in the wellbore 410 is allowed to move up the tubing 415, exit the well 410, and enter a separator 425. The fluid is a multiphase fluid because it may contain gas, oil, water, or combinations thereof. In the separator 425, the fluid is separated into different streams of oil, water, and gas. It must be noted that each stream may contain a small amount of various phases. For example, the gas stream may contain small amounts of water and oil, and thus, may appropriately be considered a wet gas stream. The wet gas stream leaving the separator 425 is directed to a multiphase pump 430 where its pressure is increased to a level greater than or equal to the pressure in an export line 435. In this manner, the wet gas stream may be captured during well testing. As a result, the aspects of the present invention provide a method and apparatus to handle fluids from the well 410 during well testing without flaring. However, if desired, the fluid handling system 400 may optionally include a flare line 445 connected to the wet gas line 440. The flare line 445 permits flaring of the wet gas stream and adds versatility to the system 400. The separated oil and water leave the separator 425 through lines 450 and 455, respectively.
As shown in the
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
4020642 | Haselden et al. | May 1977 | A |
4099583 | Maus | Jul 1978 | A |
4319635 | Jones | Mar 1982 | A |
4477237 | Grable | Oct 1984 | A |
4553903 | Ashikian | Nov 1985 | A |
4860830 | Jennings, Jr. et al. | Aug 1989 | A |
5048603 | Bell et al. | Sep 1991 | A |
5048604 | Vadasz F. et al. | Sep 1991 | A |
5156537 | Massinon | Oct 1992 | A |
5226482 | Giannesini et al. | Jul 1993 | A |
5295546 | Giannesini et al. | Mar 1994 | A |
5390743 | Giannesini | Feb 1995 | A |
5415776 | Homan | May 1995 | A |
5496466 | Gray | Mar 1996 | A |
5501279 | Garg et al. | Mar 1996 | A |
5638904 | Misselbrook et al. | Jun 1997 | A |
5660532 | Castel | Aug 1997 | A |
5775442 | Speed | Jul 1998 | A |
5857522 | Bradfield et al. | Jan 1999 | A |
5992517 | McAnally | Nov 1999 | A |
6007306 | Vilagines | Dec 1999 | A |
6032747 | Moody et al. | Mar 2000 | A |
6035952 | Bradfield et al. | Mar 2000 | A |
6089322 | Kelley et al. | Jul 2000 | A |
6138757 | Latos et al. | Oct 2000 | A |
6164308 | Butler | Dec 2000 | A |
6209641 | Stevenson | Apr 2001 | B1 |
6216799 | Gonzalez | Apr 2001 | B1 |
6234258 | Karigan | May 2001 | B1 |
6315813 | Morgan et al. | Nov 2001 | B1 |
6318464 | Mokrys | Nov 2001 | B1 |
6325147 | Doerler et al. | Dec 2001 | B1 |
6328118 | Karigan et al. | Dec 2001 | B1 |
6454542 | Back | Sep 2002 | B1 |
6592334 | Butler | Jul 2003 | B1 |
6607607 | Walker et al. | Aug 2003 | B2 |
6629566 | Liknes | Oct 2003 | B2 |
6668943 | Maus et al. | Dec 2003 | B1 |
20030085036 | Curtis et al. | May 2003 | A1 |
20040031622 | Butler et al. | Feb 2004 | A1 |
20040197197 | Huttar et al. | Oct 2004 | A1 |
20060202122 | Gunn et al. | Sep 2006 | A1 |
20060207795 | Kinder et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
1061743 | Mar 1967 | GB |
2 215 408 | Sep 1989 | GB |
WO 9307391 | Apr 1993 | WO |
WO 0075510 | Dec 2000 | WO |
WO 0171158 | Sep 2001 | WO |
WO 0183947 | Nov 2001 | WO |
WO 03033865 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040007131 A1 | Jan 2004 | US |