The present invention is generally related to design, manufacture, and measurement of lenses with aberrations. The invention provides devices, systems, and methods for measurement and correction of optical errors of optical systems, and is particularly well-suited for validating refractive optical corrections of the eye.
Known laser eye surgery procedures generally employ an ultraviolet or infrared laser to remove a microscopic layer of stromal tissue from the cornea of the eye. The laser typically removes a selected shape of the corneal tissue, often to correct refractive errors of the eye. Ultraviolet laser ablation results in photodecomposition of the corneal tissue, but generally does not cause significant thermal damage to adjacent and underlying tissues of the eye. The irradiated molecules are broken into smaller volatile fragments photochemically, directly breaking the intermolecular bonds.
Laser ablation procedures can remove the targeted stroma of the cornea to change the cornea's contour for varying purposes, such as for correcting myopia, hyperopia, astigmatism, and the like. Control over the distribution of ablation energy across the cornea may be provided by a variety of systems and methods, including the use of ablatable masks, fixed and moveable apertures, controlled scanning systems, eye movement tracking mechanisms, and the like. In known systems, the laser beam often comprises a series of discrete pulses of laser light energy, with the total shape and amount of tissue removed being determined by the shape, size, location, and/or number of laser energy pulses impinging on the cornea. A variety of algorithms may be used to calculate the pattern of laser pulses used to reshape the cornea so as to correct a refractive error of the eye. Known systems make use of a variety of forms of lasers and/or laser energy to effect the correction, including infrared lasers, ultraviolet lasers, femtosecond lasers, wavelength multiplied solid-state lasers, and the like. Alternative vision correction techniques make use of radial incisions in the cornea, intraocular lenses, removable corneal support structures, and the like.
Known corneal correction treatment methods have generally been successful in correcting standard vision errors, such as myopia, hyperopia, astigmatism, and the like. However, as with all successes, still further improvements would be desirable. Toward that end, wavefront measurement systems are now available to measure the refractive characteristics of a particular patient's eye. By customizing an ablation pattern based on wavefront measurements, it may be possible to correct minor aberrations so as to reliably and repeatedly provide visual acuity greater than 20/20.
Known methods for calculation of a customized ablation pattern using wavefront sensor data generally involve mathematically modeling an optical property of the eye using series expansion techniques. More specifically, Zernike polynomials have been employed to model the wavefront surface error map of the eye. Coefficients of the Zernike polynomials are derived through known fitting techniques, and the optical correction procedure is then determined using the shape of the wavefront indicated by the mathematical series expansion model.
In order to properly use these laser ablation algorithms, the laser beam delivery system typically should be calibrated. Calibration of the laser system helps ensure removal of the intended shape and quantity of the corneal tissue so as to provide the desired shape and refractive power modification to the patient's cornea. For example, deviation from a desired laser beam shape or size, such as the laser beam exhibiting a non-symmetrical shape or an increased or decreased laser beam diameter, may result in tissue ablation at an undesired location on the patient's cornea which in turn leads to less than ideal corneal sculpting results. As such, it is beneficial to know the shape and size profiles of the laser beam so as to accurately sculpt the patient's cornea through laser ablation. In addition, it is usually desirable to test for acceptable levels of system performance. For example, such tests can help ensure that laser energy measurements are accurate. Ablations of plastic test materials are often performed prior to laser surgery to calibrate the laser energy and ablation shape of the laser beam delivery system. Although such laser ablation calibration techniques are fairly effective, in some instances, alternative methods for laser energy and beam shape calibration may be advantageous.
Work in connection with the present invention suggests that the known methodology for evaluation of a laser ablation treatment protocol based on wavefront sensor data may be less than ideal. The known laser calibration and test methods may result in errors or “noise” which can lead to a less than ideal optical correction. Furthermore, the known calibration techniques are somewhat indirect, and may lead to unnecessary errors in ablation, as well as a lack of understanding of the physical correction performed.
In light of the above, it would be desirable to provide improved optical correction techniques, particularly for use in procedures for correcting aberrant refractive properties of an eye.
The present invention comprises a system and method for testing a performance of a laser system with a closed loop system.
In accord with one aspect, the present invention provides a close looped method of testing a performance of a laser system. The method comprises ablating a surface of a material (e.g., lens material) with a predetermined optical surface. The ablated optical surface is measured and the measured ablated optical surface is compared to the predetermined optical surface.
The predetermined optical surface and the ablated optical surface may be mathematically represented by Zernike polynomial series. The Zernike polynomial series may be compared to determine the differences between the predetermined optical surface and the ablated surface. As can be appreciated, in other alternative embodiments, the optical surfaces may be represented by Taylor or other polynomial series, a surface elevation map, gradient fields, or the like.
In another aspect, the present invention provides a closed looped system for testing a performance of a laser system. The system comprises a laser system that ablates a predetermined optical surface. A wavefront measurement system measures the ablated optical surface, and a processor compares the measured optical surface to the predetermined optical surface.
The predetermined optical surface may be represented by a wavefront elevation surface and may be mathematically defined by a Zernike polynomial series. The processor may be configured to measure the wavefront elevation surface of the ablated optical surface and calculated a corresponding Zernike polynomial series. The Zernike polynomial series of the predetermined optical surface and the measured ablated optical surface may be compared to measure the performance of the system.
In another embodiment, the present invention provides a system for testing a performance of a laser system. The system comprises means for ablating a predetermined optical surface in a surface of a lens material. The ablated optical surface is analyzed with measuring means to determine a measured optical surface of the lens material. The measured optical surface and the predetermined optical surface are compared with comparing means to test the performance of the laser system.
These and other advantages of the invention will become more apparent from the following detailed description of the invention when taken in conjunction with the accompanying exemplary drawings.
The present invention is particularly useful for enhancing the accuracy and efficacy of laser eye surgical procedures, such as photorefractive keratectomy (PRK), phototherapeutic keratectomy (PTK), laser in situ keratomileusis (LASIK), and the like. Preferably, the present invention can provide enhanced optical accuracy of refractive procedures by improving the methodology for calibrating, testing and validating a corneal ablation or other refractive treatment program. Hence, while the system and methods of the present invention are described primarily in the context of a laser eye surgery system, it should be understood the techniques of the present invention may be adapted for use in alternative eye treatment procedures and systems such as spectacle lenses, intraocular lenses, contact lenses, corneal ring implants, collagenous corneal tissue thermal remodeling, and the like.
The techniques of the present invention can be readily adapted for use with existing laser systems, wavefront sensors, and other optical measurement devices. By providing a more direct (and hence, less prone to noise and other error) methodology for measuring and correcting errors of an optical system, the present invention may facilitate sculpting of the cornea so that treated eyes regularly exceed the normal 20/20 threshold of desired vision.
Wavefront sensors will typically measure aberrations and other optical characteristics of an entire optical tissue system. The data from such a wavefront sensor may be used to generate an optical surface from an array of optical gradients. The measured array of optical gradients comprises a gradient field of a measured optical surface, and the measured gradient field is used to reconstruct a wavefront elevation surface map. It should be understood that the optical surface need not precisely match an actual tissue surface, as the gradients will show the effects of aberrations which are actually located throughout the ocular tissue system. Nonetheless, corrections imposed on an optical tissue surface so as to correct the aberrations derived from the gradients should correct the optical tissue system. As used herein terms such as “an optical tissue surface” may encompass a theoretical tissue surface (derived, for example, from wavefront sensor data), an actual tissue surface, and/or a tissue surface formed for purposes of treatment (for example, by incising corneal tissues so as to allow a flap of the corneal epithelium and stroma to be displaced and expose the underlying stroma during a LASIK procedure).
Referring now to
Laser 12 generally comprises an excimer laser, ideally comprising an argon-fluorine laser producing pulses of laser light having a wavelength of approximately 193 nm. Laser 12 will preferably be designed to provide a feedback stabilized fluence at the patient's eye, delivered via delivery optics 16. The present invention may also be useful with alternative sources of ultraviolet or infrared radiation, particularly those adapted to controllably ablate the corneal tissue without causing significant damage to adjacent and/or underlying tissues of the eye. In alternate embodiments, the laser beam source employs a solid state laser source having a wavelength between 193 and 215 nm as described in U.S. Pat. Nos. 5,520,679, and 5,144,630 to Lin and 5,742,626 to Mead, the full disclosures of which are incorporated herein by reference. In another embodiment, the laser source is an infrared laser as described in U.S. Pat. Nos. 5,782,822 and 6,090,102 to Telfair, the full disclosure of which is incorporated herein by reference. Hence, although an excimer laser is the illustrative source of an ablating beam, other lasers may be used in the present invention.
Laser 12 and delivery optics 16 will generally direct laser beam 14 to the eye of patient P under the direction of a computer 22. Computer 22 will often selectively adjust laser beam 14 to expose portions of the cornea to the pulses of laser energy so as to effect a predetermined sculpting of the cornea and alter the refractive characteristics of the eye. In many embodiments, both laser 14 and the laser delivery optical system 16 will be under control of processor 22 to effect the desired laser sculpting process, with the processor effecting (and optionally modifying) the pattern of laser pulses. The pattern of pulses may by summarized in machine readable data of tangible media 29 in the form of a treatment table, and the treatment table may be adjusted according to feedback input into processor 22 from an automated image analysis system (or manually input into the processor by a system operator) in response to feedback data provided from an ablation monitoring system feedback system. Such feedback might be provided by integrating the wavefront measurement system described below with the laser treatment system 10, and processor 22 may continue and/or terminate a sculpting treatment in response to the feedback, and may optionally also modify the planned sculpting based at least in part on the feedback.
A laser treatment table includes the horizontal and vertical position of the laser beam on the eye for each laser beam pulse in a series of pulses. Preferably, the diameter of the beam varies during the treatment from about 0.65 mm to 6.5 mm. The treatment table typically includes several hundred pulses and the number of laser beam pulses varies with the amount of material removed and laser beam diameters employed by the laser treatment table. The computer program that generates a laser treatment table selects a pattern of laser beam pulses that will create an optical surface shape in plastic that makes the desired wavefront elevation surface as light passes through the material.
For systems measuring the closed loop system properties in plastic, a flat plastic lens is preferred. Although flat plastic is preferred, other plastic shapes may be ablated including curved plastic having a surface radius of curvature of about 7.5 mm. The laser treatment table is calculated using the shape of material removed with each pulse of the laser beam, and the shape of material removed with an individual pulse of a laser beam is referred to as a crater. The shape of material removed at each beam diameter is also referred to as basis data. For a rotationally symmetric laser beam the basis data are rotationally averaged. The optical surface shape resulting from material removal during a laser treatment is calculated by adding the craters of material removed by each pulse of the laser beam in the treatment table. Preferably, the calculated optical surface shape resulting from material removal matches the intended optical surface shape to within a desirable tolerance averaging about a quarter of a wavelength of visible light, or about 0.2 μm over the ablated surface. A calculation of a treatment table is more fully described in U.S. patent application Ser. No. 09/805,737 filed on Mar. 13, 2001 (now U.S. Pat. No. 6,673,062), and published on Sep. 20, 2001 under the PCT as Publication No. WO01/67978; the full disclosures of which are incorporated herein by reference.
The relationship between the depth of material removed and a corresponding change in the optical surface is related to the index of refraction of the material removed. For example, the depth of material to be removed can be calculated by dividing the corrective wavefront elevation surface map by the quantity (n−1) where n is the index of refraction of the material. This relation is an application of Fermat's principal of least time, known for over 300 years. The index of refraction of the cornea is 1.377 and the index of refraction of plastic is about 1.5. An embodiment of the present invention uses VISX calibration plastic having an index or refraction of 1.569. This material is available from VISX, Inc. Santa Clara, Calif. An embodiment of a technique for such a calculation of ablation depth is also described in U.S. Pat. No. 6,271,914, the full disclosure of which is herein incorporated by reference.
Laser beam 14 may be adjusted to produce the desired sculpting using a variety of alternative mechanisms. The laser beam 14 may be selectively limited using one or more variable apertures. An exemplary variable aperture system having a variable iris and a variable width slit is described in U.S. Pat. No. 5,713,892, the full disclosure of which is incorporated herein by reference. The laser beam may also be tailored by varying the size and offset of the laser spot from an axis of the eye, as described in U.S. Pat. No. 5,683,379, and as also described in U.S. patent application Ser. No. 08/968,380 filed Nov. 12, 1997 (now issued as U.S. Pat. No. 6,203,539); and 09/274,999 filed Mar. 22, 1999 (now issued as U.S. Pat. No. 6,347,549); the full disclosures of which are incorporated herein by reference.
Still further alternatives are possible, including scanning of the laser beam over a surface of the eye and controlling the number of pulses and/or dwell time at each location, as described, for example, by U.S. Pat. No. 4,665,913 (the full disclosure of which is incorporated herein by reference); using masks in the optical path of laser beam 14 which ablate to vary the profile of the beam incident on the cornea, as described in U.S. patent application Ser. No. 08/468,898 filed Jun. 6, 1995 (the full disclosure of which is incorporated herein by reference); hybrid profile-scanning systems in which a variable size beam (typically controlled by a variable width slit and/or variable diameter iris diaphragm) is scanned across the cornea; or the like. The computer programs and control methodology for these laser pattern tailoring techniques are well described in the patent literature.
Additional components and subsystems may be included with laser system 10, as should be understood by those of skill in the art. For example, spatial and/or temporal integrators may be included to control the distribution of energy within the laser beam, as described in U.S. Pat. No. 5,646,791, the disclosure of which is incorporated herein by reference. An ablation effluent evacuator/filter, and other ancillary components of the laser surgery system which are not necessary to an understanding of the invention, need not be described in detail for an understanding of the present invention.
Processor 22 may comprise (or interface with) a conventional PC system including the standard user interface devices such as a keyboard, a display monitor, and the like. Processor 22 will typically include an input device such as a magnetic or optical disk drive, an internet connection, or the like. Such input devices will often be used to download a computer executable code from a tangible storage media 29 embodying any of the methods of the present invention. Tangible storage media 29 may take the form of a floppy disk, an optical disk, a data tape, a volatile or non-volatile memory, or the like, and the processor 22 will include the memory boards and other standard components of modern computer systems for storing and executing this code. Tangible storage media 29 may optionally embody wavefront sensor data, wavefront gradients, a wavefront elevation map, a treatment map, and/or an ablation table.
Referring now to
Wavefront sensor 36 generally comprises a lenslet array 38 and an image sensor 40. As the image from retina R is transmitted through optical tissues 34 and imaged onto a surface of image sensor 40 and an image of the eye pupil P is similarly imaged onto a surface of lenslet array 38, the lenslet array separates the transmitted image into an array of beamlets 42, and (in combination with other optical components of the system) images the separated beamlets on the surface of sensor 40. Sensor 40 typically comprises a charged couple device or “CCD,” and senses the characteristics of these individual beamlets, which can be used to determine the characteristics of an associated region of optical tissues 34. In particular, where image 44 comprises a point or small spot of light, a location of the transmitted spot as imaged by a beamlet can directly indicate a local gradient of the associated region of optical tissue.
Eye E generally defines an anterior orientation ANT and a posterior orientation POS. Image source 32 generally projects an image in a posterior orientation through optical tissues 34 onto retina R as indicated in
In some embodiments, image source optics may decrease lower order optical errors by compensating for spherical and/or cylindrical errors of optical tissues 34. Higher order optical errors of the optical tissues may also be compensated through the use of an adaptive optic element, such as a deformable mirror. Use of an image source 32 selected to define a point or small spot at image 44 upon retina R may facilitate the analysis of the data provided by wavefront sensor 36. Distortion of image 44 may be limited by transmitting a source image through a central region 48 of optical tissues 34 which is smaller than a pupil 50, as the central portion of the pupil may be less prone to optical errors than the peripheral portion. Regardless of the particular image source structure, it will be generally be beneficial to have well-defined and accurately formed image 44 on retina R.
While the method of the present invention will generally be described with reference to sensing of an image 44, it should be understood that a series of wavefront sensor data readings may be taken. For example, a time series of wavefront data readings may help to provide a more accurate overall determination of the ocular tissue aberrations. As the ocular tissues can vary in shape over a brief period of time, a plurality of temporally separated wavefront sensor measurements can avoid relying on a single snapshot of the optical characteristics as the basis for a refractive correcting procedure. Still further alternatives are also available, including taking wavefront sensor data of the eye with the eye in differing configurations, positions, and/or orientations. For example, a patient will often help maintain alignment of the eye with wavefront sensor system 30 by focusing on a fixation target, as described in U.S. Pat. No. 6,004,313, the full disclosure of which is incorporated herein by reference. By varying a focal position of the fixation target as described in that reference, optical characteristics of the eye may be determined while the eye accommodates or adapts to image a field of view at a varying distance.
The location of the optical axis of the eye may be verified by reference to the data provided from a pupil camera 52. In the exemplary embodiment, a pupil camera 52 images pupil 50 so as to determine a position of the pupil for registration of the wavefront sensor data relative to the optical tissues.
An alternative embodiment of a wavefront sensor system is illustrated in
The components of an embodiment of a wavefront system for measuring the eye and ablations comprise elements of a VISX WaveScan™, available from VISX, INCORPORATED of Santa Clara, Calif. One embodiment includes a WaveScan with a deformable mirror as described above. An alternate embodiment of a wavefront measuring device is described in U.S. Pat. No. 6,271,915, the full disclosure of which is incorporated herein by reference.
A test fixture 100 for measuring the aberrations of the ablated optical surface 102 formed in a plate of an optically transparent plastic material 104 is shown in
Preferably the same wavefront sensor or a substantially similar wavefront sensor is used to measure the ablated plastic and measure the eye. Alternatively, another type of wavefront sensor that is fundamentally similar to the wavefront sensor used to measure the eye may be employed to measure the ablated optical surface. As used herein substantially similar wavefront sensors encompass wavefront sensors having similar operating principals and functional components such as a lenslet array, a focused light beam and the like. As used herein fundamentally similar wavefront systems encompass wavefront systems employing a similar fundamental operating principal, for example measuring a gradient field made by passing light through an optical surface. Another example of a similar fundamental operating principal is measuring an optical surface with a light beam interference pattern by interferometry. Examples of wavefront sensors measuring gradient fields of light passing through the eye include, for example, systems using the principles of ray tracing aberrometry, Tscherning aberrometry, and dynamic skiascopy. The above systems are available from TRACEY T
An alternate embodiment of the closed loop system uses a first device to measure the eye and a second device to measure the ablated optical surface, wherein the first device and the second device employ different fundamental operating principals. For example, the eye is measured by a device that measures a gradient field of light passing through the eye, and the ablated optical surface is measured by an interferometer. Alternatively, the ablated optical surface may be measured by a diamond stylus profilometer or a moiré fringe projection system, or other surface profile technology.
The wavefront sensor 30 may include internal lenses that compensate for much of the refractive error of the eye. If such lenses are not present, then a focusing lens (not shown) may be added to the test fixture 100 between measurement system 30 and reflecting surface 108. These lenses are adjusted to form a focused beam of light 109 on reflecting surface 108. The focused beam of light 109 is reflected back from the surface 108 and passes through the pupil 106 and the optical surface 102 formed in a plate of an optically transparent plastic material 104 that may optionally include orientation markings 103. The wavefront system includes a measurement plane 110 where an eye is positioned for measurement. The optical surface 102 is positioned at measurement plane 110 near the pupil 106. A distance 111 between ablated optical surface 102 and reflecting surface 108 is measured. The distance 111 is related to the inverse of the spherical defocus refractive error of test fixture 100. For a distance 111 of ⅙ of a meter the spherical defocus refractive error is +6 Diopters. A measurement is taken through the ablated optical surface 102 with wavefront sensor 30. The wavefront sensor 30 forms an array of spots 112 of light energy on an electronic sensor as illustrated in
The positions of the spots are related to the gradient field of the wavefront elevation surface of a light beam passed through ablated surface 102, and the positions of the spots are used to calculate the gradient of the wavefront corresponding to each spot. The gradient values from each spot are used to reconstruct the wavefront elevation surface map of the ablated optical surface 102.
The wavefront of ablated optical surface 102 is preferably represented as a Zernike polynomial series 200 as illustrated in
In alternate embodiments, the wavefront may be represented as a Taylor or other polynomial series. Alternatively, the wavefront elevation surface may be represented as a surface elevation map and may also be represented by the measured gradient field.
A closed loop system 220 for comparing input data 222 corresponding to an optical aberration and measured ablation data 236 corresponding to an ablated optical surface 102 that corrects the optical aberration in an embodiment of the invention is illustrated in
After determining the wavefront elevation surface a laser treatment calculation program 228 analyzes data 231 to calculate a treatment table 230 of laser pulse instructions as described above. The laser treatment table is designed to make an ablated optical surface 102 that corrects for the aberrations described by the wavefront elevation surface 224.
The treatment table is loaded from a tangible media 29 onto laser system 10 by processor 22. In an embodiment, the laser system comprises elements of the VISX Star S3 Excimer Laser System, and the plate 104 comprises calibration plastic available from VISX, Inc., Santa Clara, Calif. A plate of an optically transparent material 104 is ablated with laser system 10 to form an optical ablation surface 102 in the form of a plastic lens.
The ablated optical surface 102 is placed in the calibration fixture 100 as described above. The ablated optical surface 102 is measured with a wavefront measurement device 30 as described above. The wavefront measuring device is preferably a VISX WaveScan, available from VISX, Inc., Santa Clara, Calif. Alternate embodiments may employ other suitable measurement systems as described above. The wavefront measuring device measures the gradient field of the optical surface of a light beam passing through the ablation as described above. The wavefront elevation surface 240 is mathematically constructed from the gradient field as described above. Alternatively, Zernike polynomial coefficients are calculated by integrating the gradient field.
The measured wavefront elevation surface 240 is decomposed with a Zernike decomposition program 242 that calculates data 247 as a series of measured Zernike coefficients 246. In one embodiment, a Matlab program calculates the decomposition with a Gram-Schmidt orthogonalization method. Matlab™ is available from T
A comparison 250 of the input Zernike coefficients with the measured Zernike coefficients indicates the overall accuracy of the system. The comparison preferably includes a comparison of individual measured Zernike coefficients 262, 266 with a corresponding intended theoretical values 260, 264 of the Zernike coefficient as illustrated in
By way of illustrative example two wavefront elevation surfaces that are tested with the closed loop system are a first surface S1 and a second surface S2. Equations that describe surfaces elevations of S1 and S2 (in microns) are:
S1=0.6*Z5−1+1.0*Z62
S2=0.6*Z3−3+1.0*Z5−1
The above equations for S1 and S2 are input as a theoretical surface into the closed loop system 220. For surfaces S1 and S2, the resulting measured coefficients for the ablated optical surface are illustrated in
In
In other embodiments, the comparison includes an addition of the theoretical wavefront elevation surface to the measured wavefront elevation surface to produce a wavefront elevation error surface map that directly indicates the errors determined from the comparison, and a root mean square value of the error over the error surface map is calculated and reported to an operator of a system.
In an embodiment of the invention, degradation to the measured ablated optical surface caused by alignment error is simulated. A result of a simulation is illustrated in
Rotational misalignment between the placement of the ablated optical surface lens 102 under the laser 10 and the wavefront measurement device 30 causes some of the magnitude of the sine term (Z5−1) to be transferred to the cosine term (Z51) in surface S1. It is easy to show this effect in the polar form of Zernike functions:
A*f(r)*cos(θ+δ)=A*f(r)*(cos(δ)cos(θ)−sin(δ)*sin(θ))
A*f(r)*sin(θ+δ)=A*f(r)*(cos(δ)sin(θ)+sin(δ)*cos(θ))
where δ is a rotational misalignment, A is a coefficient, r is a radial coordinate, f(r) is a radial function and θ is an angular coordinate.
Another potential source of error between the theoretical and the measured Zernike values is a translational offset between the placement of the lens under the laser and the wavefront measurement device. The effect of such displacement is computed explicitly from the theoretical surfaces as a function of the amount of displacement (dx, dy). Alternatively, the new Zernike coefficients may be directly computed that characterize the displaced surface. This calculation demonstrates that coefficients that are initially zero have non zero values when the measured wavefront is displaced. As an illustrative example,
The closed loop system 220 permits an estimate of error caused by other sources in addition to rotational and positional alignment. For example terms Z6−4, Z64 and Z60 as illustrated in
In an embodiment of the invention of
One method of using the system of the present invention is illustrated in
As described above, the coefficients of an offset ablation are calculated for a given offset and angular orientation of a wavefront surface elevation pattern. By measuring a degradation to a measured ablation pattern as described above, the offset and angular orientation of the ablation pattern are calculated. This offset and orientation are programmed into the laser, and the laser adjusts the ablation pattern. Similarly, if the magnitude of a coefficient of the measured ablation differs from the intended, the laser is programmed to ablate a changed ablation pattern. For example, the changed ablation pattern may be made by adjusting the laser beam energy. Alternatively, the changed ablation pattern may include a change to the basis data used to calculate the treatment table. Similar to rotational and translational alignment errors described above, the closed loop system can detect errors in a scaling of a laser beam offset from a central position. Such an error causes a size of a dimension across the ablated pattern to differ from an expected value. This error appears as a magnification error in a scaling of a size of the ablated shape. The closed loop system detects such errors and adjustments to the scanned laser beam pattern about a central position are made to produce an ablation pattern better matching the intended ablation pattern.
While the specific embodiments have been described in some detail, by way of example and for clarity of understanding, a variety of adaptations, changes, and modifications will be obvious to those of skill in the art. Treatments that may benefit from the invention include intraocular lenses, contact lenses, spectacles and other surgical methods in addition to lasers. Therefore, the scope of the present invention is limited solely by the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 10/364,886 filed Feb. 11, 2003, which application claims benefit of U.S. Provisional Patent Appln. No. 60/356,672 filed Feb. 11, 2002; the full disclosures of which are incorporated herein by reference in their entirety. The present application is also related to U.S. Provisional Patent Appln No. 60/356,658 entitled “Apparatus and Method for Determining Relative Positional and Rotational Offsets between a First and Second Imaging Device,” and Provisional Patent Appln. No. 60/356,657 entitled “Method and Device for Calibrating an Optical Wavefront System,” both of which were filed on Feb. 11, 2002; the full disclosures of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60356672 | Feb 2002 | US | |
60356657 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10364886 | Feb 2003 | US |
Child | 12353842 | US |