Closed-loop system to compete oil and gas wells closed-loop system to complete oil and gas wells c

Information

  • Patent Grant
  • 6397946
  • Patent Number
    6,397,946
  • Date Filed
    Wednesday, January 19, 2000
    24 years ago
  • Date Issued
    Tuesday, June 4, 2002
    22 years ago
Abstract
A closed-loop system is used to complete oil and gas wells. The term “to complete a well” means “to finish work on a well and bring it into productive status”. A closed-loop system to complete an oil and gas well is an automated system under computer control that executes a sequence of programmed steps, but those steps depend in part upon information obtained from at least one downhole sensor that is communicated to the surface to optimize and/or change the steps executed by the computer to complete the well. The closed-loop system executes the steps during at least one significant portion of the well completion process. The completed well is comprised of at least a borehole in a geological formation surrounding a pipe located within the borehole. The pipe may be a metallic pipe; a casing string; a casing string with any retrievable drill bit removed from the wellbore; a steel pipe; a drill string; a drill string possessing a drill bit that remains attached to the end of the drill string after completing the wellbore; a drill string with any retrievable drill bit removed from the wellbore; a coiled tubing; a coiled tubing possessing a mud-motor drilling apparatus that remains attached to the coiled tubing after completing the wellbore; or a liner. The closed-loop system may also be used to monitor and control production of hydrocarbons from the wellbore.
Description




BACKGROUND OF THE INVENTION




1. Field of Invention




The fundamental field of the invention relates to apparatus and methods of operation that substantially reduce the number of steps and the complexity to drill and complete oil and gas wells. Because of the extraordinary breadth of the fundamental field of the invention, there are many related separate fields of the invention.




Accordingly, the field of invention relates to apparatus that uses the steel drill string attached to a drilling bit during drilling operations used to drill oil and gas wells for a second purpose as the casing that is cemented in place during typical oil and gas well completions. The field of invention further relates to methods of operation of apparatus that provides for the efficient installation of a cemented steel cased well during one single pass down into the earth of the steel drill string. The field of invention further relates to methods of operation of the apparatus that uses the typical mud pass ages already present in a typical drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, that allow mud to circulate during typical drilling operations for the second independent, and the distinctly separate, purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single drilling pass into the earth. The field of invention further relates to apparatus and methods of operation that provides the pumping of cement down the drill string, through the mud passages in the drill bit, and into the annulus between the formation and the drill string for the purpose of cementing the drill string and the drill bit into place during one single drilling pass into the formation. The field of invention further relates to a one-way cement valve and related devices installed near the drill bit of the drill string that allows the cement to set up efficiently while the drill string and drill bit are cemented into place during one single drilling pass into the formation. The field of invention further relates to the use of a slurry material instead of cement to complete wells during the one pass drilling of oil and gas wells, where the term “slurry material” may be any one, or more, of at least the following substances: cement, gravel, water, “cement clinker”, a “cement and copolymer mixture”, a “blast furnace slag mixture”, and/or any mixture thereof; or any known substance that flows under sufficient pressure. The field of invention further relates to the use of slurry materials for the following type of generic well completions: open-hole well completion; typical cemented well completions having perforated casings; gravel well completions having perforated casings; and for any other related well completions. The field of invention also relates to using slurry materials to complete extended reach wellbores and extended reach lateral wellbores from offshore platforms.




The field of the invention further relates to the use of retrievable instrumentation packages to perform LWD/MWD logging and directional drilling functions while the well is being drilled, which are particularly useful for the one pass drilling of oil and gas wells, and which are also useful for standard well completions, and which can also be retrieved by a wireline attached to a smart shuttle having retrieval apparatus. The field of the invention further relates to the use of smart shuttles having retrieval apparatus that are capable of deploying and installing into pipes smart completion devices that are used to automatically complete oil and gas wells after the pipes are disposed in the wellbore, which are useful for one pass drilling and for standard cased well completions, and these pipes include the following: a drill pipe, a drill string, a casing, a casing string, tubing, a liner, a liner string, a steel pipe, a metallic pipe, or any other pipe used for the completion of oil and gas wells. The field of the invention further relates to smart shuttles that use internal pump means to pump fluid from below the smart shuttle, to above it, to cause the smart shuttle to move within the pipe to conveniently install smart completion devices.




The field of invention disclosed herein also relates to using progressive cavity pumps and electrical submersible motors to make smart shuttles. The field of invention further relates to closed-loop systems used to complete oil and gas wells, where the term “to complete a well” means “to finish work on a well and bring it into productive status”. In this field of the invention, a closed-loop system to complete an oil and gas well is an automated system under computer control that executes a sequence of programmed steps, but those steps depend in part upon information obtained from at least one downhole sensor that is communicated to the surface to optimize and/or change the steps executed by the computer to complete the well. The field of invention further relates to a closed-loop system that executes the steps during at least one significant portion of the well completion process and the completed well is comprised of at least a borehole in a geological formation surrounding a pipe located within the borehole, and this pipe may be any one of the following: a metallic pipe; a casing string; a casing string with any retrievable drill bit removed from the wellbore; a steel pipe; a drill string; a drill string possessing a drill bit that remains attached to the end of the drill string after completing the wellbore; a drill string with any retrievable drill bit removed from the wellbore; a coiled tubing; a coiled tubing possessing a mud-motor drilling apparatus that remains attached to the coiled tubing after completing the wellbore; or a liner. Following the closed-loop well completion, the field of invention further relates to using well completion apparatus to monitor and/or control the production of hydrocarbons from the within wellbore. And finally, the field of invention relates to closed-loop systems to complete oil and gas wells are useful for the one pass drilling and completion of oil and gas wells.




2. Description of the Prior Art




At the time of the filing of the application herein, the applicant is unaware of any prior art that is particularly relevant to the invention other than that cited in the above defined “related” U.S. Patents, the “related” co-pending U.S. Patent Applications, and the “related” U.S. Disclosure Documents that are specified in the first paragraphs of this application.




SUMMARY OF THE INVENTION




In disclosure of related cases, apparatus and methods of operation of that apparatus are disclosed that allow for cementation of a drill string with attached drill bit into place during one single drilling pass into a geological formation. The process of drilling the well and installing the casing becomes one single process that saves installation time and reduces costs during oil and gas well completion procedures. Apparatus and methods of operation of the apparatus are disclosed that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place. This is a crucial step that allows a “Typical Drilling Process” involving some 14 steps to be compressed into the “New Drilling Process” that involves only 7 separate steps as described in the Description of the Preferred Embodiments below. The New Drilling Process is now possible because of “Several Recent Changes in the Industry” also described in the Description of the Preferred Embodiments below. In addition, the New Drilling Process also requires new apparatus to properly allow the cement to cure under ambient hydrostatic conditions. That new apparatus includes a Latching Subassembly, a Latching Float Collar Valve Assembly, the Bottom Wiper Plug, and the Top Wiper Plug. Suitable methods of operation are disclosed for the use of the new apparatus. Methods are further disclosed wherein different types of slurry materials are used for well completion that include at least cement, gravel, water, a “cement clinker”, and any “blast furnace slag mixture”. Methods are further disclosed using a slurry material to complete wells including at least the following: open-hole well completions; cemented well completions having a perforated casing; gravel well completions having perforated casings; extended reach wellbores; and extended reach lateral wellbores as typically completed from offshore drilling platforms.




In yet further disclosure in related cases involving the one pass drilling and completion of wellbores that is also useful for other well completion purposes, smart shuttles are used to complete the oil and gas wells. Following drilling operations into a geological formation, a steel pipe is disposed in the wellbore. The steel pipe may be a standard casing installed into the wellbore using typical industry practices. Alternatively, the steel pipe may be a drill string attached to a rotary drill bit that is to remain in the wellbore following completion during so-called “one pass drilling operations”. Further, the steel pipe may be a drill pipe from which has been removed a retrievable or retractable drill bit. Or, the steel pipe may be a coiled tubing having a mud motor drilling apparatus at its end. Using typical procedures in the industry, the well is “completed” by placing into the steel pipe various standard completion devices, some of which are conveyed into place with the drilling rig. Here, instead, smart shuttles are used to convey into the steel pipe various smart completion devices used to complete the oil and gas well. The smart shuttles are then used to install various smart completion devices. And the smart shuttles may be used to retrieve from the wellbore various smart completion devices. Smart shuttles may be attached to a wireline, coiled tubing, or to a wireline installed within coiled tubing, and such applications are called “tethered smart shuttles”. Smart shuttles may be robotically independent of the wireline, etc., provided that large amounts of power are not required for the completion device, and such devices are called “untethered shuttles”. The smart completion devices are used in some cases to machine portions of the steel pipe. Completion substances, such as cement, gravel, etc. are introduced into the steel pipe using smart wiper plugs and smart shuttles as required. Smart shuttles may be robotically and automatically controlled from the surface of the earth under computer control so that the completion of a particular oil and gas well proceeds automatically through a progression of steps. A wireline attached to a smart shuttle may be used to energize devices from the surface that consume large amounts of power. Pressure control at the surface is maintained by use of a suitable lubricator device that has been modified to have a smart shuttle chamber suitably accessible from the floor of the drilling rig. A particular smart shuttle of interest is a wireline conveyed smart shuttle that possesses an electrically operated internal pump that pumps fluid from below the shuttle to above the shuttle that causes the smart shuttle to pump itself down into the well. Suitable valves that open allow for the retrieval of the smart shuttle by pulling up on the wireline. Similar comments apply to coiled tubing conveyed smart shuttles. Using smart shuttles to complete oil and gas wells reduces amount of time the drilling rig is used for standard completion purposes. The smart shuttles therefore allow the use of the drilling rig for its basic purpose—the drilling of oil and gas wells.




In disclosure herein, a closed-loop system is used to complete oil and gas wells. The term “to complete a well” means “to finish work on a well and bring it into productive status”. A closed-loop system to complete an oil and gas well is an automated system under computer control that executes a sequence of programmed steps, but those steps depend in part upon information obtained from at least one downhole sensor that is communicated to the surface to optimize and/or change the steps executed by the computer to complete the well. The closed-loop system executes the steps during at least one significant portion of the well completion process. A type of smart shuttle comprised of a progressive cavity pump and an electrical submersible motor is particularly useful for such closed-loop systems. The completed well is comprised of at least a borehole in a geological formation surrounding a pipe located within the borehole. The pipe may be a metallic pipe; a casing string; a casing string with any retrievable drill bit removed from the wellbore; a steel pipe; a drill string; a drill string possessing a drill bit that remains attached to the end of the drill string after completing the wellbore; a drill string with any retrievable drill bit removed from the wellbore; a coiled tubing; a coiled tubing possessing a mud-motor drilling apparatus that remains attached to the coiled tubing after completing the wellbore; or a liner. Following the closed-loop well completion, apparatus monitoring the production of hydrocarbons from the within wellbore may be used to control the production of hydrocarbons from the wellbore. The closed-loop completion of oil and gas wells provides apparatus and methods of operation to substantially reduce the number of steps, the complexity, and the cost to complete oil and gas wells.




Accordingly, the closed-loop completion of oil and gas wells is a substantial improvement over present technology in the oil and gas industries.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a section view of a rotary drill string having a rotary drill bit in the process of being cemented in place during one drilling pass into formation by using a Latching Float Collar Valve Assembly that has been pumped into place above the rotary drill bit that is a preferred embodiment of the invention.





FIG. 2

shows a section view of a rotary drill string having a rotary drill bit in the process of being cemented into place during one drilling pass into formation by using a Permanently Installed Float Collar Valve Assembly that is permanently installed above the rotary drill bit that is a preferred embodiment of the invention.





FIG. 3

shows a section view of a tubing conveyed mud motor drilling apparatus in the process of being cemented into place during one drilling pass into formation by using a Latching Float Collar Valve Assembly that has been pumped into place above the mud motor assembly that is a preferred embodiment of the invention.





FIG. 4

shows a section view of a tubing conveyed mud motor drilling apparatus that in addition has several wiper plugs in the process of sequentially completing the well with gravel and then with cement during the one pass drilling and completion of the wellbore.





FIG. 5

shows a section view of an apparatus for the one pass drilling and completion of extended reach lateral wellbores with drill bit attached to a rotary drill string to produce hydrocarbons from offshore platforms.





FIG. 6

shows a section view of a embodiment of the invention that is particularly configured so that Measurement-While-Drilling (MWD) and Logging-While-Drilling (LWD) can be done during rotary drilling operations with a Retrievable Instrumentation Package installed in place within a Smart Drilling and Completion Sub near the drill bit which is useful for the one pass drilling and completion of wellbores and which is also useful for standard well drilling procedures.





FIG. 7

shows a section view of the Retrievable Instrumentation Package and the Smart Drilling and Completion Sub that also has directional drilling control apparatus and instrumentation which is useful for the one pass drilling and completion of wellbores and which is also useful for standard well drilling operations.





FIG. 8

shows a section view of the wellhead, the Wiper Plug Pump-Down Stack, the Smart Shuttle Chamber, the Wireline Lubricator System, the Smart Shuttle and the Retrieval Sub suspended by the wireline which is useful for the one pass drilling and completion of wellbores, and which is also useful for the completion of wells using cased well completion procedures.





FIG. 9

shows a section view in detail of the Smart Shuttle and the Retrieval Sub while located in the Smart Shuttle Chamber.





FIG. 10

shows a section view of the Smart Shuttle and the Retrieval Sub in a position where the elastomer sealing elements of the Smart Shuttle have sealed against the interior of the pipe, and the internal pump of the smart shuttle is ready to pump fluid volumes AV


1


from below the Smart Shuttle to above it so that the Smart Shuttle translates downhole.





FIG. 11

is a generalized block diagram of one embodiment of a Smart Shuttle having a first electrically operated positive displacement pump and a second electrically operated pump.





FIG. 12

shows a block diagram of a pump transmission device that prevents pump stalling, and other pump problems, by matching the load seen by the pump to the power available from the motor within the Smart Shuttle.





FIG. 13

shows a block diagram of preferred embodiment of a Smart Shuttle having a hybrid pump design that also provides for a turbine assembly that causes a traction wheel to engage the casing to cause translation of the Smart Shuttle.





FIG. 14

shows a block diagram of the computer control of the wireline drum and the Smart Shuttle in a preferred embodiment of the invention that allows the system to be operated as an Automated Smart Shuttle System, or “closed-loop completion system”, that is useful for the closed-loop completion of one pass drilling operations, and that is also useful for completion operations within a standard casing string.





FIG. 15

shows a section view of a rubber-type material wiper plug that can be attached to the Retrieval Sub and placed into the Wiper Plug Pump-Down Stack and subsequently used for the well completion process.





FIG. 16

shows a section view of the Casing Saw that can be attached to the Retrieval Sub and conveyed downhole with the Smart Shuttle.





FIG. 17

shows a section view of the wellhead, the Wiper Plug Pump-Down Stack, the Smart Shuttle Chamber, the Coiled Tubing Lubricator System, and the pump-down single zone packer apparatus suspended by the coiled tubing in the well before commencing the final single-zone completion of the well which in this case pertains to the one pass drilling and completion of wellbores, but that is also useful for standard cased well completions.





FIG. 17A

shows an expanded view of the pump-down single zone packer apparatus that is shown in FIG.


17


.





FIG. 18

shows a “pipe means” deployed in the wellbore that may be a pipe made of any material, a metallic pipe, a steel pipe, a drill pipe, a drill string, a casing, a casing string, a liner, a liner string, tubing, or a tubing string, or any means to convey oil and gas to the surface for production that may be completed using a Smart Shuttle, Retrieval Sub, and Smart Completion Devices. The “pipe means” is explicitly shown here so that it is crystal clear that various preferred embodiments cited above for use during the one pass drilling and completion of oil and gas wells can in addition also be used in standard well drilling and casing operations.





FIG. 18A

shows a modified and expanded form of

FIG. 18

wherein the last portion of the “pipe means” has “pipe mounted latching means” that may be used for a number of purposes including attaching a retrievable drill bit and/or as a positive “stop” for a pump-down one-way valve means following the retrieval of the retrievable drill bit during one pass drilling and completion operations.





FIG. 19

shows a particular preferred embodiment of a Smart Shuttle having a Progressive Cavity Pump (“PCP”) and a gear box that is in turn driven by an Electrical Submersible Motor (“ESM”) that is used in drill pipes during one pass drilling and completion operations and that is also used in standard casing strings and within other “pipe means” that is particularly useful for the closed-loop completion of oil and gas wells.





FIG. 20

shows one embodiment of a Smart Shuttle having a PCP and ESM that also has an adjustable sealing means for operation in pipes having variable inside diameters and for other purposes that is particularly useful for the closedloop completion of oil and gas wells.





FIG. 21

shows a standard casing string, or other pipe, in the process of being completed with a Smart Shuttle, a Retrieval Sub, and a Casing Saw, along with other completion devices that had previously been installed within the casing string during the closed-loop completion of the well.





FIG. 22

shows a section view of the pump-down single zone packer apparatus installed in a standard casing string, or other pipe, following completion operations with the Smart Shuttle and other completion devices shown in

FIG. 21

, and such pump-down single zone packer apparatus is particularly useful for the closed-loop completion of oil and gas wells.





FIG. 23

shows a Smart Shuttle and Retrieval Sub in a standard casing, or other pipe, being conveyed downhole which are attached to a coiled tubing having a wireline within the tubing that is particularly useful for the closed-loop completion of oil and gas wells.





FIG. 24

shows a Universal Smart Completion Device (USCD) that is conveyed downhole by attachment to a Smart Shuttle and its Retrieval Sub that is particularly useful as an element in a closed-loop system to complete oil and gas wells.





FIG. 25

shows two Universal Smart Completion Devices installed during closed-loop completion operations to make a TAML Level 5 Well Completion.





FIG. 26

shows in diagrammatic form a closed-loop subsea completion system.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The following disclosure related to

FIGS. 1-5

is substantially repeated herein from co-pending Ser. No. 09/295,808. This repeated disclosure related to

FIGS. 1-5

is useful information so that the preferred embodiments of the invention herein may be economically described in terms of previous definitions related to those

FIGS. 1-5

.




In

FIGS. 1-5

, apparatus and methods of operation of that apparatus are disclosed herein in the preferred embodiments of the invention that allow for cementation of a drill string with attached drill bit into place during one single drilling pass into a geological formation. The method of drilling the well and installing the casing becomes one single process that saves installation time and reduces costs during oil and gas well completion procedures as documented in the following description of the preferred embodiments of the invention. Apparatus and methods of operation of the apparatus are disclosed herein that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place. Slurry materials may be used for completion purposes in extended lateral wellbores. Therefore, the following text is substantially quoted from co-pending Ser. No. 09/295,808 related to

FIGS. 1-5

.





FIG. 1

shows a section view of a drill string in the process of being cemented in place during one drilling pass into formation. A borehole


2


is drilled though the earth including geological formation


4


. The borehole is drilled with a milled tooth rotary drill bit


6


having milled steel roller cones


8


,


10


, and


12


(not shown for simplicity). A standard water passage


14


is shown through the rotary cone drill bit. This rotary bit could equally be a tungsten carbide insert roller cone bit having jets for waterpassages, the principle of operation and the related apparatus being the same for either case for the preferred embodiment herein.




The threads


16


on rotary drill bit


6


are screwed into the Latching Subassembly


18


. The Latching Subassembly is also called the Latching Sub for simplicity herein. The Latching Sub is a relatively thick-walled steel pipe having some functions similar to a standard drill collar.




The Latching Float Collar Valve Assembly


20


is pumped downhole with drilling mud after the depth of the well is reached. The Latching Float Collar Valve Assembly is pumped downhole with mud pressure pushing against the Upper Seal


22


of the Latching Float Collar Valve Assembly. The Latching Float Collar Valve Assembly latches into place into Latch Recession


24


. The Latch


26


of the Latching Float Collar Valve Assembly is shown latched into place with Latching Spring


28


pushing against Latching Mandrel


30


. When the Latch


26


is properly seated into place within the Latch Recession


24


, the clearances and materials of the Latch and mating Latch Recession are to be chosen such that very little cement will leak through the region of the Latch Recession


24


of the Latching Subassembly


18


under any back-pressure (upward pressure) in the well. Many means can be utilized to accomplish this task, including fabricating the Latch


26


from suitable rubber compounds, suitably designing the upper portion of the Latching Float Collar Valve Assembly


20


immediately below the Upper Seal


22


, the use of various O-rings within or near Latch Recession


24


, etc.




The Float


32


of the Latching Float Collar Valve Assembly seats against the Float Seating Surface


34


under the force from Float Collar Spring


36


that makes a one-way cement valve. However, the pressure applied to the mud or cement from the surface may force open the Float to allow mud or cement to be forced into the annulus generally designated as


38


in FIG.


1


. This one-way cement valve is a particular example of “a one-way cement valve means installed near the drill bit” which is a term defined herein. The one-way cement valve means may be installed at any distance from the drill bit but is preferentially installed “near” the drill bit.





FIG. 1

corresponds to the situation where cement is in the process of being forced from the surface through the Latching Float Collar Valve Assembly. In fact, the top level of cement in the well is designated as element


40


. Below


40


, cement fills the annulus of the borehole. Above


40


, mud fills the annulus of the borehole. For example, cement is present at position


42


and drilling mud is present at position


44


in FIG.


1


.




Relatively thin-wall casing, or drill pipe, designated as element


46


in

FIG. 1

, is attached to the Latching Sub. The bottom male threads of the drill pipe


48


are screwed into the female threads


50


of the Latching Sub.




The drilling mud was wiped off the walls of the drill pipe in the well with Bottom Wiper Plug


52


. The Bottom Wiper Plug is fabricated from rubber in the shape shown. Portions


54


and


56


of the Upper Seal of the Bottom Wiper Plug are shown in a ruptured condition in FIG.


1


. Initially, they sealed the upper portion of the Bottom Wiper Plug. Under pressure from cement, the Bottom Wiper Plug is pumped down into the well until the Lower Lobe of the Bottom Wiper Plug


58


latches into place into Latching Sub Recession


60


in the Latching Sub. After the Bottom Wiper Plug latches into place, the pressure of the cement ruptures The Upper Seal of the Bottom Wiper Plug. A Bottom Wiper Plug Lobe


62


is shown in FIG.


1


. Such lobes provide an efficient means to wipe the mud off the walls of the drill pipe while the Bottom Wiper Plug is pumped downhole with cement.




Top Wiper Plug


64


is being pumped downhole by water


66


under pressure in the drill pipe. As the Top Wiper Plug


64


is pumped down under water pressure, the cement remaining in region


68


is forced downward through the Bottom Wiper Plug, through the Latching Float Collar Valve Assembly, through the waterpassages of the drill bit and into the annulus in the well. A Top Wiper Plug Lobe


70


is shown in FIG.


1


. Such lobes provide an efficient means to wipe the cement off the walls of the drill pipe while the Top Wiper Plug is pumped downhole with water.




After the Bottom Surface


72


of the Top Wiper Plug is forced into the Top Surface


74


of the Bottom Wiper Plug, almost the entire “cement charge” has been forced into the annulus between the drill pipe and the hole. As pressure is reduced on the water, the Float of the Latching Float Latching Float Collar Valve Assembly seals against the Float Seating Surface


34


. As the water pressure is reduced on the inside of the drill pipe, then the cement in the annulus between the drill pipe and the hole can cure under ambient hydrostatic conditions. This procedure herein provides an example of the proper operation of a “one-way cement valve means”.




Therefore, the preferred embodiment in

FIG. 1

provides apparatus that uses the steel drill string attached to a drilling bit during drilling operations used to drill oil and gas wells for a second purpose as the casing that is cemented in place during typical oil and gas well completions.




The preferred embodiment in

FIG. 1

provides apparatus and methods of operation of the apparatus that results in the efficient installation of a cemented steel cased well during one single pass down into the earth of the steel drill string thereby making a steel cased borehole or cased well.




The steps described herein in relation to the preferred embodiment in

FIG. 1

provide a method of operation that uses the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, that allow mud to circulate during typical drilling operations for the second independent, and the distinctly separate, purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single pass into the earth.




The preferred embodiment of the invention further provides apparatus and methods of operation that results in the pumping of cement down the drill string, through the mud passages in the drill bit, and into the annulus between the formation and the drill string for the purpose of cementing the drill string and the drill bit into place during one single drilling pass into the formation.




The apparatus described in the preferred embodiment in

FIG. 1

also provide a one-way cement valve and related devices installed near the drill bit of the drill string that allows the cement to set up efficiently while the drill string and drill bit are cemented into place during one single drilling pass into the formation.




Methods of operation of apparatus disclosed in

FIG. 1

have been disclosed that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place. This is a crucial step that allows a “Typical Drilling Process” involving some


14


steps to be compressed into the “New Drilling Process” that involves only 7 separate steps as described in detail below. The New Drilling Process is now possible because of “Several Recent Changes in the Industry” also described in detail below.




Typical procedures used in the oil and gas industries to drill and complete wells are well documented. For example, such procedures are documented in the entire “Rotary Drilling Series” published by the Petroleum Extension Service of The University of Texas at Austin, Austin, Tex. that is incorporated herein by reference in its entirety comprised of the following: Unit I—“The Rig and Its Maintenance” (12 Lessons); Unit II—“Normal Drilling Operations” (5 Lessons); Unit III—Nonroutine Rig Operations (4 Lessons); Unit IV—Man Management and Rig Management (1 Lesson); and Unit V—Offshore Technology (9 Lessons). All of the individual Glossaries of all of the above Lessons in their entirety are also explicitly incorporated herein, and all definitions in those Glossaries shall be considered to be explicitly referenced and/or defined herein.




Additional procedures used in the oil and gas industries to drill and complete wells are well documented in the series entitled “Lessons in Well Servicing and Workover” published by the Petroleum Extension Service of The University of Texas at Austin, Austin, Tex. that is incorporated herein by reference in its entirety comprised of all 12 Lessons. All of the individual Glossaries of all of the above Lessons in their entirety are also explicitly incorporated herein, and any and all definitions in those Glossaries shall be considered to be explicitly referenced and/or defined herein.




With reference to typical practices in the oil and gas industries, a typical drilling process may therefore be described in the following.




Typical Drilling Process




From an historical perspective, completing oil and gas wells using rotary drilling techniques have in recent times comprised the following typical steps:




Step 1. With a pile driver or rotary rig, install any necessary conductor pipe on the surface for attachment of the blowout preventer and for mechanical support at the wellhead.




Step 2. Install and cement into place any surface casing necessary to prevent washouts and cave-ins near the surface, and to prevent the contamination of freshwater sands as directed by state and federal regulations.




Step 3. Choose the dimensions of the drill bit to result in the desired sized production well. Begin rotary drilling of the production well with a first drill bit. Simultaneously circulate drilling mud into the well while drilling. Drilling mud is circulated downhole to carry rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit. After the first bit wears out, pull the drill string out, change bits, lower the drill string into the well and continue drilling. It should be noted here that each “trip ” of the drill bit typically requires many hours of rig time to accomplish the disassembly and reassembly of the drill string, pipe segment by pipe segment.




Step 4. Drill the production well using a succession of rotary drill bits attached to the drill string until the hole is drilled to its final depth.




Step 5. After the final depth is reached, pull out the drill string and its attached drill bit.




Step 6. Perform open-hole logging of the geological formations to determine the amount of oil and gas present. This typically involves measurements of the porosity of the rock, the electrical resistivity of the water present, the electrical resistivity of the rock, certain neutron measurements from within the open hole, and the use of Archie's Equations (or their equivalent representation, or their approximation by other algebraic expressions, or their substitution for similar geophysical analysis). If no oil and gas is present from the analysis of such open-hole logs, an option can be chosen to cement the well shut. If commercial amounts of oil and gas are present, continue the following steps.




Step 7. Typically reassemble the drill bit and the drill string in the well to clean the well after open-hole logging.




Step 8. Pull out the drill string and its attached drill bit.




Step 9. Attach the casing shoe into the bottom male pipe threads of the first length of casing to be installed into the well. This casing shoe may or may not have a one-way valve (“casing shoe valve”) installed in its interior to prevent fluids from back-flowing from the well into the casing string.




Step 10. Typically install the float collar onto the top female threads of the first length of casing to be installed into the well which has a one-way valve (“float collar valve”) that allows the mud and cement to pass only one way down into the hole thereby preventing any fluids from back-flowing from the well into the casing string. Therefore, a typical installation has a casing shoe attached to the bottom and the float collar valve attached to the top portion of the first length of casing to be lowered into the well. The float collar and the casing shoe are often installed into one assembly for convenience that entirely replace this first length of casing. Please refer to the book entitled “Casing and Cementing”, Unit II, Lesson 4, Second Edition, of the Rotary Drilling Series, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1982 (hereinafter defined as “Ref.1”), an entire copy of which is incorporated herein by reference. In particular, please refer to pages 28-35 of that book (Ref. 1). All of the individual definitions of words and phrases in the Glossary of Ref. 1 are also explicitly and separately incorporated herein in their entirety by reference.




Step 11. Assemble and lower the production casing into the well while back filling each section of casing with mud as it enters the well to overcome the buoyancy effects of the air filled casing (caused by the presence of the float collar valve), to help avoid sticking problems with the casing, and to prevent the possible collapse of the casing due to accumulated build-up of hydrostatic pressure.




Step 12. To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination problems comprised of the following individual steps:




A. Introduce the Bottom Wiper Plug into the interior of the steel casing assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement (Ref. 1, pages 28-35).




B. Introduce the Top Wiper Plug into the interior of the steel casing assembled into the well and pump down with water under pump pressure thereby forcing the cement through the float collar valve and any other one-way valves present (Ref. 1, pages


28-35).






C. After the Bottom Wiper Plug and the Top Wiper Plug have seated in the float collar, release the pump pressure on the water column in the casing that results in the closing of the float collar valve which in turn prevents cement from backing up into the interior of the casing. The resulting interior pressure release on the inside of the casing upon closure of the float collar valve prevents distortions of the casing that might prevent a good cement seal (Ref. 1, page 30). In such circumstances, “the cement is cured under ambient hydrostatic conditions”.




Step 13. Allow the cement to cure.




Step 14. Follow normal “final completion operations” that include installing the tubing with packers and perforating the casing near the producing zones. For a description of such normal final completion operations, please refer to the book entitled “Well Completion Methods”, Well Servicing and Workover, Lesson 4, from the series entitled “Lessons in Well Servicing and Workover”, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1971 (hereinafter defined as “Ref. 2”), an entire copy of which is incorporated herein by reference. All of the individual definitions of words and phrases in the Glossary of Ref. 2 are also explicitly and separately incorporated herein in their entirety by reference. Other methods of completing the well are described therein that shall, for the purposes of this application herein, also be called “final completion operations”.




Several Recent Changes in the Industry




Several recent concurrent changes in the industry have made it possible to reduce the number of steps defined above. These changes include the following:




a. Until recently, drill bits typically wore out during drilling operations before the desired depth was reached by the production well. However, certain drill bits have recently been able to drill a hole without having to be changed. For example, please refer to the book entitled “The Bit”, Unit I, Lesson 2, Third Edition, of the Rotary Drilling Series, The University of Texas at Austin, Austin, Tex., 1981 (hereinafter defined as “Ref. 3”), an entire copy of which is incorporated herein by reference. All of the individual definitions of words and phrases in the Glossary of Ref. 3 are also explicitly and separately incorporated herein in their entirety by reference. On page 1 of Ref. 3 it states: “For example, often only one bit is needed to make a hole in which the casing will be set.” On page 12 of Ref. 3 it states in relation to tungsten carbide insert roller cone bits: “Bit runs as long as 300 hours have been achieved; in some instances, only one or two bits have been needed to drill a well to total depth.” This is particularly so since the advent of the sealed bearing tri-cone bit designs appeared in 1959 (Ref. 3 , page 7) having tungsten carbide inserts (Ref. 3, page 12). Therefore, it is now practical to talk about drill bits lasting long enough for drilling a well during one pass into the formation, or “one pass drilling”.




b. Until recently, it has been impossible or impractical to obtain sufficient geophysical information to determine the presence or absence of oil and gas from inside steel pipes in wells. Heretofore, either standard open-hole logging tools or Measurement-While-Drilling (“MWD”) tools were used in the open hole to obtain such information. Therefore, the industry has historically used various open-hole tools to measure formation characteristics. However, it has recently become possible to measure the various geophysical quantities listed in Step 6 above from inside steel pipes such as drill strings and casing strings. For example, please refer to the book entitled “Cased Hole Log Interpretation Principles/Applications”, Schlumberger Educational Services, Houston, Tex., 1989, an entire copy of which is incorporated herein by reference. Please also refer to the article entitled “Electrical Logging: State-of-the-Art”, by Robert E. Maute, The Log Analyst, May-June 1992, pages 206-227, an entire copy of which is incorporated herein by reference.




Because drill bits typically wore out during drilling operations until recently, different types of metal pipes have historically evolved which are attached to drilling bits, which, when assembled, are called “drill strings”. Those drill strings are different than typical “casing strings” run into the well. Because it was historically absolutely necessary to do open-hole logging to determine the presence or absence of oil and gas, the fact that different types of pipes were used in “drill strings” and “casing strings” was of little consequence to the economics of completing wells. However, it is possible to choose the “drill string” to be acceptable for a second use, namely as the “casing string” that is to be installed after drilling has been completed.




New Drilling Process




Therefore, the preferred embodiments of the invention herein reduces and simplifies the above 14 steps as follows:




Repeat Steps 1-2 above.




Steps 3-5 (Revised). Choose the drill bit so that the entire production well can be drilled to its final depth using only one single drill bit. Choose the dimensions of the drill bit for desired size of the production well. If the cement is to be cured under ambient hydrostatic conditions, attach the drill bit to the bottom female threads of the Latching Subassembly (“Latching Sub”). Choose the material of the drill string from pipe material that can also be used as the casing string. Attach the first section of drill pipe to the top female threads of the Latching Sub. Then rotary drill the production well to its final depth during “one pass drilling” into the well. While drilling, simultaneously circulate drilling mud to carry the rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit.




Step 6 (Revised). After the final depth of the production well is reached, perform logging of the geological formations to determine the amount of oil and gas present from inside the drill pipe of the drill string. This typically involves measurements from inside the drill string of the necessary geophysical quantities as summarized in Item “b.” of “Several Recent Changes in the Industry”. If such logs obtained from inside the drill string show that no oil or gas is present, then the drill string can be pulled out of the well and the well filled in with cement. If commercial amounts of oil and gas are present, continue the following steps.




Steps 7-11 (Revised). If the cement is to be cured under ambient hydrostatic conditions, pump down a Latching Float Collar Valve Assembly with mud until it latches into place in the notches provided in the Latching Sub located above the drill bit.




Steps 12-13 (Revised). To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination comprised of the following individual steps:




A. Introduce the Bottom Wiper Plug into the interior of the drill string assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement.




B. Introduce the Top Wiper Plug into the interior of the drill string assembled into the well and pump down with water thereby forcing the cement through any Float Collar Valve Assembly present and through the watercourses in “a regular bit” or through the mud nozzles of a “jet bit” or through any other mud passages in the drill bit into the annulus between the drill string and the formation.




C. After the Bottom Wiper Plug, and Top Wiper Plug have seated in the Latching Float Collar Valve Assembly, release the pressure on the interior of the drill string that results in the closing of the float collar which in turn prevents cement from backing up in the drill string. The resulting pressure release upon closure of the float collar prevents distortions of the drill string that might prevent a good cement seal as described earlier. I.e., “the cement is cured under ambient hydrostatic conditions”.




Repeat Step 14 above.




Therefore, the “New Drilling Process” has only 7 distinct steps instead of the 14 steps in the “Typical Drilling Process”. The “New Drilling Process” consequently has fewer steps, is easier to implement, and will be less expensive.




The preferred embodiment of the invention disclosed in

FIG. 1

requires a Latching Subassembly and a Latching Float Collar Valve Assembly. An advantage of this approach is that the Float


32


of the Latching Float Collar Valve Assembly and the Float Seating Surface


34


in

FIG. 1

are installed at the end of the drilling process and are not subject to any wear by mud passing down during normal drilling operations.




Another preferred embodiment of the invention provides a float and float collar valve assembly permanently installed within the Latching Subassembly at the beginning of the drilling operations. However, such a preferred embodiment has the disadvantage that drilling mud passing by the float and the float collar valve assembly during normal drilling operations could subject the mutually sealing surfaces to potential wear. Nevertheless, a float collar valve assembly can be permanently installed above the drill bit before the drill bit enters the well.




Permanently Installed One-Way Valve





FIG. 2

shows another preferred embodiment of the invention that has such a float collar valve assembly permanently installed above the drill bit before the drill bit enters the well.

FIG. 2

shows many elements common to FIG.


1


. The Permanently Installed Float Collar Valve Assembly


76


, hereinafter abbreviated as the “PIFCVA”, is installed into the drill string on the surface of the earth before the drill bit enters the well. On the surface, the threads


16


on the rotary drill bit


6


are screwed into the lower female threads


78


of the PIFCVA. The bottom male threads of the drill pipe


48


are screwed into the upper female threads


80


of the PIFCVA. The PIFCVA Latching Sub Recession


82


is similar in nature and function to element


60


in FIG.


1


. The fluids flowing thorough the standard water passage


14


of the drill bit flow through PIFCVA Guide Channel


84


. The PIFCVA Float


86


has a Hardened Hemispherical Surface


88


that seats against the hardened PIFCVA Float Seating Surface


90


under the force PIFCVA Spring


92


. Surfaces


88


and


90


may be fabricated from very hard materials such as tungsten carbide. Alternatively, any hardening process in the metallurgical arts may be used to harden the surfaces of standard steel parts to make suitable hardened surfaces


88


and


90


. The lower surfaces of the PIFCVA Spring


92


seat against the upper portion of the PIFCVA Threaded Spacer


94


that has PIFCVA Threaded Spacer Passage


96


. The PIFCVA Threaded Spacer


94


has exterior threads that thread into internal threads


100


of the PIFCVA (that is assembled into place within the PIFCVA prior to attachment of the drill bit to the PIFCVA). Surface


102


facing the lower portion of the PIFCVA Guide Channel


84


may also be made from hardened materials, or otherwise surface hardened, so as to prevent wear from the mud flowing through this portion of the channel during drilling.




Once the PIFCVA is installed into the drill string, then the drill bit is lowered into the well and drilling commenced. Mud pressure from the surface opens PIFCVA Float ™


86


. The steps for using the preferred embodiment in

FIG. 2

are slightly different than using that shown in FIG.


1


. Basically, the “Steps 7-11 (Revised)” of the “New Drilling Process” are eliminated because it is not necessary to pump down any type of Latching Float Collar Valve Assembly of the type described in FIG.


1


. In “Steps 3-5 (Revised)” of the “New Drilling Process”, it is evident that the PIFCVA is installed into the drill string instead of the Latching Subassembly appropriate for FIG.


1


. In Steps 12-13 (Revised) of the “New Drilling Process”, it is also evident that the Lower Lobe of the Bottom Wiper Plug


58


latches into place into the PIFCVA Latching Sub Recession


82


.




The PIFCVA installed into the drill string is another example of a one-way cement valve means installed near the drill bit to be used during one pass drilling of the well. Here, the term “near” shall mean within 500 feet of the drill bit. Consequently,

FIG. 2

describes a rotary drilling apparatus to drill a borehole into the earth comprising a drill string attached to a rotary drill bit and one-way cement valve means installed near the drill bit to cement the drill string and rotary drill bit into the earth to make a steel cased well. Here, in this preferred embodiment, the method of drilling the borehole is implemented with a rotary drill bit having mud passages to pass mud into the borehole from within a steel drill string that includes at least one step that passes cement through such mud passages to cement the drill string into place to make a steel cased well.




The drill bits described in FIG.


1


and

FIG. 2

are milled steel toothed roller cone bits. However, any rotary bit can be used with the invention. A tungsten carbide insert roller cone bit can be used. Any type of diamond bit or drag bit can be used. The invention may be used with any drill bit described in Ref. 3 above that possesses mud passages, waterpassages, or passages for gas. Any type of rotary drill bit can be used possessing such passageways. Similarly, any type of bit whatsoever that utilizes any fluid or gas that passes through passageways in the bit can be used whether or not the bit rotates.




As another example of “ . . . any type of bit whatsoever . . . ” described in the previous sentence, a new type of drill bit invented by the inventor of this application can be used for the purposes herein that is disclosed in U.S. Pat. No. 5,615,747, that is entitled “Monolithic Self Sharpening Rotary Drill Bit Having Tungsten Carbide Rods Cast in Steel Alloys”, that issued on Apr. 1, 1997 (hereinafter Vail{747}), an entire copy of which is incorporated herein by reference. That new type of drill bit is further described in a Continuing Application of Vail{747} that is now U.S. Pat. No. 5,836,409, that is also entitled “Monolithic Self Sharpening Rotary Drill Bit Having Tungsten Carbide Rods Cast in Steel Alloys”, that issued on the date of Nov. 17, 1998 (hereinafter Vail{409}), an entire copy of which is incorporated herein by reference. That new type of drill bit is further described in a Continuation-in-Part Application of Vail{409} that is Ser. No. 09/192,248, that has the filing date of Nov. 16, 1998, that is entitled “Rotary Drill Bit Compensating for Changes in Hardness of Geological Formations”, an entire copy of which is incorporated herein by reference. As yet another example of “ . . . any type of bit whatsoever . . . ” described in the last sentence of the previous paragraph,

FIG. 3

shows the use of the invention using coiled-tubing drilling techniques.




Coiled Tubing Drilling





FIG. 3

shows another preferred embodiment of the invention that is used for certain types of coiled-tubing drilling applications.

FIG. 3

shows many elements common to FIG.


1


. It is explicitly stated at this point that all the standard coiled-tubing drilling arts now practiced in the industry are incorporated herein by reference. Not shown in

FIG. 3

is the coiled tubing drilling rig on the surface of the earth having among other features, the coiled tubing unit, a source of mud, mud pump, etc. In

FIG. 3

, the well has been drilled. This well can be: (a) a freshly drilled well; or (b) a well that has been sidetracked to a geological formation from within a casing string that is an existing cased well during standard re-entry applications; or (c) a well that has been sidetracked from within a tubing string that is in turn suspended within a casing string in an existing well during certain other types of re-entry applications. Therefore, regardless of how drilling is initially conducted, in an open hole, or from within a cased well that may or may not have a tubing string, the apparatus shown in

FIG. 3

drills a borehole


2


through the earth including through geological formation


4


.




Before drilling commences, the lower end of the coiled tubing


104


is attached to the Latching Subassembly


18


. The bottom male threads of the coiled tubing


106


thread into the female threads of the Latching Subassembly


50


.




The top male threads


108


of the Stationary Mud Motor Assembly


110


are screwed into the lower female threads


112


of Latching Subassembly


18


. Mud under pressure flowing through channel


113


causes the Rotating Mud Motor Assembly


114


to rotate in the well. The Rotating Mud Motor Assembly


114


causes the Mud Motor Drill Bit Body


116


to rotate. In a preferred embodiment, elements


110


,


114


and


116


are elements comprising a mud-motor drilling apparatus. That Mud Motor Drill Bit Body holds in place milled steel roller cones


118


,


120


, and


122


(not shown for simplicity). A standard water passage


124


is shown through the Mud Motor Drill Bit Body. During drilling operations, as mud is pumped down from the surface, the Rotating Mud Motor Assembly


114


rotates causing the drilling action in the well. It should be noted that any fluid pumped from the surface under sufficient pressure that passes through channel


113


goes through the mud motor turbine (not shown) that causes the rotation of the Mud Motor Drill Bit Body and then flows through standard water passage


124


and finally into the well.




The steps for using the preferred embodiment in

FIG. 3

are slightly different than using that shown in FIG.


1


. In drilling an open hole, “Steps 3-5 (Revised)” of the “New Drilling Process” must be revised here to site attachment of the Latching Subassembly to one end of the coiled tubing and to site that standard coiled tubing drilling methods are employed. The coiled tubing can be on the coiled tubing unit at the surface for this step or the tubing can be installed into a wellhead on the surface for this step. In “Step 6 (Revised)” of the “New Drilling Process”, measurements are to be performed from within the coiled tubing when it is disposed in the well. In “Steps 12-13 (Revised)” of the “New Drilling Process”, the Bottom Wiper Plug and the Top Wiper Plug are introduced into the upper end of the coiled tubing at the surface. The coiled tubing can be on the coiled tubing unit at the surface for these steps or the tubing can be installed into a wellhead on the surface for these steps. In sidetracking from within an existing casing, in addition to the above steps, it is also necessary to lower the coiled tubing drilling apparatus into the cased well and drill through the casing into the adjacent geological formation at some predetermined depth. In sidetracking from within an existing tubing string suspended within an existing casing string, it is also necessary to lower the coiled tubing drilling apparatus into the tubing string and then drill through the tubing string and then drill through the casing into the adjacent geological formation at some predetermined depth.




Therefore,

FIG. 3

shows a tubing conveyed mud motor drill bit apparatus to drill a borehole into the earth comprising tubing attached to a mud motor driven rotary drill bit and one-way cement valve means installed above the drill bit to cement the drill string and rotary drill bit into the earth to make a tubing encased well. The tubing conveyed mud motor drill bit apparatus is also called a tubing conveyed mud motor drilling apparatus, that is also called a tubing conveyed mud motor driven rotary drill bit apparatus. Put another way,

FIG. 3

shows a section view of a coiled tubing conveyed mud motor driven rotary drill bit apparatus in the process of being cemented into place during one drilling pass into formation by using a Latching Float Collar Valve Assembly that has been pumped into place above the rotary drill bit. Methods of operating the tubing conveyed mud motor drilling apparatus in

FIG. 3

include a method of drilling a borehole with a coiled tubing conveyed mud motor driven rotary drill bit having mud passages to pass mud into the borehole from within the tubing that includes at least one step that passes cement through the mud passages to cement the tubing into place to make a tubing encased well.




In the “New Drilling Process”, Step 14 is to be repeated, and that step is quoted in part in the following paragraph as follows:




‘Step 14. Follow normal “final completion operations” that include installing the tubing with packers and perforating the casing near the producing zones. For a description of such normal final completion operations, please refer to the book entitled “Well Completion Methods”, Well Servicing and Workover, Lesson 4, from the series entitled “Lessons in Well Servicing and Workover”, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1971 (hereinafter defined as “Ref. 2”), an entire copy of which is incorporated herein by reference. All of the individual definitions of words and phrases in the Glossary of Ref. 2 are also explicitly and separately incorporated herein in their entirety by reference. Other methods of completing the well are described therein that shall, for the purposes of this application herein, also be called “final completion operations”.’




With reference to the last sentence above, there are indeed many ‘Other methods of completing the well that for the purposes of this application herein, also be called “final completion operations”’. For example, Ref. 2 on pages 10-11 describe “Open-Hole Completions”. Ref. 2 on pages 13-17 describe “Liner Completions”. Ref. 2 on pages 17-30 describe “Perforated Casing Completions” that also includes descriptions of centralizers, squeeze cementing, single zone completions, multiple zone completions, tubingless completions, multiple tubingless completions, and deep well liner completions among other topics.




Similar topics are also discussed in a previously referenced book entitled “Testing and Completing”, Unit II, Lesson 5, Second Edition, of the Rotary Drilling Series, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1983 (hereinafter defined as “Ref. 4”), an entire copy of which is incorporated herein by reference. All of the individual definitions of words and phrases in the Glossary of Ref. 1 are also explicitly and separately incorporated herein in their entirety by reference.




For example, on page 20 of Ref. 4, the topic “Completion Design” is discussed. Under this topic are described various different “Completion Methods”. Page 21 of Ref. 4 describes “Open-hole completions”. Under the topic of “Perforated completion” on pages 20-22, are described both standard cementing completions and gravel completions using slotted liners.




Completions with Slurry Materials




Standard cementing completions are described above in the new “New Drilling Process”. However, it is evident that any slurry like material or “slurry material” that flows under pressure, and behaves like a multicomponent viscous liquid like material, can be used instead of “cement” in the “New Drilling Process”. In particular, instead of “cement”, water, gravel, or any other material can be used provided it flows through pipes under suitable pressure.




At this point, it is useful to review several definitions that are routinely used in the industry. First, the glossary of Ref. 4 defines several terms of interest.




The Glossary of Ref. 4 defines the term “to complete a well” to be the following: “to finish work on a well and bring it to productive status. See well completion.”




The Glossary of Ref. 4 defines the term “well completion” to be the following: “1. the activities and methods of preparing a well for the production of oil and gas; the method by which one or more flow paths for hydrocarbons is established between the reservoir and the surface. 2. the systems of tubulars, packers, and other tools installed beneath the wellhead in the production casing, that is, the tool assembly that provides the hydrocarbon flow path or paths. To be precise for the purposes herein, the term “completing a well” or the term “completing the well” are each separately equivalent to performing all the necessary steps for a “well completion”.




The Glossary of Ref. 4 defines the term “gravel” to be the following: “in gravel packing, sand or glass beads of uniform size and roundness.”




The Glossary of Ref. 4 defines the term “gravel packing” to be the following: “a method of well completion in which a slotted or perforated liner, often wire-wrapper, is placed in the well and surrounded by gravel. If open-hole, the well is sometimes enlarged by underreaming at the point were the gravel is packed. The mass of gravel excludes sand from the wellbore but allows continued production.”




Other pertinent terms are defined in Ref. 1.




The Glossary of Ref. 1 defines the term “cement” to be the following: “a powder, consisting of alumina, silica, lime, and other substances that hardens when mixed with water. Extensively used in the oil industry to bond casing to walls of the wellbore.”




The Glossary of Ref. 1 defines the term “cement clinker” to be the following: “a substance formed by melting ground limestone, clay or shale, and iron ore in a kiln. Cement clinker is ground into a powdery mixture and combined with small accounts of gypsum or other materials to form a cement”.




The Glossary of Ref. 1 defines the term “slurry” to be the following: “a plastic mixture of cement and water that is pumped into a well to harden; there it supports the casing and provides a seal in the wellbore to prevent migration of underground fluids.”




The Glossary of Ref. 1 defines the term “casing” as is typically used in the oil and gas industries to be the following: “steel pipe placed in an oil or gas well as drilling progresses to prevent the wall of the hole from caving in during drilling, to prevent seepage of fluids, and to provide a means of extracting petroleum if the well is productive”. Of course, in light of the invention herein, the “drill pipe” becomes the “casing”, so the above definition needs modification under certain usages herein.




U.S. Pat. No. 4,883,125, that issued on Nov. 28, 1994, that is entitled “Cementing Oil and Gas Wells Using Converted Drilling Fluid”, an entire copy of which is incorporated herein by reference, describes using “a quantity of drilling fluid mixed with a cement material and a dispersant such as a sulfonated styrene copolymer with or without an organic acid”. Such a “cement and copolymer mixture” is yet another example of a “slurry material” for the purposes herein.




U.S. Pat. No. 5,343,951, that issued on Sep. 6, 1994, that is entitled “Drilling and Cementing Slim Hole Wells”, an entire copy of which is incorporated herein by reference, describes “a drilling fluid comprising blast furnace slag and water” that is subjected thereafter to an activator that is “generally, an alkaline material and additional blast furnace slag, to produce a cementitious slurry which is passed down a casing and up into an annulus to effect primary cementing.” Such an “blast furnace slag mixture” is yet another example of a “slurry material” for the purposes herein.




Therefore, and in summary, a “slurry material” may be any one, or more, of at least the following substances as rigorously defined above: cement, gravel, water, cement clinker, a “slurry” as rigorously defined above, a “cement and copolymer mixture”, a “blast furnace slag mixture”, and/or any mixture thereof. Virtually any known substance that flows under sufficient pressure may be defined the purposes herein as a “slurry material”.




Therefore, in view of the above definitions, it is now evident that the “New Drilling Process” may be performed with any “slurry material”. The slurry material may be used in the “New Drilling Process” for open-hole well completions; for typical cemented well completions having perforated casings; and for gravel well completions having perforated casings; and for any other such well completions.




Accordingly, a preferred embodiment of the invention is the method of drilling a borehole with a rotary drill bit having mud passages for passing mud into the borehole from within a steel drill string that includes at least the one step of passing a slurry material through those mud passages for the purpose of completing the well and leaving the drill string in place to make a steel cased well.




Further, another preferred embodiment of the inventions is the method of drilling a borehole into a geological formation with a rotary drill bit having mud passages for passing mud into the borehole from within a steel drill string that includes at least one step of passing a slurry material through the mud passages for the purpose of completing the well and leaving the drill string in place following the well completion to make a steel cased well during one drilling pass into the geological formation.




Yet further, another preferred embodiment of the invention is a method of drilling a borehole with a coiled tubing conveyed mud motor driven rotary drill bit having mud passages for passing mud into the borehole from within the tubing that includes at the least one step of passing a slurry material through the mud passages for the purpose of completing the well and leaving the tubing in place to make a tubing encased well.




And further, yet another preferred embodiment of the invention is a method of drilling a borehole into a geological formation with a coiled tubing conveyed mud motor driven rotary drill bit having mud passages for passing mud into the borehole from within the tubing that includes at least the one step of passing a slurry material through the mud passages for the purpose of completing the well and leaving the tubing in place following the well completion to make a tubing encased well during one drilling pass into the geological formation.




Yet further, another preferred embodiment of the invention is a method of drilling a borehole with a rotary drill bit having mud passages for passing mud into the borehole from within a steel drill string that includes at least steps of: attaching a drill bit to the drill string; drilling the well with the rotary drill bit to a desired depth; and completing the well with the drill bit attached to the drill string to make a steel cased well.




Still further, another preferred embodiment of the invention is a method of drilling a borehole with a coiled tubing conveyed mud motor driven rotary drill bit having mud passages for passing mud into the borehole from within the tubing that includes at least the steps of: attaching the mud motor driven rotary drill bit to the coiled tubing; drilling the well with the tubing conveyed mud motor driven rotary drill bit to a desired depth; and completing the well with the mud motor driven rotary drill bit attached to the drill string to make a steel cased well.




And still further, another preferred embodiment of the invention is the method of one pass drilling of a geological formation of interest to produce hydrocarbons comprising at least the following steps: attaching a drill bit to a casing string; drilling a borehole into the earth to a geological formation of interest; providing a pathway for fluids to enter into the casing from the geological formation of interest; completing the well adjacent to the formation of interest with at least one of cement, gravel, chemical ingredients, mud; and passing the hydrocarbons through the casing to the surface of the earth while the drill bit remains attached to the casing.




The term “extended reach boreholes” is a term often used in the oil and gas industry. For example, this term is used in U.S. Pat. No. 5,343,950, that issued Sep. 6, 1994, having the Assignee of Shell Oil Company, that is entitled “Drilling and Cementing Extended Reach Boreholes”. An entire copy of U.S. Pat. No. 5,343,950 is incorporated herein by reference. This term can be applied to very deep wells, but most often is used to describe those wells typically drilled and completed from offshore platforms. To be more explicit, those “extended reach boreholes” that are completed from offshore platforms may also be called for the purposes herein “extended reach lateral boreholes”. Often, this particular term, “extended reach lateral boreholes”, implies that substantial portions of the wells have been completed in one more or less “horizontal formation”. The term “extended reach lateral borehole” is equivalent to the term “extended reach later wellbore” for the purposes herein. The term “extended reach lateral borehole” is equivalent to the term “extended reach lateral wellbore” for the purposes herein. The invention herein is particularly useful to drill and complete “extended reach wellbores” and “extend reach lateral wellbores”.




Therefore, the preferred embodiments above generally disclose the one pass drilling and completion of wellbores with drill bit attached to drill string to make cased wellbores to produce hydrocarbons. The preferred embodiments above are also particularly useful to drill and complete “extended reach wellbores” and “extended reach lateral wellbores”.




For methods and apparatus particularly suitable for the one pass drilling and completion of extended reach lateral wellbores please refer to FIG.


4


.

FIG. 4

shows another preferred embodiment of the invention that is closely related to FIG.


3


. Those elements numbered in sequence through element number


124


have already been defined previously. In

FIG. 4

, the previous single “Top Wiper Plug


64


” in

FIGS. 1

,


2


, and


3


has been removed, and instead, it has been replaced with two new wiper plugs, respectively called “Wiper Plug A” and “Wiper Plug B”. Wiper Plug A is labeled with numeral


126


, and Wiper Plug A has a bottom surface that is defined as the Bottom Surface of Wiper Plug A that is numeral


128


. The Upper Plug Seal of Wiper Plug A is labeled with numeral


130


, and as it is shown in

FIG. 4

, is not ruptured. The Upper Plug Seal of Wiper Plug A that is numeral


130


functions analogously to elements


54


and


56


of the Upper Seal of the Bottom Wiper Plug


52


that are shown in ruptured conditions in

FIGS. 1

,


2


and


3


.




In

FIG. 4

, Wiper Plug B is labeled with numeral


132


. It has a lower surface that is called the “Bottom Surface of Wiper Plug B” that is labeled with numeral


134


. Wiper Plug A and Wiper Plug B are introduced separately into the interior of the tubing to pass multiple slurry materials into the wellbore to complete the well.




Using analogous methods described above in relation to

FIGS. 1

,


2


, and


3


, water


136


in the tubing is used to push on Wiper Plug B (element


132


), that in turn pushes on cement


138


in the tubing, that in turn is used to push on gravel


140


, that in turn pushes on the Float


32


, that in turn forces gravel into the wellbore past Float


32


, that in turn forces mud


142


upward in the annulus of the wellbore. An explicit boundary between the mud and gravel is shown in the annulus of the wellbore in

FIG. 4

, and that boundary is labeled with numeral


144


.




After the Bottom Surface of Wiper Plug A that is element


128


positively “bottoms out” on the Top Surface


74


of the Bottom Wiper Plug, then a predetermined amount of gravel has been injected into the wellbore forcing mud


142


upward in the annulus. Thereafter, forcing additional water


136


into the tubing will cause the Upper Plug Seal of Wiper Plug A (element


130


) to rupture, thereby forcing cement


138


to flow toward the Float


32


. Forcing yet additional water


136


into the tubing will in turn cause the Bottom Surface of Wiper Plug B


134


to “bottom out” on the Top Surface of Wiper Plug A that is labeled with numeral


146


. At this point in the process, mud has been forced upward in the annulus of wellbore by gravel. The purpose of this process is to have suitable amounts of gravel and cement placed sequentially into the annulus between the wellbore for the completion of the tubing encased well and for the ultimate production of oil and gas from the completed well. This process is particularly useful for the drilling and completion of extended reach lateral wellbores with a tubing conveyed mud motor drilling apparatus to make tubing encased wellbores for the production of oil and gas.




It is clear that

FIG. 1

could be modified with suitable Wiper Plugs A and B as described above in relation to FIG.


4


. Put simply, in light of the disclosure above,

FIG. 4

could be suitably altered to show a rotary drill bit attached to lengths of casing. However, in an effort to be brief, that detail will not be further described. Instead,

FIG. 5

shows one “snapshot” in the one pass drilling and completion of an extended reach lateral wellbore with drill bit attached to the drill string that is used to produce hydrocarbons from offshore platforms. This figure was substantially disclosed in U.S. Disclosure Document No. 452648 that was filed on Mar. 5, 1999.




Extended Reach Lateral Wellbores




In

FIG. 5

, An offshore platform


148


has a rotary drilling rig


150


surrounded by ocean


152


that is attached to the bottom of the sea


154


. Riser


156


is attached to blow-out preventer


158


. Surface casing


160


is cemented into place with cement


162


. Other conductor pipe, surface casing, intermediate casings, liner strings, or other pipes may be present, but are not shown for simplicity. The drilling rig


150


has all typical components of a normal drilling rig as defined in the figure entitled “The Rig and its Components” opposite of page 1 of the book entitled “The Rotary Rig and Its Components”, Third Edition, Unit I, Lesson 1, that is part of the “Rotary Drilling Series” published by the Petroleum Extension Service, Division of Continuing Education, The University of Texas at Austin, Austin, Tex., 1980, 39 pages, and entire copy of which is incorporated herein by reference.





FIG. 5

shows that oil bearing formation


164


has been drilled into with rotary drill bit


166


. Drill bit


166


is attached to a “Completion Sub” having the appropriate float collar valve assembly, or other suitable float collar device, or which has one or more suitable latch recessions such as element


24


in

FIG. 1

for the purposes previously described, and which has other suitable completion devices as required that are shown in

FIGS. 1

,


2


,


3


, and


4


. That “Completion Sub” is labeled with numeral


168


in FIG.


5


. Completion Sub


168


is in turn attached to many lengths of drill pipe, one of which is labeled with numeral


170


in FIG.


5


. The drill pipe is supported by usual drilling apparatus provided by the drilling rig. Such drilling apparatus provides an upward force at the surface labeled with legend “F” in

FIG. 5

, and the drill string is turned with torque provided by the drilling apparatus of the drilling rig, and that torque is figuratively labeled with the legend “T” in FIG.


5


.




The previously described methods and apparatus were used to first, in sequence, force grave


172


in the portion of the oil bearing formation


164


having producible hydrocarbons. If required, a cement plug formed by a “squeeze job” is figuratively shown by numeral


174


in

FIG. 5

to prevent contamination of the gravel. Alternatively, an external casing packer, or other types of controllable packer means may be used for such purposes as previously disclosed by applicant in U.S. Disclosure Document No. 445686, filed on Oct. 11, 1998. Yet further, the cement plug


174


can be pumped into place ahead of the gravel using the above procedures using yet another wiper plug as may be required.




The cement


176


introduced into the borehole through the mud passages of the drill bit using the above defined methods and apparatus provides a seal near the drill bit, among other locations, that is desirable under certain situations.




Slots in the drill pipe have been opened after the drill pipe reached final depth. The slots can be milled with a special milling cutter having thin rotating blades that are pushed against the inside of the pipe. As an alternative, standard perforations may be fabricated in the pipe using standard perforation guns of the type typically used in the industry. Yet further, special types of expandable pipe may be manufactured that when pressurized from the inside against a cement plug near the drill bit or against a solid strong wiper plug, or against a bridge plug, suitable slots are forced open. Or, different materials may be used in solid slots along the length of steel pipe when the pipe is fabricated that can be etched out with acid during the well completion process to make the slots and otherwise leaving the remaining steel pipe in place. Accordingly, there are many ways to make the required slots. One such slot is labeled with numeral


178


in

FIG. 5

, and there are many such slots.




Therefore, hydrocarbons in zone


164


are produced through gravel


172


that flows through slots


178


and into the interior of the drill pipe to implement the one pass drilling and completion of an extended reach lateral wellbore with drill bit attached to drill string to produce hydrocarbons from an offshore platform. For the purposes of this preferred embodiment, such a completion is called a “gravel pack” completion, whether or not cement


174


or cement


176


are introduced into the wellbore.




It should be noted that in some embodiments, cement is not necessarily needed, and the formations may be “gravel pack” completed, or may be open-hole completed. In some situations, the float, or the one-way valve, need not be required depending upon the pressures in the formation.





FIG. 5

also shows a zone that has been cemented shut with a “squeeze job”, a term known in the industry representing perforating and then forcing cement into the annulus using suitable packers in order to cement certain formations. This particular cement introduced into the annulus of the wellbore in

FIG. 5

is shown as element


180


. Such additional cementations may be needed to isolate certain formations as is typically done in the industry. As a final comment, the annulus


182


of the open hole


184


may otherwise be completed using typical well completion procedures in the oil and gas industries.




Therefore, FIG.


5


and the above description discloses a preferred method of drilling an extended reach lateral wellbore from an offshore platform with a rotary drill bit having mud passages for passing mud into the borehole from within a steel drill string that includes at least one step of passing a slurry material through the mud passages for the purpose of completing the well and leaving the drill string in place to make a steel cased well to produce hydrocarbons from the offshore platform. As stated before, the term “slurry material” may be any one, or more, of at least the following substances: cement, gravel, water, “cement clinker”, a “cement and copolymer mixture”, a “blast furnace slag mixture”, and/or any mixture thereof; or any known substance that flows under sufficient pressure.




Further the above provides disclosure of a method of drilling an extended reach lateral wellbore from an offshore platform with a rotary drill bit having mud passages for passing mud into the borehole from within a steel drill string that includes at least the steps of passing sequentially in order a first slurry material and then a second slurry material through the mud passages for the purpose of completing the well and leaving the drill string in place to make a steel cased well to produce hydrocarbons from offshore platforms.




Yet another preferred embodiment of the invention provides a method of drilling an extended reach lateral wellbore from an offshore platform with a rotary drill bit having mud passages for passing mud into the borehole from within a steel drill string that includes at least the step of passing a mutiplicity of slurry materials through the mud passages for the purpose of completing the well and leaving the drill string in place to make a steel cased well to produce hydrocarbons from the offshore platform.




It is evident from the disclosure in

FIGS. 3 and 4

, that a tubing conveyed mud motor drilling apparatus may replace the rotary drilling apparatus in FIG.


5


. Consequently, the above has provided another preferred embodiment of the invention that discloses the method of drilling an extended reach lateral wellbore from an offshore platform with a coiled tubing conveyed mud motor driven rotary drill bit having mud passages for passing mud into the borehole from within the tubing that includes at least one step of passing a slurry material through the mud passages for the purpose of completing the well and leaving the tubing in place to make a tubing encased well to produce hydrocarbons from the offshore platform.




And yet further, another preferred embodiment of the invention provides a method of drilling an extended reach lateral wellbore from an offshore platform with a coiled tubing conveyed mud motor driven rotary drill bit having mud passages for passing mud into the borehole from within the tubing that includes at least the steps of passing sequentially in order a first slurry material and then a second slurry material through the mud passages for the purpose of completing the well and leaving the tubing in place to make a tubing encased well to produce hydrocarbons from the offshore platform.




And yet another preferred embodiment of the invention discloses passing a multiplicity of slurry materials through the mud passages of the tubing conveyed mud motor driven rotary drill bit to make a tubing encased well to produce hydrocarbons from the offshore platform.




For the purposes of this disclosure, any reference cited above is incorporated herein in its entirely by reference herein. Further, any document, article, or book cited in any such above defined reference is also incorporated herein in its entirety by reference herein.




It should also be stated that the invention pertains to any type of drill bit having any conceivable type of passage way for mud that is attached to any conceivable type of drill pipe that drills to a depth in a geological formation wherein the drill bit is thereafter left at the depth when the drilling stops and the well is completed. Any type of drilling apparatus that has at least one passage way for mud that is attached to any type of drill pipe is also an embodiment of this invention, where the drilling apparatus specifically includes any type of rotary drill bit, any type of mud driven drill bit, any type of hydraulically activated drill bit, or any type of electrically energized drill bit, or any drill bit that is any combination of the above. Any type of drilling apparatus that has at least one passage way for mud that is attached to any type of casing is also an embodiment of this invention, and this includes any metallic casing, and any plastic casing. Any type of drill bit attached to any type of drill pipe made from any material, including aluminum drill pipe, any metallic drill pipe, any type of ceramic drill pipe, or any type of plastic drill pipe, any type of fiberglass drill pipe, or any type of fiberglass drill pipe that encapsulates insulated wires carrying electricity and/or any tubes containing hydraulic fluid, is also an embodiment of this invention. Any drill bit attached to any drill pipe that remains at depth following well completion is further an embodiment of this invention, and this specifically includes any retractable type drill bit, or retrievable type drill bit, that because of failure, or choice, remains attached to the drill string when the well is completed.




As had been referenced earlier, the above disclosure related to

FIGS. 1-5

had been substantially repeated herein from co-pending Ser. No. 09/295,808, and this disclosure is used so that the new preferred embodiments of the invention can be economically described in terms of those figures. It should also be noted that the following disclosure related to

FIGS. 6

,


7


,


8


,


9


,


10


,


11


,


12


,


13


,


14


,


15


,


16


,


17


, and


18


is also substantially repeated herein from co-pending Ser. No. 09/375,479. However,

FIGS. 17A and 18A

are figures that did not appear in Ser. No. 09/375,479.

FIGS. 19-26

have not appeared in any previous U.S. patent application although various embodiments have appeared in relevant U.S. Disclosure Documents.




Before describing those new features, perhaps a bit of nomenclature should be discussed at this point. In various descriptions of preferred embodiments herein described, inventor frequently uses the designation of “one pass drilling”, that is also called “One-Trip-Drilling” for the purposes herein, and otherwise also called “One-Trip-Down-Drilling” for the purposes herein. For the purposes herein, a first definition of the phrases “one pass drilling”, “One-Trip-Drilling”, and “One-Trip-Down-Drilling” mean the process that results in the last long piece of pipe put in the wellbore to which a drill bit is attached is left in place after total depth is reached, and is completed in place, and oil and gas is ultimately produced from within the wellbore through that long piece of pipe. Of course, other pipes, including risers, conductor pipes, surface casings, intermediate casings, etc., may be present, but the last very long pipe attached to the drill bit that reaches the final depth is left in place and the well is completed using this first definition. This process is directed at dramatically reducing the number of steps to drill and complete oil and gas wells.




Please note that several steps in the One-Trip-Down-Drilling process had already been finished in FIG.


5


. However, it is instructive to take a look at one preferred method of well completion that leads to the configuration in FIG.


5


.

FIG. 6

shows one of the earlier steps in that preferred embodiment of well completion that leads to the configuration shown in FIG.


5


. Further,

FIG. 6

shows an embodiment of the invention that may be used with MWD/LWD measurements as described below.




Retrievable Instrumentation Packages





FIG. 6

shows an embodiment of the invention that is particularly configured so that Measurement-While-Drilling (MWD) and Logging-While-Drilling (LWD) can be done during the drilling operations, but that following drilling operations employing MWD/LWD measurements, smart shuttles may be used thereafter to complete oil and gas production from the offshore platform using procedures and apparatus described in the following. Numerals


150


through


184


had been previously described in relation to FIG.


5


. In addition in

FIG. 6

, the last section of standard drill pipe


186


is connected by threaded means to Smart Drilling and Completion Sub


188


, that in turn is connected by threaded means to Bit Adaptor Sub


190


, that is in turn connected by threaded means to rotary drill bit


192


. As an option, this drill bit may be chosen by the operator to be a “Smart Bit” as described in the following.




The Smart Drilling and Completion Sub has provisions for many features. Many of these features are optional, so that some or all of them may be used during the drilling and completion of any one well. Many of those features are described in detail in U.S. Disclosure Document No. 452648 filed on Mar. 5, 1999 that has been previously recited above. In particular, that U.S. Disclosure Document discloses the utility of “Retrievable Instrumentation Packages” that is described in detail in

FIGS. 7 and 7A

therein. Specifically, the preferred embodiment herein provides Smart Drilling and Completion Sub


188


that in turn surrounds the Retrievable Instrumentation Package


194


as shown in FIG.


6


.




As described in U.S. Disclosure Document No. 452648, to maximize the drilling distance of extended reach lateral drilling, a preferred embodiment of the invention possess the option to have means to perform measurements with sensors to sense drilling parameters, such as vibration, temperature, and lubrication flow in the drill bit—to name just a few. The sensors may be put in the drill bit


192


, and if any such sensors are present, the bit is called a “Smart Bit” for the purposes herein. Suitable sensors to measure particular drilling parameters, particularly vibration, may-also be placed in the Retrievable Instrumentation Package


194


in FIG.


6


. So, the Retrievable Instrumentation Package


194


may have “drilling monitoring instrumentation” that is an example of “drilling monitoring instrumentation means”.




Any such measured information in

FIG. 6

can be transmitted to the surface. This can be done directly from the drill bit, or directly from any locations in the drill string having suitable electronic receivers and transmitters (“repeaters”). As a particular example, the measured information may be relayed from the Smart Bit to the Retrievable Instrumentation Package for final transmission to the surface. Any measured information in the Retrievable Instrumentation Package is also sent to the surface from its transmitter. As set forth in the above U.S. Disclosure Documents No. 452648, an actuator in the drill bit in certain embodiments of the invention can be controlled from the surface that is another optional feature of Smart Bit


192


in FIG.


6


. If such an actuator is in the drill bit, and/or if the drill bit has any type communication means, then the bit is also called a Smart Bit for the purposes herein. As various options, commands could be sent directly to the drill bit from the surface or may be relayed from the Retrievable Instrumentation Package to the drill bit. Therefore, the Retrievable Instrumentation Package may have “drill bit control instrumentation” that is an example of a “drill bit control instrumentation means” which is used to control such actuators in the drill bit.




In one preferred embodiment of the invention, commands sent to any Smart Bit to change the configuration of the drill bit to optimize drilling parameters in

FIG. 6

are sent from the surface to the Retrievable Instrumentation Package using a “first communication channel” which are in turn relayed by repeater means to the rotary drill bit


192


that itself in this case is a “Smart Bit” using a “second communications channel”. Any other additional commands sent from the surface to the Retrievable Instrumentation Package could also be sent in that “first communications channel”. As another preferred embodiment of the invention, information sent from any Smart Bit that provides measurements during drilling to optimize drilling parameters can be sent from the Smart Bit to the Retrievable Instrumentation Package using a “third communications channel”, which are in turn relayed to the surface from the Retrievable Instrumentation Package using a “fourth communication channel”. Any other information measured by the Retrievable Instrumentation Package such as directional drilling information and/or information from MWD/LWD measurements would also be added to that fourth communications channel for simplicity. Ideally, the first, second, third, and fourth communications channels can send information in real time simultaneously. Means to send information includes acoustic modulation means, electromagnetic means, etc., that includes any means typically used in the industry suitably adapted to make the first, second, third, and fourth communications channels. In principle, any number of communications channels “N” can be used, all of which can be designed to function simultaneously. The above is one description of a “communications instrumentation”. Therefore, the Retrievable Instrumentation Package has “communications instrumentation” that is an example of “communications instrumentation means”.




In a preferred embodiment of the invention the Retrievable Instrumentation package includes a “directional assembly” meaning that it possesses means to determine precisely the depth, orientation, and all typically required information about the location of the drill bit and the drill string during drilling operations. The “directional assembly” may include accelerometers, magnetometers, gravitational measurement devices, or any other means to determine the depth, orientation, and all other information that has been obtained during typical drilling operations. In principle this directional package can be put in many locations in the drill string, but in a preferred embodiment of the invention, that information is provided by the Retrievable Instrumentation Package. Therefore, the Retrievable Instrumentation Package has a “directional measurement instrumentation” that is an example of a “directional measurement instrumentation means”.




As another option, and as another preferred embodiment, and means used to control the directional drilling of the drill bit, or Smart Bit, in

FIG. 6

can also be similarly incorporated in the Retrievable Instrumentation Package. Any hydraulic contacts necessary with formation can be suitably fabricated into the exterior wall of the Smart Drilling and Completion Sub


188


. Therefore, the Retrievable Instrumentation Package may have “directional drilling control apparatus and instrumentation” that is an example of “directional drilling control apparatus and instrumentation means”.




As an option, and as a preferred embodiment of the invention, the characteristics of the geological formation can be measured using the device in FIG.


6


. In principle, MWD (“Measurement-While-Drilling”) or LWD (“Logging-While-Drilling”) packages can be put in the drill string at many locations. In a preferred embodiment shown in

FIG. 6

, the MWD and LWD electronics are made a part of the Retrievable Instrumentation Package inside the Smart Drilling and Completion Sub


188


. Not shown in

FIG. 6

, any sensors that require external contact with the formation such as electrodes to conduct electrical current into the formation, acoustic modulator windows to let sound out of the assembly, etc., are suitably incorporated into the exterior walls of the Smart Drilling and Completion Sub. Therefore, the Retrievable Instrumentation Package may have “MWD/LWD instrumentation” that is an example of “MWD/LWD instrumentation means”.




Yet further, the Retrievable Instrumentation Package may also have active vibrational control devices. In this case, the “drilling monitoring instrumentation” is used to control a feedback loop that provides a command via the “communications instrumentation” to an actuator in the Smart Bit that adjusts or changes bit parameters to optimize drilling, and avoid “chattering”, etc. See the article entitled “Directional drilling performance improvement”, by M. Mims, World Oil, May 1999, pages 40-43, an entire copy of which is incorporated herein. Therefore, the Retrievable Instrumentation Package may also have “active feedback control instrumentation and apparatus to optimize drilling parameters” that is an example of “active feedback and control instrumentation and apparatus means to optimize drilling parameters”.




Therefore, the Retrieval Instrumentation Package in the Smart Drilling and Completion Sub in

FIG. 6

may have one or more of the following elements:




(a) mechanical means to pass mud through the body of


188


to the drill bit;




(b) retrieving means, including latching means, to accept and align the Retrievable Instrumentation Package within the Smart Drilling and Completion Sub;




(c) “drilling monitoring instrumentation” or “drilling monitoring instrumentation means”;




(d) “drill bit control instrumentation” or “drill bit control instrumentation means”;




(e) “communications instrumentation” or “communications instrumentation means”;




(f) “directional measurement instrumentation” or “directional measurement instrumentation means”;




(g) “directional drilling control apparatus and instrumentation” or “directional drilling control apparatus and instrumentation means”;




(h) “MWD/LWD instrumentation” or “MWD/LWD instrumentation means”;




(i) “active feedback and control instrumentation and apparatus to optimize drilling parameters” or “active feedback and control instrumentation and apparatus means to optimize drilling parameters”;




(j) an on-board power source in the Retrievable Instrumentation Package or “on-board power source means in the Retrievable Instrumentation Package”;




(k) an on-board mud-generator as is used in the industry to provide energy to (j) above or “mud-generator means”.




(l) batteries as are used in the industry to provide energy to (j) above or “battery means”;




For the purposes of this invention, any apparatus having one or more of the above features (a), (b), . . . , (j), (k), or (l), AND which can also be removed from the Smart Drilling and Completion Sub as described below in relation to

FIG. 7

, shall be defined herein as a Retrievable Instrumentation Package, that is an example of a retrievable instrument package means.





FIG. 7

shows a preferred embodiment of the invention that is explicitly configured so that following drilling operations that employ MWD/LWD measurements of formation properties during those drilling operations, smart shuttles may be used thereafter to complete oil and gas production from the offshore platform. As in

FIG. 6

, Smart Drilling and Completion Sub


188


has disposed inside it Retrievable Instrumentation Package


194


. The Smart Drilling and Completion Sub has mud passage


196


through it. The Retrievable Instrumentation Package has mud passage


198


through it. The Smart Drilling and Completion Sub has upper threads


200


that engage the last section of standard drill pipe


186


in FIG.


6


. The Smart Drilling and Completion Sub has lower threads


202


that engage the upper threads of the Bit Adaptor Sub


190


in FIG.


6


.




In

FIG. 7

, the Retrievable Instrumentation Package has high pressure walls


204


so that instrumentation in the package is not damaged by pressure in the wellbore. It has an inner payload radius r


1


, an outer payload radius r


2


, and overall payload length L that are not shown for the purposes of brevity. The Retrievable Instrumentation Package has retrievable means


206


that allows a wireline conveyed device from the surface to “lock on” and retrieve the Retrievable Instrumentation Package. Element


206


is the “Retrieval Means Attached to the Retrievable Instrumentation Package”.




As shown in

FIG. 7

, the Retrievable Instrumentation Package may have latching means


208


that is disposed in latch recession


210


that is actuated by latch actuator means


212


. The latching means


208


and latch recession


210


may function as described above in previous embodiments or they may be electronically controlled as required from inside the Retrievable Instrumentation Package.




Guide recession


214


in the Smart Drilling and Completion Sub is used to guide into place the Retrievable Instrumentation Package having alignment spur


216


. These elements are used to guide the Retrievable Instrumentation Package into place and for other purposes as described below. These are examples of “alignment means”.




Acoustic transmitter/receiver


218


and current conducting electrode


220


are used to measure various geological parameters as is typical in the MWD/LWD art in the industry, and they are “potted” in insulating rubber-like compounds


222


in the wall recession


224


shown in FIG.


7


. Power and signals for acoustic transmitter/receiver


218


and current conducting electrode


220


are sent over insulated wire bundles


226


and


228


to mating electrical connectors


232


and


234


. Electrical connector


234


is a high pressure connector that provides power to the MWD/LWD sensors and brings their signals into the pressure free chamber within the Retrievable Instrumentation Package as are typically used in the industry. Geometric plane “All “B” is defined by those legends appearing in

FIG. 7

for reasons which will be explained later.




A first directional drilling control apparatus and instrumentation is shown in FIG.


7


. Cylindrical drilling guide


236


is attached by flexible spring coupling device


238


to moving bearing


240


having fixed bearing race


242


that is anchored to the housing of the Smart Drilling and Completion Sub near the location specified by the numeral


244


. Sliding block


246


has bearing


248


that makes contact with the inner portion of the cylindrical drilling guide at the location specified by numeral


250


that in turn sets the angle θ. The cylindrical drilling guide


236


is free to spin when it is in physical contact with the geological formation. So, during rotary drilling, the cylindrical drilling guide spins about the axis of the Smart Drilling and Completion Sub that in turn rotates with the remainder of the drill string. The angle θ sets the direction in the x-y plane of the drawing in FIG.


7


. Sliding block


246


is spring loaded with spring


252


in one direction (to the left in

FIG. 7

) and is acted upon by piston


254


in the opposite direction (to the right as shown in FIG.


7


). Piston


254


makes contact with the sliding block at the position designated by numeral


256


in FIG.


7


. Piston


254


passes through bore


258


in the body of the Smart Drilling and Completion Sub and enters the Retrievable Instrumentation Package through o-ring


260


. Hydraulic piston actuator assembly


262


actuates the hydraulic piston


254


under electronic control from instrumentation within the Retrievable Instrumentation Package as described below. The position of the cylindrical drilling guide


236


and its angle θ is held stable in the two dimensional plane specified in

FIG. 7

by two competing forces described as (a) and (b) in the following: (a) the contact between the inner portion of the cylindrical drilling guide


236


and the bearing


248


at the location specified by numeral


250


; and (b) the net “return force” generated by the flexible spring coupling device


238


. The return force generated by the flexible spring coupling device is zero only when the cylindrical drilling guide


236


is parallel to the body of the Smart Drilling and Completion Sub.




There is a second such directional drilling control apparatus located rotationally 90 degrees from the first apparatus shown in

FIG. 7

so that the drill bit can be properly guided in all directions for directional drilling purposes. However, this second assembly is not shown in

FIG. 7

for the purposes of brevity. This second assembly sets the angle β in analogy to the angle θ defined above. The directional drilling apparatus in

FIG. 7

is one example of “directional drilling control means”. Directional drilling in the oil and gas industries is also frequently called “geosteering”, particularly when geophysical information is used in some way to direct the direction of drilling, and therefore the apparatus in

FIG. 7

is also an example of a “geosteering means”.




For a general review of the status of developments on directional drilling control systems in the industry, and their related uses, particularly in offshore environments, please refer to the following references: (a) the article entitled “ROTARY-STEERABLE TECHNOLOGY—Part 1, Technology gains momentum”, by T. Warren, Oil and Gas Journal, Dec. 21, 1998, pages 101-105, an entire copy of which is incorporated herein by reference; (b) the article entitled “ROTARY-STEERABLE TECHNOLOGY—Conclusion, Implementation issues concern operators”, by T. Warren, Oil and Gas Journal, Dec. 28, 1998, pages 80-83, an entire copy of which is incorporated herein by reference; (c) the entire issue of World Oil dated December 1998 entitled in part on the front cover “Marine Drilling Rigs, What's Ahead in 1999”, an entire copy of which is incorporated herein by reference; (d) the entire issue of World Oil dated July 1999 entitled in part on the front cover “Offshore Report” and “New Drilling Technology”, an entire copy of which is incorporated herein in by reference; and (e) the entire issue of The American Oil and Gas Reporter dated June 1999 entitled in part on the front cover “Offshore & Subsea Technology”, an entire copy of which is incorporated herein by reference; (f) U.S. Pat. No. 5,332,048, having the inventors of Underwood et. al., that issued on Jul. 26, 1994 entitled in part “Method and Apparatus for Automatic Closed Loop Drilling System”, an entire copy of which is incorporated herein by reference; (g) and U.S. Pat. No. 5,842,149 having the inventors of Harrell et. al., that issued on Nov. 24, 1998, that is entitled “Closed Loop Drilling System”, an entire copy of which is incorporated herein by reference. Furthermore, all references cited in the above defined documents (a) and (b) and (c) and (d) and (e) and (f) and (g) in this paragraph are also incorporated herein in their entirety by reference. Specifically, all 17 references cited on page 105 of the article defined in (a) and all 3 references cited on page 83 of the article defined in (b) are incorporated herein by reference. For further reference, rotary steerable apparatus and rotary steerable systems may also be called “rotary steerable means”, a term defined herein. Further, all the terms that are used, or defined in the above listed references (a), (b), (c), (d), and (e) are incorporated herein in their entirety.





FIG. 7

also shows a mud-motor electrical generator. The mud-motor generator is only shown FIGURATIVELY in FIG.


7


. This mud-motor electrical generator is incorporated within the Retrievable Instrumentation Package so that the mud-motor electrical generator is substantially removed when the Retrievable Instrumentation Package is removed from the Smart Drilling and Completion Sub. Such a design can be implemented using a split-generator design, where a permanent magnet is turned by mud flow, and pick-up coils inside the Retrievable Instrumentation Package are used to sense the changing magnetic field resulting in a voltage and current being generated. Such a design does not necessary need high pressure seals for turning shafts of the mud-motor electrical generator itself. To figuratively show a preferred embodiment of the mud-motor electrical generator in

FIG. 7

, element


264


is a permanently magnetized turbine blade having magnetic polarity N and S as shown. Element


266


is another such permanently magnetized turbine blade having similar magnetic polarity, but the N and S are not marked on element


266


in FIG.


7


. These two turbine blades spin about a bearing at the position designated by numeral


268


where the two turbine blades cross in FIG.


7


. The details for the support of that shaft are not shown in

FIG. 7

for the purposes of brevity. The mud flowing through the mud passage


198


of the Retrievable Instrumentation Package causes the magnetized turbine blades to spin about the bearing at position


268


. A pick-up coil mounted on magnetic bar material designated by numeral


270


senses the changing magnetic field caused by the spinning magnetized turbine blades and produces electrical output


272


that in turn provides time varying voltage V(t) and time varying current I(t) to yet other electronics described below that is used to convert these waveforms into usable power as is required by the Retrievable Instrumentation Package. The changing magnetic field penetrates the high pressure walls


204


of the Retrievable Instrumentation Package. For the figurative embodiment of the mud-motor electrical generator shown in

FIG. 7

, non-magnetic steel walls are probably better to use than walls made of magnetic materials. Therefore, the Retrievable Instrumentation Package and the Smart Drilling and Completion Sub may have a mud-motor electrical generator for the purposes herein.




The following block diagram elements are also shown in FIG.


7


: element


274


, the electronic instrumentation to sense, accept, and align (or release) the “Retrieval Means Attached to the Retrievable Instrumentation Package” and to control the latch actuator means


212


during acceptance (or release); element


276


, “power source” such as batteries and/or electronics to accept power from mud-motor electrical generator system and to generate and provide power as required to the remaining electronics and instrumentation in the Retrievable Instrumentation Package; element


278


, “downhole computer” controlling various instrumentation and sensors that includes downhole computer apparatus that may include processors, software, volatile memories, non-volatile memories, data buses, analogue to digital converters as required, input/output devices as required, controllers, battery back-ups, etc.; element


280


, “communications instrumentation” as defined above; element


282


, “directional measurement instrumentation” as defined above; element


284


, “drilling monitoring instrumentation” as defined above; element


286


, “directional drilling control apparatus and instrumentation” as defined above; element


288


, “active feedback and control instrumentation to optimize drilling parameters”, as defined above; element


290


, general purpose electronics and logic to make the system function properly including timing electronics, driver electronics, computer interfacing, computer programs, processors, etc.; element


292


, reserved for later use herein; and element


294


“MWD/LWD instrumentation”, as defined above.





FIG. 7

also shows optional mud seal


296


on the outer portion of the Retrievable Instrumentation Package that prevents drilling mud from flowing around the outer portion of that Package. Most of the drilling mud as shown in

FIG. 7

flows through mud passages


196


and


198


. Mud seal


296


is shown figuratively only in

FIG. 7

, and may be a circular mud ring, but any type of mud sealing element may be used, including the designs of elastomeric mud sealing elements normally associated with wiper plugs as described above and as used in the industry for a variety of purposes.




It should be evident that the functions attributed to the single Smart Drilling and Completion Sub


188


and Retrievable Instrumentation Package


194


may be arbitrarily assigned to any number of different subs and different pressure housings as is typical in the industry. However, “breaking up” the Smart Drilling and Completion Sub and the Retrievable Instrumentation Package are only minor variations of the preferred embodiment described herein.




Perhaps it is also worth noting that a primary reason for inventing the Retrievable Instrumentation Package


194


is because in the event of One-Trip-Down-Drilling, then the drill bit and the Smart Drilling and Completion Sub are left in the wellbore to save the time and effort to bring out the drill pipe and replace it with casing. However, if the MWD/LWD instrumentation is used as in

FIG. 7

, the electronics involved is often considered too expensive to abandon in the wellbore. Further, major portions of the directional drilling control apparatus and instrumentation and the mud-motor electrical generator are also relatively expensive, and those portions often need to be removed to minimize costs. Therefore, the Retrievable Instrumentation Package


194


is retrieved from the wellbore before the well is thereafter completed to produce hydrocarbons.




The preferred embodiment of the invention in

FIG. 7

has one particular virtue that is of considerable value. When the Retrievable Instrumentation Package


194


is pulled to the left with the Retrieval Means Attached to the Retrievable Instrumentation Package


206


, then mating connectors


232


and


234


disengage, and piston


254


is withdrawn through the bore


258


in the body of the Smart Drilling and Completion Sub. The piston


254


had made contact with the sliding block


246


at the location specified by numeral


256


, and when the Retrievable Instrumentation Package


194


is withdrawn, the piston


254


is free to be removed from the body of the Smart Drilling and Completion Sub. The Retrievable Instrumentation Package “splits” from the Smart Drilling and Completion Sub approximately along plane “A” “B” defined in FIG.


7


. In this way, most of the important and expensive electronics and instrumentation can be removed after the desired depth is reached. With suitable designs of the directional drilling control apparatus and instrumentation, and with suitable designs of the mud-motor electrical generator, the most expensive portions of these components can be removed with the Retrievable Instrumentation Package.




The preferred embodiment in

FIG. 7

has yet another important virtue. If there is any failure of the Retrievable Instrumentation Package before the desired depth has been reached, it can be replaced with another unit from the surface without removing the pipe from the well using methods to be described in the following. This feature would save considerable time and money that is required to “trip out” a standard drill string to replace the functional features of the instrumentation now in the Retrievable Instrumentation Package.




In any event, after the total depth is reached in

FIG. 6

, and if the Retrievable Instrumentation Package had MWD and LWD measurement packages as described in

FIG. 7

, then it is evident that sufficient geological information is available vs. depth to complete the well and to commence hydrocarbon production. Then, the Retrievable Instrumentation Package can be removed from the pipe using techniques to be described in the following.




It should also be noted that in the event that the wellbore had been drilled to the desired depth, but on the other hand, the MWD and LWD information had NOT been obtained from the Retrievable Instrumentation Package during that drilling, and following its removal from the pipe, then measurements of the required geological formation properties can still be obtained from within the steel pipe using the logging techniques described above under the topic of “Several Recent Changes in the Industry”—and please refer to item (b) under that category. Logging through steel pipes and logging through casings to obtain the required geophysical information are now possible.




In any event, let us assume that at this point in the One-Trip-Down-Drilling Process that the following is the situation: (a) the wellbore has been drilled to final depth; (b) the configuration is as shown in

FIG. 6

with the Retrievable Instrumentation Package at depth; and (c) complete geophysical information has been obtained with the Retrievable Instrumentation Package.




As described earlier in relation to

FIG. 7

, the Retrievable Instrumentation Package has retrieval means


206


that allows a wireline conveyed device operated from the surface to “lock on” and retrieve the Retrievable Instrumentation Package. Element


206


is the “Retrieval Means Attached to the Retrievable Instrumentation Package” in FIG.


7


. As one form of the preferred embodiment shown in

FIG. 7

, element


206


may have retrieval grove


298


that will assist the wireline conveyed device from the surface to “lock on” and retrieve the Retrievable Instrumentation Package.




Smart Shuttles





FIG. 8

shows an example of such a wireline conveyed device operated from the surface of the earth used to retrieve devices within the steel drill pipe that is generally designated by numeral


300


. A wireline


302


, typically having 7 electrical conductors with an armor exterior, is attached to the cablehead, generally labeled with numeral


304


in FIG.


8


. Cablehead


304


is in turn attached to the Smart Shuttle that is generally shown as numeral


306


in

FIG. 8

, which in turn is connected to an attachment. In this case, the attachment is the “Retrieval & Installation Subassembly”, otherwise abbreviated as the “Retrieval/Installation Sub”, also simply abbreviated as the “Retrieval Sub”, and it is generally shown as numeral


308


in FIG.


8


. The Smart Shuttle is used for a number of different purposes, but in the case of

FIG. 8

, and in the sequence of events described in relation to

FIGS. 6 and 7

, it is now appropriate to retrieve the Retrievable Instrumentation Package installed in the drill string as shown in

FIGS. 6 and 7

. To that end, please note that electronically controllable retrieval snap ring assembly


310


is designed to snap into the retrieval grove


298


of element


206


when the mating nose


312


of the Retrieval Sub enters mud passage


198


of the Retrievable Instrumentation Package. Mating nose


312


of the Retrieval Sub also has retrieval sub electrical connector


313


(not shown in

FIG. 8

) that provides electrical commands and electrical power received from the wireline and from the Smart Shuttle as is appropriate. (For the record, the retrieval sub electrical connector


313


is not shown explicitly in

FIG. 8

because the scale of that drawing is too large, but electrical connector


313


is explicitly shown in

FIG. 9

where the scale is appropriate.)





FIG. 8

shows a portion of an entire system to automatically complete oil and gas wells. This system is called the “Automated Smart Shuttle Oil and Gas Completion System”, or also abbreviated as the “Automated Smart Shuttle System”, or the “Smart Shuttle Oil and Gas Completion System”. In

FIG. 8

, the floor of the offshore platform


314


is attached to riser


156


having riser hanger apparatus


315


as is typically used in the industry. The drill string


170


is composed of many lengths of drill pipe and a first blow-out preventer


316


is suitably installed on an upper section of the drill pipe using typical art in the industry. This first blow-out preventer


316


has automatic shut off apparatus


318


and manual back-up apparatus


319


as is typical in the industry. A top drill pipe flange


320


is installed on the top of the drill string.




“The Wiper Plug Pump-Down Stack” is generally shown as numeral


322


in FIG.


8


. The reason for the name for this assembly will become clear in the following. Wiper Plug Pump-Down Stack”


322


is comprised various elements including the following: lower pump-down stack flange


324


, cylindrical steel pipe wall


326


, upper pump-down stack flange


328


, first inlet tube


330


with first inlet tube valve


332


, second inlet tube


334


with second inlet tube valve


336


, third inlet tube


338


with third inlet tube valve


340


, with primary injector tube


342


with primary injector tube valve


344


. Particular regions within the “Wiper Plug Pump-Down Stack” are identified respectively with legends A, B and C that are shown in FIG.


8


. Bolts and bolt patterns for the lower pump-down stack flange


324


, and its mating part that is top drill pipe flange


320


, are not shown for simplicity. Bolts and bolt patterns for the upper pump down stack flange


328


, and its respective mating part to be describe in the following, are also not shown for simplicity. In general in

FIG. 8

, flanges may have bolts and bolt patterns, but those are not necessarily shown for the purposes of simplicity.




The “Smart Shuttle Chamber”


346


is generally shown in FIG.


8


. Smart shuttle chamber door


348


is pressure sealed with a one-piece O-ring identified with the numeral


350


. That O-ring is in a standard O-ring grove as is used in the industry. Bolt hole


352


through the smart shuttle chamber door mates with mounting bolt hole


354


on the mating flange body


356


of the Smart Shuttle Chamber. Tightened bolts will firmly hold the smart shuttle chamber door


348


against the mating flange body


356


that will suitably compress the one-piece O-ring


350


to cause the Smart Shuttle Chamber to seal off any well pressure inside the Smart Shuttle Chamber.




Smart Shuttle Chamber


346


also has first smart shuttle chamber inlet tube


358


and first smart shuttle chamber inlet tube valve


360


. Smart Shuttle Chamber


346


also has second smart shuttle chamber inlet tube


362


and second smart shuttle chamber inlet tube valve


364


. Smart Shuttle Chamber


346


has upper smart shuttle chamber cylindrical wall


366


and upper smart shuttle chamber flange


368


as shown in FIG.


8


. The Smart Shuttle Chamber


346


has two general regions identified with the legends D and E in FIG.


8


. Region D is the accessible region where accessories may be attached or removed from the Smart Shuttle, and region E has a cylindrical geometry below second smart shuttle chamber inlet tube


362


. The Smart Shuttle and its attachments can be “pulled up” into region E from region D for various purposes to be described later. Smart Shuttle Chamber


346


is attached by the lower smart shuttle flange


370


to upper pump-down stack flange


328


. The entire assembly from the lower smart shuttle flange


370


to the upper smart shuttle chamber flange


368


is called the “Smart Shuttle Chamber System” that is generally designated with the numeral


372


in FIG.


8


. The Smart Shuttle Chamber System


372


includes the Smart Shuttle Chamber itself that is numeral


346


which is also referred to as region D in FIG.


8


.




The “Wireline Lubricator System”


374


is also generally shown in FIG.


8


. Bottom flange of wireline lubricator system


376


is designed to mate to upper smart shuttle chamber flange


368


. These two flanges join at the position marked by numeral


377


. In

FIG. 8

, the legend Z shows the depth from this position


377


to the top of the Smart Shuttle. Measurement of this depth Z, and knowledge of the length L


1


of the Smart Shuttle (not shown in

FIG. 8

for simplicity), and the length L


2


of the Retrieval Sub (not shown in

FIG. 8

for simplicity), and all other pertinent lengths L


3


, L


4


, . . . , any apparatus in the wellbore, allows the calculation of the “depth to any particular element in the wellbore” using standard art in the industry.




The Wireline Lubricator System in

FIG. 8

has various additional features, including a second blow-out preventer


378


, lubricator top body


380


, fluid control pipe


382


and its fluid control valve


384


, a hydraulic packing gland generally designated by numeral


386


in

FIG. 8

, having gland sealing apparatus


388


, grease packing pipe


390


and grease packing valve


392


. Typical art in the industry is used to fabricate and operate the Wireline Lubricator System, and for additional information on such systems, please refer to

FIG. 9

, page 11, of Lesson 4, entitled “Well Completion Methods”, of series entitled “Lessons in Well Servicing and Workover”, published by the Petroleum Extension Service of The University of Texas at Austin, Austin, Tex., 1971 , that is incorporated herein by reference in its entirety, which series was previously referred to above as “Ref. 2”. In

FIG. 8

, the upper portion of the wireline


394


proceeds to sheaves as are used in the industry and to a wireline drum under computer control as described in the following. However, at this point, it is necessary to further describe relevant attributes of the Smart Shuttle.





FIG. 9

shows an enlarged view of the Smart Shuttle


306


and the “Retrieval Sub”


308


that are attached to the cablehead


304


suspended by wireline


302


. The cablehead has shear pins


396


as are typical in the industry. A threaded quick change collar


398


causes the mating surfaces of the cablehead and the Smart Shuttle to join together at the location specified by numeral


400


. Typically


7


insulated electrical conductors are passed through the location specified by numeral


400


by suitable connectors and O-rings as are used in the industry. Several of these wires will supply the needed electrical energy to run the electrically operated pump in the Smart Shuttle and other devices as described below.




In

FIG. 9

, a particular embodiment of the Smart Shuttle is described which, in this case, has an electrically operated internal pump, and this pump is called the “internal pump of the smart shuttle” that is designated by numeral


402


. Numeral


402


designates an “internal pump means”. The upper inlet port


404


for the pump has electronically controlled upper port valve


406


. The lower inlet port


408


for the pump has electronically controlled lower port valve


410


. Also shown in

FIG. 9

is the bypass tube


412


having upper bypass tube valve


414


and lower bypass tube valve


416


. In a preferred embodiment of the invention, the electrically operated internal pump


402


is a “positive displacement pump”. For such a pump, and if valves


406


and


410


are open, then during any one specified time interval Δt, a specific volume of fluid ΔV


1


is pumped from below the Smart Shuttle to above the Smart Shuttle through inlets


404


and


408


as they are shown in FIG.


9


. For further reference, the “down side” of the Smart Shuttle in

FIG. 9

is the “first side” of the Smart Shuttle and the “up side” of the Smart Shuttle in

FIG. 9

is the “second side” of the Smart Shuttle. Such up and down designations loose their meaning when the wellbore is substantially a horizontal wellbore where the Smart Shuttle will have great utility. Please refer to the legends ΔV


1


on FIG.


9


. This volume ΔV


1


relates to the movement of the Smart Shuttle as described later below.




In

FIG. 9

, the Smart Shuttle also has elastomer sealing elements. The elastomer sealing elements on the right-hand side of

FIG. 9

are labeled as elements


418


and


420


. These elements are shown in a flexed state which are mechanically loaded against the right-hand interior cylindrical wall


422


of the Smart Shuttle Chamber


346


by the hanging weight of the Smart Shuttle and related components. The elastomer sealing elements on the left-hand side of

FIG. 9

are labeled as elements


424


and


426


, and are shown in a relaxed state (horizontal) because they are not in contact with any portion of a cylindrical wall of the Smart Shuttle Chamber. These elastomer sealing elements are examples of “lateral sealing means” of the Smart Shuttle. In the preferred embodiment shown in

FIG. 9

, it is contemplated that the right-hand element


418


and the left-hand element


424


are portions of one single elastomeric seal. It is further contemplated that the right-hand element


420


and the left-hand element


426


are portions of yet another separate elastomeric seal. Many different seals are possible, and these are examples of “sealing means” associated with the Smart Shuttle.





FIG. 9

further shows quick change collar


428


that causes the mating surfaces of the lower portion of the Smart Shuttle to join together to the upper mating surfaces of the Retrieval Sub at the location specified by numeral


430


. Typically,


7


insulated electrical conductors are also passed through the location specified by numeral


430


by suitable mating electrical connectors as are typically used in the industry. Therefore, power, control signals, and measurements can be relayed from the Smart Shuttle to the Retrieval Sub and from the Retrieval Sub to the Smart Shuttle by suitable mating electrical connectors at the location specified by numeral


430


. To be thorough, it is probably worthwhile to note here that numeral


431


is reserved to figuratively designate the top electrical connector of the Retrieval Sub, although that connector


431


is not shown in

FIG. 9

for the purposes of simplicity. The position of the electronically controllable retrieval snap ring assembly


310


is controlled by signals from the Smart Shuttle. With no signal, the snap ring of assembly


310


is spring-loaded into the position shown in FIG.


9


. With a “release command” issued from the surface, electronically controllable retrieval snap ring assembly


310


is retracted so that it does NOT protrude outside vertical surface


432


(i.e., snap ring assembly


310


is in its full retracted position). Therefore, electronic signals from the surface are used to control the electronically controllable retrieval snap ring assembly


310


, and it may be commanded from the surface to “release” whatever it had been holding in place. In particular, once suitably aligned, assembly


310


may be commanded to “engage” or “lock-on” retrieval grove


298


in the Retrievable Instrumentation Package


206


, or it can be commanded to “release” or “pull back from” the retrieval grove


298


in the Retrievable Instrumentation Package as may be required during deployment or retrieval of that Package, as the case may be.




One method of operating the Smart Shuttle is as follows. With reference to

FIG. 8

, and if the first smart shuttle chamber inlet tube valve


360


is in its open position, fluids, such as water or drilling mud as required, are introduced into the first smart shuttle chamber inlet tube


358


. With second smart shuttle chamber inlet tube valve


364


in its open position, then the injected fluids are allowed to escape through second smart shuttle chamber inlet tube


362


until substantially all the air in the system has been removed. In a preferred embodiment, the internal pump of the smart shuttle


402


is a self-priming pump, so that even if any air remains, the pump will still pump fluid from below the Smart Shuttle, to above the Smart Shuttle. Similarly, inlets


330


,


334


,


338


, and


342


, with their associated valves, can also be used to “bleed the system” to get rid of trapped air using typical procedures often associated with hydraulic systems. With reference to

FIG. 9

, it would further help the situation if valves


406


,


410


,


414


and


416


in the Smart Shuttle were all open simultaneously during “bleeding operations”, although this may not be necessary. The point is that using typical techniques in the industry, the entire volume within the regions A, B, C, D, and E within the interior of the apparatus in

FIG. 8

can be fluid filled with fluids such as drilling mud, water, etc. This state of affairs is called the “priming” of the Automated Smart Shuttle System in this preferred embodiment of the invention.




After the Automated Smart Shuttle System is primed, then the wireline drum is operated to allow the Smart Shuttle and the Retrieval Sub to be lowered from region D of

FIG. 8

to the part of the system that includes regions A, B, and C.

FIG. 10

shows the Smart Shuttle and Retrieval Sub in that location.




In

FIG. 10

, all the numerals and legends in

FIG. 10

have been previously defined. When the Smart Shuttle and the Retrieval Sub are located in regions A, B, and C, then the elastomer sealing elements


418


,


420


,


424


, and


426


positively seal against the cylindrical walls of the now fluid filled enclosure. Please notice the change in shape of the elastomer sealing elements


424


and


426


in FIG.


9


and in FIG.


10


. The reason for this change is because the regions A, B, and C are bounded by cylindrical metal surfaces with intervening pipes such as inlet tubes


330


,


334


,


338


, and primary injector tube


342


. In a preferred embodiment of the invention, the vertical distance between elastomeric units


418


and


420


are chosen so that they do simultaneously overlap any two inlet pipes to avoid loss a positive seal along the vertical extent of the Smart Shuttle.




Then, in

FIG. 10

, valves


414


and


416


are closed, and valves


406


and


410


are opened. Thereafter, the electrically operated internal pump


402


is turned “on”. In a preferred embodiment of the invention, the electrically operated internal pump is a “positive displacement pump”. For such a pump, and as had been previously described, during any one specified time interval At, a specific volume of fluid ΔV


1


is pumped from below the Smart Shuttle to above the Smart Shuttle through valves


406


and


410


. Please refer to the legends ΔV


1


on FIG.


10


. In

FIG. 10

, The top of the Smart Shuttle is at depth Z, and that legend was defined in

FIG. 8

in relation to position


377


in that figure. In

FIG. 10

, the inside radius of the cylindrical portion of the wellbore is defined by the legend al. However, first it is perhaps useful to describe several different embodiments of Smart Shuttles and associated Retrieval Subs.




Element


306


in

FIG. 8

is the “Smart Shuttle”. This apparatus is “smart” because the “Smart Shuttle” has one or more of the following features (hereinafter, “List of Smart Shuttle Features”):




(a) it provides depth measurement information, ie., it has “depth measurement means”




(b) it provides orientation information within the metallic pipe, drill string, or casing, whatever is appropriate, including the angle with respect to vertical, and any azimuthal angle in the pipe as required, and any other orientational information required, ie., it has “orientational information measurement means”




(c) it possesses at least one power source, such as a battery or batteries, or apparatus to convert electrical energy from the wireline to power any sensors, electronics, computers, or actuators as required, ie., it has “power source means”




(d) it possesses at least one sensor and associated electronics including any required analogue to digital converter devices to monitor pressure, and/or temperature, such as vibrational spectra, shock sensors, etc., ie., it has “sensor measurement means”




(e) it can receive commands sent from the surface, ie., it has “command receiver means from surface”




(f) it can send information to the surface, ie., it has “information transmission means to surface”




(g) it can relay information to one or more portions of the drill string, ie., it has “tool relay transmission means”




(h) it can receive information from one or more portions of the drill string, ie., it has “tool receiver means”




(i) it can have one or more means to process information, ie., it has at least one “processor means”




(j) it can have one or more computers to process information, and/or interpret commands, and/or send data, ie., it can have one or more “computer means”




(k) it can have one or more means for data storage




(l) it can have one or more means for nonvolatile data storage if power is interrupted, ie., it has one or more “nonvolatile data storage means”




(m) it can have one or more recording devices, ie., it has one or more “recording means”




(n) it can have one or more read only memories, ie., it can have one or more “read only memory means”




(o) it may have one or more electronic controllers to process information, ie., it may have one or more “electronic controller means”




(p) it can have one or more actuator means to change at least one physical element of the device in response to measurements within the device, and/or commands received from the surface, and/or relayed information from any portion of the drill string




(q) the device can be deployed into the metallic pipe, the drill string, or the casing as is appropriate, by any means, including means to pump it down with mud pressure by analogy to a wiper plug, or it may use any type of mechanical means including gears and wheels to engage the casing




(r) the device can be deployed with any coiled tubing device and may be retrieved with any coiled tubing device, ie., it can be deployed and retrieved with any “coiled tubing means”




(s) the device can be deployed with any coiled tubing device having wireline inside the coiled tubing device




(t) the device may have “standard geophysical depth control sensors” including natural gamma ray measurement devices, casing collar locators, etc., ie., the device can have “standard depth control measurement means”




(u) the device may have any typical geophysical measurement device described in the art including its own MWD/LWD measurement devices described elsewhere above, ie., it can have any “geophysical measurement means”




(v) the device may have one or more electrically operated pumps including positive displacement pumps, turbine pumps, centrifugal pumps, impulse pumps, etc., ie., it may have one or more “internal pump means”




(w) the device may have a positive displacement pump coupled to a transmission device for providing relatively large pulling forces, ie., it may have one or more “transmission means”




(x) the device may have two pumps in one unit, a positive displacement pump to provide large forces and relatively slow smart shuttle speeds and a turbine pump to provide lesser forces at relatively high smart shuttle speeds, ie., it may have “two or more internal pump means”




(y) the device may have one or more pumps operated by other energy sources




(z) the device may have one or more bypass assemblies such as the bypass assembly comprised of elements


464


,


466


,


468


,


470


, and


472


in

FIG. 11

, ie., it may have one or more “bypass means”




(aa) the device may have one or more electrically operated valves, ie., it may have one or more electrically operated “valve means”




(ab) it may have attachments to it or devices incorporated in it that install into the well and/or retrieve from the well various “Well Completion Devices” as are defined below




The “Retrieval & Installation Subassembly”, otherwise abbreviated as the “Retrieval/Installation Sub”, also simply abbreviated as the “Retrieval Sub”, and it is generally shown as numeral


308


, has one or more of the following features (hereinafter, “List of Retrieval Sub Features”):




(a) it is attached to or is made a portion of the Smart Shuttle




(b) it has means to retrieve apparatus disposed in a steel pipe




(c) it has means to install apparatus into a steel pipe




(d) it has means to install various completion devices into steel pipes




(e) it has means to retrieve various completion devices from steel pipes




(f) it may have at least one sensor for measuring information downhole, and apparatus for transmitting that measured information to the Smart Shuttle or uphole, apparatus for receiving commands if necessary, and a battery or batteries or other suitable power source as may be required




Element


402


that is the “internal pump of the smart shuttle” may be any electrically operated pump, or any hydraulically operated pump that in turn, derives its power in any way from the wireline. Standard art in the field is used to fabricate the components of the Smart Shuttle and that art includes all pump designs typically used in the industry. Standard literature on pumps, fluid mechanics, and hydraulics is also used to design and fabricate the components of the Smart Shuttle, and specifically, the book entitled “Theory and Problems of Fluid Mechanics and Hydraulics”, Third Edition, by R. V. Giles, J. B. Evett, and C. Liu, Schaum's Outline Series, McGraw-Hill, Inc., New York, N.Y. 1994, 378 pages, is incorporated herein in its entirety by reference.




For the purposes of several preferred embodiments of this invention, an example of a “wireline conveyed smart shuttle means having retrieval and installation means” is comprised of the Smart Shuttle and the Retrieval Sub shown in FIG.


8


. From the above description, a Smart Shuttle may have many different features that are defined in the above “List of Smart Shuttle Features” and the Smart Shuttle by itself is called for the purposes herein a “wireline conveyed smart shuttle means” or simply a “wireline conveyed shuttle means”. A Retrieval Sub may have many different features that are defined in the above “List of Retrieval Sub Features” and for the purposes herein, it is also described as a “retrieval and installation means”. Accordingly, a particular preferred embodiment of a “wireline conveyed shuttle means” has one or more features from the “List of Smart Shuttle Features” and one or more features from the “List of Retrieval Sub Features”. Therefore, any given “wireline conveyed shuttle means having retrieval and installation means” may have a vast number of different features as defined above. Depending upon the context, the definition of a “wireline conveyed shuttle means having retrieval and installation means” may include any first number of features on the “List of Smart Shuttle Features” and may include any second number of features on the “List of Retrieval Sub Features”. In this context, and for example, a “wireline conveyed shuttle means having retrieval and installation means” may have 4 particular features on the “List of Smart Shuttle Features” and may have 3 features on the “List of Retrieval Sub Features”. The phrase “wireline conveyed smart shuttle means having retrieval and installation means” is also equivalently described for the purposes herein as “wireline conveyed shuttle means possessing retrieval and installation means”.




It is now appropriate to discuss a generalized block


24


diagram of one type of Smart Shuttle. The block diagram of another preferred embodiment of a Smart Shuttle is identified as numeral


434


in FIG.


11


. Legends showing “UP” and “DOWN” appear in FIG.


11


. Element


436


represents a block diagram of an first electrically operated internal pump, and in this preferred embodiment, it is a positive displacement pump, which is associated with an upper port


438


, electrically controlled upper valve


440


, upper tube


442


, lower tube


444


, electrically controlled lower valve


446


, and lower port


448


, which subsystem is collectively called herein “the Positive Displacement Pump System”. In

FIG. 11

, there is another second electrically operated internal pump, which in this case is an electrically operated turbine pump


450


, which is associated with an upper port


452


, electrically operated upper valve


454


, upper tube


456


, lower tube


458


, electrically operated lower valve


460


, and lower port


462


, which system is collectively called herein “the Secondary Pump System”.

FIG. 11

also shows upper bypass tube


464


, electrically operated upper bypass valve


466


, connector tube


468


, electrically operated lower bypass valve


470


, and lower bypass tube


472


, which subsystem is collectively called herein “the Bypass System”. The 7 conductors (plus armor) from the cablehead are connected to upper electrical plug


473


in the Smart Shuttle. The 7 conductors then proceed through the upper portion of the Smart Shuttle that are figuratively shown as numeral


474


and those electrically insulated wires are connected to smart shuttle electronics system module


476


. The wire bundle pass through typically having 7 conductors that provide signals and power from the wireline and the Smart Shuttle to the Retrieval Sub are figuratively shown as element


478


and these in turn are connected to lower electrical connector


479


. Signals and power from lower electrical connector


479


within the Smart Shuttle are provided as necessary to mating top electrical connector


431


of the Retrieval Sub and then those signals and power are in turn passed through the Retrieval Sub to the retrieval sub electrical connector


313


as shown in FIG.


9


. Smart shuttle electronics system module


476


carries out all the other possible functions listed as items (a) to (z), and (aa) to (ab), in the above defined list of “List of Smart Shuttle Features”, and those functions include all necessary electronics, computers, processors, measurement devices, etc. to carry out the functions of the Smart Shuttle. Various outputs from the smart shuttle electronics system module


476


are figuratively shown as elements


480


to


498


. As an example, element


480


provides electrical energy to pump


436


; element


482


provides electrical energy to pump


450


; element


484


provides electrical energy to valve


440


; element


486


provides electrical energy to valve


446


; element


488


provides electrical energy to valve


454


; element


490


provides electrical energy to valve


460


; element


492


provides electrical energy to valve


466


; element


494


provides electrical energy to valve


470


; etc. In the end, there may be a hundred or more additional electrical connections to and from the smart shuttle electronics system module


476


that are collectively represented by numerals


496


and


498


. In

FIG. 11

, the right-hand and left-hand portions of upper smart shuttle seal are labeled respectively


500


and


502


. Further, the right-hand and left-hand portions of lower smart shuttle seal are labeled respectively with numerals


504


and


506


. Not shown in

FIG. 11

are apparatus that may be used to retract these seals under electronic control that would protect the seals from wear during long trips into the hole within mostly vertical well sections where the weight of the smart shuttle means is sufficient to deploy it into the well under its own weight. These seals would also be suitably retracted when the smart shuttle means is pulled up by the wireline.




The preferred embodiment of the block diagram for a Smart Shuttle has a particular virtue. Electrically operated pump


450


is an electrically operated turbine pump, and when it is operating with valves


454


and


460


open, and the rest closed, it can drag significant loads downhole at relatively high speeds. However, when the well goes horizontal, the loads increase. If electrically operated pump


450


stalls or cavitates, etc., then electrically operated pump


436


that is a positive displacement pump takes over, and in this case, valves


440


and


446


are open, with the rest closed. Pump


436


a particular type of positive displacement pump that may be attached to a pump transmission device so that the load presented to the positive displacement pump does not exceed some maximum specification independent of the external load. See

FIG. 12

for additional details.





FIG. 12

shows a block diagram of a pump transmission device


508


that provides a mechanical drive


510


to positive displacement pump


512


. Electrical power from the wireline is provided by wire bundle


514


to electric motor


516


and that motor provides a mechanical coupling


518


to pump transmission device


508


. Pump transmission device


508


may be an “automatic pump transmission device” in analogy to the operation of an automatic transmission in a vehicle, or pump transmission device


508


may be a “standard pump transmission device” that has discrete mechanical gear ratios that are under control from the surface of the earth. Such a pump transmission device prevents pump stalling, and other pump problems, by matching the load seen by the pump to the power available by the motor. Otherwise, the remaining block diagram for the system would resemble that shown in

FIG. 11

, but that is not shown here for the purposes of brevity.




Another preferred embodiment of the Smart Shuttle contemplates using a “hybrid pump/wheel device”. In this approach, a particular hydraulic pump in the Smart Shuttle can be alternatively used to cause a traction wheel to engage the interior of the pipe. In this hybrid approach, a particular hydraulic pump in the Smart Shuttle is used in a first manner as is described in

FIGS. 8-12

. In this hybrid approach, and by using a set of electrically controlled valves, a particular hydraulic pump in the Smart Shuttle is used in a second manner to cause a traction wheel to rotate and to engage the pipe that in turn causes the Smart Shuttle to translate within the pipe. There are many designs possible using this “hybrid approach”.





FIG. 13

shows a block diagram of a preferred embodiment of the Smart Shuttle having a hybrid pump design that is generally designated with the numeral


520


. Selected elements ranging from element


436


to element


506


in

FIG. 13

have otherwise been defined in relation to FIG.


11


. In addition, inlet port


522


is connected to electrically controlled valve


524


that is in turn connected to two-state valve


526


that may be commanded from the surface of the earth to selectively switch between two states as follows: “state 1”—the inlet port


522


is connected to secondary pump tube


528


and the traction wheel tube


530


is closed; or “state 2”—the inlet port


522


is closed, and the secondary pump tube


528


is connected to the traction wheel tube


530


. Secondary pump tube


528


in turn is connected to second electrically operated pump


532


, tube


534


, electrically operated valve


536


and port


538


and operates analogously to elements


452


-


462


in

FIG. 11

provided the two-state valve


526


is in state 1.




In

FIG. 13

, in “state 2”, with valve


536


open, and when energized, electrically operated pump


532


forces well fluids through tube


528


and through two-state valve


526


and out tube


530


. If valve


540


is open, then the fluids continue through tube


542


and to turbine assembly


544


that causes the traction wheel


546


to move the Smart Shuttle downward in the well. In

FIG. 13

, the “turbine bypass tube” for fluids to be sent to the top of the Smart Shuttle AFTER passage through turbine assembly


544


is NOT shown in detail for the purposes of simplicity only in

FIG. 13

, but this “turbine bypass tube” is figuratively shown by dashed lines as element


548


.




In

FIG. 13

, the actuating apparatus causing the traction wheel


546


to engage the pipe on command from the surface is shown figuratively as element


550


in FIG.


13


. The point is that in “state 2”, fluids forced through the turbine assembly


544


cause the traction wheel


546


to make the Smart Shuttle go downward in the well, and during this process, fluids forced through the turbine assembly


544


are “vented” to the “up” side of the Smart Shuttle through “turbine bypass tube”


548


. Backing rollers


552


and


554


are figuratively shown in

FIG. 13

, and these rollers take side thrust against the pipe when the traction wheel


546


engages the inside of the pipe.




In the event that seals


500


-


502


or


504


-


506


in

FIG. 13

were to lose hydraulic sealing with the pipe, then “state 2” provides yet another means to cause the Smart Shuttle to go downward in the well under control from the surface. The wireline can provide arbitrary pull in the vertical direction, so in this preferred embodiment, “state 2” is primarily directed at making the Smart Shuttle go downward in the well under command from the surface. Therefore, in

FIG. 13

, there are a total of three independent ways to make the Smart Shuttle go downward under command from the surface of the earth (“standard” use of pump


436


; “standard” use of pump


532


in “state 1”; and the use of the traction wheel in “state 2”).




The downward velocity of the Smart Shuttle can be easily determined assuming that electrically operated pump


402


in

FIGS. 9 and 10

are positive displacement pumps so that there is no “pump slippage” caused by pump stalling, cavitation effects, or other pump “imperfections”. The following also applies to any pump that pumps a given volume per unit time without any such non-ideal effects. As stated before, in the time interval Δt, a quantity of fluid ΔV


1


is pumped from below the Smart Shuttle to above it. Therefore, if the position of the Smart Shuttle changes downward by ΔZ in the time interval Δt, and with radius a


1


defined in

FIG. 10

, it is evident that:






Δ


V




1





t=ΔZ/Δt


{π(


a




1


)


2


}  Equation 1.








Downward Velocity=Δ


Z/Δ={ΔV




1





t }/{π


(


a




1


)


2


}  Equation 2.






Here, the “Downward Velocity” defined in Equation 2 is the average downward velocity of the Smart Shuttle that is averaged over many cycles of the pump. After the Smart Shuttle of the Automated Smart Shuttle System is primed, then the Smart Shuttle and its pump resides in a standing fluid column and the fluids are relatively non-compressible. Further, with the above pump transmission device


508


in

FIG. 12

, or equivalent, the electrically operated pump system will not stall. Therefore, when a given volume of fluid ΔV is pumped from below the Smart Shuttle to above it, the Shuttle will move downward provided the elastomeric seals like elements


500


,


502


,


504


and


506


in

FIGS. 9

,


11


, and


13


do not lose hydraulic seal with the casing. Again there are many designs for such seals, and of course, more than two seals can be used along the length of the Smart Shuttle. If the seals momentarily loose their hydraulic sealing ability, then a “hybrid pump/wheel device” as described in

FIG. 13

can be used momentarily until the seals again make suitable contact with the interior of the pipe.




The preferred embodiment of the Smart Shuttle having internal pump means to pump fluid from below the Smart Shuttle to above it to cause the shuttle to move in the pipe may also be used to replace relatively slow and inefficient “well tractors” that are now commonly used in the industry.




Closed-Loop Completion System





FIG. 14

shows a remaining component of the Automated Smart Shuttle System. It is a portion of a preferred embodiment of an automated system to complete oil and gas wells. It is also a portion of a preferred embodiment of a closed-loop system to complete oil and gas wells.

FIG. 14

shows the computer control of the wireline drum and of the Smart Shuttle in a preferred embodiment of the invention.




In

FIG. 14

, computer system


556


has typical components in the industry including one or more processors, one or more non-volatile memories, one or more volatile memories, many software programs that can run concurrently or alternatively as the situation requires, etc., and all other features as necessary to provide computer control of the Automated Shuttle System. In this preferred embodiment, this same computer system


556


also has the capability to acquire data from, send commands to, and otherwise properly operate and control all instruments in the Retrievable Instrumentation Package. Therefore LWD and MWD data is acquired by this same computer system when appropriate. Therefore, in one preferred embodiment, the computer system


556


has all necessary components to interact with the Retrievable Instrumentation Package. In a “closed-loop” operation of the system, information obtained downhole from the Retrievable Instrumentation Package is sent to the computer system that is executing a series of programmed steps, whereby those steps may be changed or altered depending upon the information received from the downhole sensor.




In

FIG. 14

, the computer system


556


has a cable


558


that connects it to display console


560


. The display console


560


displays data, program steps, and any information required to operate the Smart Shuttle System. The display console is also connected via cable


562


to alarm and communications system


564


that provides proper notification to crews that servicing is required—particularly if the smart shuttle chamber


346


in

FIG. 8

needs servicing that in turn generally involves changing various devices connected to the Smart Shuttle. Data entry and programming console


566


provides means to enter any required digital or manual data, commands, or software as needed by the computer system, and it is connected to the computer system via cable


568


.




In

FIG. 14

, computer system


556


provides commands over cable


570


to the electronics interfacing system


572


that has many functions. One function of the electronics interfacing system is to provide information to and from the Smart Shuttle through cabling


574


that is connected to the slip-ring


576


, as is typically used in the industry. The slip-ring


576


is suitably mounted on the side of the wireline drum


578


in FIG.


14


. Information provided to slip-ring


576


then proceeds to wireline


580


that generally has 7 electrical conductors enclosed in armor. That wireline


580


proceeds to overhead sheave


582


that is suitably suspended above the Wireline Lubricator System in FIG.


8


. In particular, the lower portion of the wireline


394


shown in

FIG. 14

is also shown as the top portion of the wireline


394


that enters the Wireline Lubricator System in FIG.


8


. That particular portion of the wireline


394


is the same in FIG.


14


and in

FIG. 8

, and this equality provides a logical connection between these two figures.




In

FIG. 14

, electronics interfacing system


572


also provides power and electronic control of the wireline drum hydraulic motor and pump assembly


584


as is typically used in the industry today (that replaced earlier chain drive systems). Wireline drum hydraulic motor and pump assembly


584


controls the motion of the wireline drum, and when it winds up in the counter-clockwise direction as observed in

FIG. 14

, the Smart Shuttle goes upwards in the wellbore in

FIG. 8

, and Z decreases. Similarly, when the wireline drum hydraulic motor and pump assembly


584


provides motion in the clockwise direction as observed in

FIG. 14

, then the Smart Shuttle goes down in

FIG. 8 and Z

increases. The wireline drum hydraulic motor and pump assembly


584


is connected to cable connector


588


that is in turn connected to cabling


590


that is in turn connected to electronics interfacing system


572


that is in turn controlled by computer system


556


. Electronics interfacing system


572


also provides power and electronic control of any coiled tubing rig designated by element


591


(not shown in FIG.


14


), including the coiled tubing drum hydraulic motor and pump assembly of that coiled tubing rig, but such a coiled tubing rig is not shown in

FIG. 14

for the purposes of simplicity. In addition, electronics interfacing system


572


has output cable


592


that provides commands and control to drilling rig hardware control system


594


that controls various drilling rig functions and apparatus including the rotary drilling table motors, the mud pump motors, the pumps that control cement flow and other slurry materials as required, and all electronically controlled valves, and those functions are controlled through cable bundle


596


which has an arrow on it in

FIG. 14

to indicate that this cabling goes to these enumerated items.




In relation to

FIG. 14

, a preferred embodiment of a portion of the Automated Smart Shuttle System shown in

FIG. 8

has electronically controlled valves, so that valves


392


,


384


,


378


,


364


,


360


,


344


,


340


,


336


,


332


, and


316


as seen from top to bottom in

FIG. 8

, and are all electronically controlled in this embodiment, and may be opened or shut remotely from drilling rig hardware control system


594


. In addition, electronics interfacing system


572


also has cable output


598


to ancillary surface transducer and communications control system


600


that provides any required surface transducers and/or communications devices required for the instrumentation within the Retrievable Instrumentation Package. In a preferred embodiment, ancillary surface and communications system


600


provides acoustic transmitters and acoustic receivers as may be required to communicate to and from the Retrievable Instrumentation Package. The ancillary surface and communications system


600


is connected to the required transducers, etc. by cabling


602


that has an arrow in

FIG. 14

designating that this cabling proceeds to those enumerated transducers and other devices as may be required.




With respect to

FIG. 14

, and to the closed-loop system to complete oil and gas wells, standard electronic feedback control systems and designs are used to implement the entire system as described above, including those described in the book entitled “Theory and Problems of Feedback and Control Systems”, “Second Edition”, “Continuous(Analog) and Discrete(Digital)”, by J. J. DiStefano III, A. R. Stubberud, and I. J. Williams, Schaum's Outline Series, McGraw-Hill, Inc., New York, N.Y. 1990, 512 pages, an entire copy of which is incorporated herein by reference. Therefore, in

FIG. 14

, the computer system


556


has the ability to communicate with, and to control, all of the above enumerated devices and functions that have been described in this paragraph.




To emphasize one major point in

FIG. 14

, computer system


556


has the ability to receive information from one or more downhole sensors for the closed-loop system to complete oil and gas wells. This computer system executes a sequence of programmed steps, but those steps may depend upon information obtained from at least one sensor located within the wellbore.




The entire system represented in

FIG. 14

provides the automation for the “Automated Smart Shuttle Oil and Gas Completion System”, or also abbreviated as the “Automated Smart Shuttle System”, or the “Smart Shuttle Oil and Gas Completion System”. The system in

FIG. 14

is the “automatic control means” for the “wireline conveyed shuttle means having retrieval and installation means” or simply the “automatic control means” for the “smart shuttle means”.




Steps to Complete Well Shown in FIG.


6






The following describes the completion of one well commencing with the well diagram shown in FIG.


6


. In

FIG. 6

, it is assumed that the well has been drilled to total depth. Furthermore, it is also assumed here that all geophysical information is known about the geological formation because the embodiment of the Retrievable Instrumentation Package shown in

FIG. 6

has provided complete LWD/MWD information.




The first step is to disconnect the top of the drill string


170


in

FIG. 6

from the drilling rig apparatus. In this step, the kelly, etc. is disconnected and removed from the drill string that is otherwise held in place with slips as necessary until the next step.




The second step is to attach to the top of that drill pipe first blow-out preventer


316


and top drill pipe flange


320


as shown in

FIG. 8

, and to otherwise attach to that flange


320


various portions of the Automated Smart Shuttle System shown in

FIG. 8

including the “Wiper Plug Pump-Down Stack”


322


, the “Smart Shuttle Chamber”


346


, and the “Wireline Lubricator System”


374


, which are subassemblies that are shown in their final positions after assembly in FIG.


8


.




The third step is the “priming” of the Automated Smart Shuttle System as described in relation to FIG.


8


.




The fourth step is to retrieve the Retrievable Instrumentation Package. Please recall that the Retrievable Instrumentation Package has heretofore provided all information about the wellbore, including the depth, geophysical parameters, etc. Therefore, computer system


556


in

FIG. 14

already has this information in its memory and is available for other programs. “Program A” of the computer system


556


is instigated that automatically sends the Smart Shuttle


306


and its Retrieval Sub


308


(see

FIG. 9

) down into the drill string, and causes the electronically controllable retrieval snap ring assembly


310


in

FIG. 9

to positively snap into the retrieval grove


298


of element


206


of the Retrievable Instrumentation Package in

FIG. 7

when the mating nose


312


of the Retrieval Sub in

FIG. 9

enters mud passage


198


of the Retrievable Instrumentation Package in FIG.


7


. Thereafter, the Retrieval Sub has “latched onto” the Retrievable Instrumentation Package. Thereafter, a command is given by the computer system that pulls up on the wireline thereby disengaging mating electrical connectors


232


and


234


in

FIG. 7

, and pulling piston


254


through bore


258


in the body of the Smart Drilling and Completion Sub in FIG.


7


. Thereafter, the Smart Shuttle, the Retrieval Sub, and the Retrievable Instrumentation Package under automatic control of “Program A” return to the surface as one unit. Thereafter, “Program A” causes the Smart Shuttle and the Retrieval Sub to “park” the Retrievable Instrumentation Package within the “Smart Shuttle Chamber”


346


and adjacent to the smart shuttle chamber door


348


. Thereafter, the alarm and communications system


564


sounds a suitable “alarm” to the crew that servicing is required—in this case the Retrievable Instrumentation Package needs to be retrieved from the Smart Shuttle Chamber. The fourth step is completed when the Retrievable Instrumentation Package is removed from the Smart Shuttle Chamber. As an alternative, an automated “hopper system” under control of the computer system can replace the functions of the servicing crew therefore making this portion of the completion an entirely automated process or as a part of a closed-loop system to complete oil and gas wells.




The fifth step is to pump down cement and gravel using a suitable pump-down latching one-way valve means and a series of wiper plugs to prepare the bottom portion of the drill string for the final completion steps. The procedure here is followed in analogy with those described in relation to

FIGS. 1-4

above. Here, however, the pump-down latching one-way valve means that is similar to the Latching Float Collar Valve Assembly


20


in

FIG. 1

is also fitted with apparatus attached to its Upper Seal


22


that provides similar apparatus and function to element


206


of the Retrievable Instrumentation Package in FIG.


7


. Put simply, a device similar to the Latching Float Collar Valve Assembly


20


in

FIG. 1

is fitted with additional apparatus so that it may be conveniently deployed in the well by the Retrieval Sub. Wiper plugs are similarly fitted with such apparatus so that they can also be deployed in the well by the Retrieval Sub. As an example of such fitted apparatus, wiper plugs are fabricated that have rubber attachment features so that they can be mated to the Retrieval Sub in the Smart Shuttle Chamber. A cross section of such a rubber-type material wiper plug is generally shown as element


604


in

FIG. 15

; which has upper wiper attachment apparatus


606


that provides similar apparatus and function to element


206


of the Retrievable Instrumentation Package in

FIG. 7

; and which has flexible upper wiper blade


608


to fit the interior of the pipe present; flexible lower wiper blade


610


to fit the interior of the pipe present; wiper plug indentation region between the blades specified by numeral


612


; wiper plug interior recession region


614


; and wiper plug perforation wall


616


that perforates under suitable applied pressure; and where in some forms of the wiper plugs called “solid wiper plugs”, there is no such wiper plug interior recession region and no portion of the plug wall can be perforated; and where the legends of “UP” and “DOWN” are also shown in FIG.


15


. In part because the wiper plug shown in

FIG. 15

may be conveyed downhole with the Retrieval Sub, it is an example of a “smart wiper plug”. Further, this smart wiper plug may also possess one or more downhole sensors that provides information to the computer system that controls the well completion process. Accordingly, a pump-down latching one-way valve means is attached to the Retrieval Sub in the Smart Shuttle Chamber, and the computer system is operated using “Program B”, where the pump-down latching one-way valve means is placed at, and is released in the pipe adjacent to riser hanger apparatus


315


in FIG.


8


. Then, under “Program B”, perforable wiper plug #


1


is attached to the Retrieval Sub in the Smart Shuttle Chamber, and it is placed at and released adjacent to region A in FIG.


8


. Not shown in

FIG. 8

are optional controllable “wiper holding apparatus” that on suitable commands fit into the wiper plug indentation region


612


and temporally hold the wiper plug in place within the pipe in FIG.


8


. Then under “Program B”, perforable wiper plug #


2


is attached to the Retrieval Sub in the Smart Shuttle Chamber, and it is placed at and released adjacent to region B in FIG.


8


. Then under “Program B”, solid wiper plug #


3


is attached to the Retrieval Sub in the Smart Shuttle Chamber, and it is placed at and released adjacent to region C in

FIG. 8

, and the Smart Shuttle and the Retrieval Sub are “parked” in region E of the Smart Shuttle Chamber in FIG.


8


. Then the Smart Shuttle Chamber is closed, and the chamber itself is suitably “primed” with well fluids. Then, with other valves closed, valve


332


is the opened, and “first volume of cement” is pumped into the pipe forcing the pump-down latching one-way valve means to be forced downward. Then valve


332


is closed, and valve


336


is opened, and a predetermined volume of gravel is forced into the pipe that in turn forces wiper plug #


1


and the one-way valve means downward. Then, valve


336


is closed, and valve


338


opened, and a “second volume of cement” is pumped into the pipe forcing wiper plugs #


1


and #


2


and the one-way valve means downward. Then valve #


338


is closed, and valve


344


is opened, and water is injected into the system forcing wiper plugs #


1


, #


2


, and #


3


, and the one-way valve means downward. Then the latching apparatus of the pump-down latching one-way valve means appropriately seats in latch recession


210


of the Smart Drilling and Completion Sub in

FIG. 8

that was previously used to latch into place the Retrievable Instrumentation Package. From this disclosure, the pump-down latching one-way valve means has latching means resembling element


208


of the Retrievable Instrumentation Package so that it can latch into place in latch recession


210


of the Smart Drilling and Completion Sub. In the end, the sequential charges of cement, gravel, and then cement are forced through the respective perforated wiper plugs and the one-way valve means and through the mud passages in the drill bit and into the annulus between the drill pipe and the wellbore. Valve


344


is then closed, and pressure is then released in the drill pipe, and the one-way valve means allows the first and second volumes of cement to set up properly on the outside of the drill pipe. After “Program B” is completed, the communications system


564


sounds a suitable “alarm” that the next step should be taken to complete the well. As previously described, an automated “hopper system” under control of the computer system can load the requirement devices into the Smart Shuttle Chamber, and can also suitably control all valves, pumps, etc. so as to make this a completed automated procedure, or as part of a closed-loop system to complete oil and gas wells.




The sixth step is to saw slots in the drill pipe similar to the slot that is labeled with numeral


178


in FIG.


5


. Accordingly, a “Casing Saw” is fitted so that it can be attached to and deployed by the Retrieval Sub. This Casing Saw is figuratively shown in

FIG. 16

as element


618


. The Casing Saw


618


has upper attachment apparatus


620


that provides similar apparatus and mechanical functions as provided by element


206


of the Retrievable Instrumentation Package in FIG.


7


—but, that in addition, it also has top electrical connector


622


that mates to the retrieval sub electrical connector


313


shown in FIG.


9


. These mating electrical connectors


313


and


622


provide electrical energy from the wireline, and command and control signals, to and from the Smart Shuttle as necessary to properly operate the Casing Saw. First casing saw blade


624


is attached to first casing saw arm


626


. Second casing saw blade


628


is attached to second casing saw arm


630


. Casing saw module


632


provides actuating means to deploy the arms, control signals, and the electrical and any hydraulic systems to rotate the casing saw blades. The casing saw may have one or more downhole sensors to provide measured information to the computer system on the surface. Further, this casing saw may also possess one or more downhole sensors that provides information to the computer system that controls the well completion process.

FIG. 16

shows the saw blades in their extended “out position”, but during any trip downhole, the blades would be in the retracted or “in position”. In part because the Casing Saw in

FIG. 15

may be conveyed downhole with the Retrieval Sub, it is an example of a “Smart Casing Saw”. Therefore, during this sixth step, the Casing Saw is suitably attached to the Retrieval Sub, the Smart Shuttle Chamber


346


is suitably primed, and then the computer system


556


is operated using “Program C” that automatically controls the wireline drum and the Smart Shuttle so that the Casing Saw is properly deployed at the correct depth, the casing saw arms and saw blades are properly deployed, and the Casing Saw properly cuts slots through the casing. The “internal pump of the smart shuttle”


402


may be used in principle to make the Smart Shuttle go up or down in the well, and in this case, as the saw cuts slots through the casing, it moves up slowly under its own power—and under suitable tension applied to the wireline that is recommended to prevent a disastrous “overrun” of the wireline. After the slots are cut in the casing, the Casing Saw is then returned to the surface of the earth under “Program C” and thereafter, the communications system


564


sounds a suitable “alarm”, indicating that crew servicing is required—and in this case, the Casing Saw needs to be retrieved from the Smart Shuttle Chamber. As an alternative, the previously described automated “hopper system” under control of the computer system can replace the functions of the servicing crew therefore making this portion of the completion an entirely automated process, or as part of a closed-loop system to complete oil and gas wells. For a simple single-zone completion system, a coiled tubing conveyed packer can be used to complete the well. For a simple single-zone completion system, only several more steps are necessary. Basically, the wireline system is removed and a coiled tubing rig is used to complete the well.




The seventh step is to close the first blow-out preventer


316


in FIG.


8


. This will prevent any well pressure from causing problems in the following procedure. Then, remove the Smart Shuttle and the Retrieval Sub from the cablehead


304


, and remove these devices from the Smart Shuttle Chamber. Then, remove the bolts in flanges


376


and


368


, and then remove the entire Wireline Lubricator System


374


in FIG.


8


. Then replace the Wireline Lubricator System with a Coiled Tubing Lubricator System that looks similar to element


374


in

FIG. 8

, except that the wireline in

FIG. 8

is replaced with a coiled tubing. At this point, the Coiled Tubing Lubricator System is bolted in place to flange


368


in FIG.


8


.

FIG. 17

shows the Coiled Tubing Lubricator System


634


. The bottom flange of the Coiled Tubing Lubricator System


636


is designed to mate to upper smart shuttle chamber flange


368


. These two flanges join at the position marked by numeral


638


. The Coiled Tubing Lubricator System in

FIG. 17

has various additional features, including a second blow-out preventer


640


, coiled tubing lubricator top body


642


, fluid control pipe


644


and its fluid control valve


646


, a hydraulic packing gland generally designated by numeral


648


in

FIG. 17

, having gland sealing apparatus


650


, grease packing pipe


652


and grease packing valve


654


. In the industry, the hydraulic packing gland generally designated by numeral


648


in

FIG. 17

is often called the “stripper” which has at least the following functions: (a) it forms a dynamic seal around the coiled tubing when the tubing goes into the wellbore or comes out of the wellbore; and (b) it provides some means to change gland sealing apparatus or “packing elements” without removing the coiled tubing from the well. Coiled tubing


656


feeds through the Coiled Tubing Lubricator System and the bottom of the coiled tubing is at the position Y measured from the position marked by numeral


638


in FIG.


17


. Attached to the coiled tubing a distance d


1


above the bottom of the end of the coil tubing is the pump-down single zone packer apparatus


658


. In several preferred embodiments of the invention, one or more downhole sensors, related electronics, related batteries or other power source, and one or more communication systems within the pump-down single zone packer apparatus provide information to a computer system controlling the well completion process. The entire system in

FIG. 17

is then primed with fluids such as water using techniques already explained. Then, and with the other appropriate valves closed in

FIG. 17

, primary injector tube valve


344


is then opened, and water or other fluids are injected into primary injector tube


342


. Then the pressure on top surface of the pump-down single zone packer apparatus forces the packer apparatus downward, thereby increasing the distance Y, but when it does so, fluid ΔV


2


is displaced, and it goes up the interior of the coiled tubing and to coiled tubing pressure relief valve


660


near the coiled tubing rig (not shown in

FIG. 17

) and the fluid volume ΔV


2


is emptied into a holding tank


662


(not shown in FIG.


17


). Alternatively, instead of emptying the fluid into the holding tank, the fluid can be suitably recirculated with a suitably connected recirculating pump, although that recirculating pump is not shown in

FIG. 17

for brevity—and such recirculating pump would also minimize the size of the holding tank which is an important feature particularly for offshore use. Still further, the pressure relief valve in the coiled tubing rig is not shown herein, nor is the holding tank, nor is the coiled tubing rig—solely for the purposes of brevity. This hydraulic method of forcing, or “pulling”, the tubing into the wellbore will force it down into vertical sections of the wellbore. In such vertical sections of the wellbore, the weight of tubing also assists downward motion within the wellbore. However, of particular interest, this embodiment of the invention also works exceptionally well to force, or “pull”, the coiled tubing into horizontal or other highly deviated portions of the wellbore. This is a significant improvement over other methods and apparatus typically used in the industry. This embodiment of the invention can also be used in combination with standard mechanical “injectors” used in the industry. Those mechanical “injectors” provide an axial force on the coiled tubing forcing it into, or out of the well, and there are many commercial manufactures of such devices. For example, please refer to the volume entitled “Coiled Tubing and Its Applications”, having the author of Mr. Scott Quigley, presented during a “Short Course” at the “1999 SPE Annual Technical Conference and Exhibition”, October 3-6, Houston, Tex., copyrighted by the Society of Petroleum Engineers, which society is located in Richardson, Tex., an entire copy of which volume is incorporated herein by reference. With reference to

FIG. 17

, the mechanical “injector”


663


(not shown in FIG.


17


), the guide arch, the reel, the power pack, and the control cabin normally associated with an entire “coiled tubing rig” is not shown in

FIG. 17

solely for the purpose of brevity. If a mechanical “injector” is used to assist forcing the pump-down single zone packer apparatus


658


into the wellbore, then it is prudent to make sure that there is sufficient hydraulic force applied to the packer apparatus


658


so that the tubing along its entire length is under suitable tension so that it will not “overrun” or “override” the packer apparatus


658


. So, even if the mechanical “injector” is assisting the entry of the coiled tubing, the tubing should still be “pulled down into the wellbore” by hydraulic pressure applied to the pump-down single zone packer apparatus


658


.

FIG. 17A

shows additional detail in the pump-down single zone packer apparatus


658


which possesses a wiper-plug type elastomeric main body having lobes


659


that slide along the interior of the pipe, and in addition, a portion of the elastomeric unit is permanently attached to the tubing in the region designated as


661


in FIG.


17


A. The lobes


659


in the elastomeric unit are similar to the “Top Wiper Plug Lobe”


70


in FIG.


1


. Hydraulic force applied to the elastomeric unit causes the tubing to be “pulled” into the pipe disposed in the wellbore, or “forced” into the pipe disposed in the wellbore, and therefore that elastomeric unit acts like a form of a “tractor” to pull that tubing into the pipe that is disposed in wellbore. The pump-down single zone packer apparatus


658


in

FIGS. 17 and 17A

are very simple embodiments of the a “tubing conveyed smart shuttles means”. In general, a “tubing conveyed smart shuttle means” also has “retrieval and installation means” for attachment of suitable “smart completion means” for yet additional embodiments of the invention that are not shown herein for brevity. For additional references on coiled tubing rigs, and related apparatus and methods, the interested reader is referred to the book entitled “World Oil's Coiled Tubing Handbook”, M. E. Teel, Engineering Editor, Gulf Publishing Company, Houston, Tex., 1993, 126 pages, an entire copy of which is incorporated herein by reference. The coiled tubing rig is controlled with the computer system


556


in FIG.


14


and through the electronics interfacing system


572


and therefore the coiled tubing rig and the coiled tubing is under computer control. Then, using techniques already described, the computer system


556


runs “Program D” that deploys the pump-down single zone packer apparatus


658


at the appropriate depth from the surface of the earth. In the end, this well is completed in a configuration resembling a “Single-Zone Completion” as shown in detail in

FIG. 18

on page 21 of the reference entitled “Well Completion Methods”, Lesson 4, “Lessons in Well Servicing and Workover”, published by the Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1971 , total of 49 pages, an entire copy of which is incorporated herein by reference, and that was previously defined as “Ref. 2 ”. It should be noted that the coiled tubing described here can also have a wireline disposed within the coiled tubing using typical techniques in the industry. From this disclosure in the seventh step, it should also be stated here that any of the above defined smart completion devices could also be installed into the wellbore with a tubing conveyed smart shuttle means or a tubing with wireline conveyed smart shuttle means—should any other smart completion devices be necessary before the completion of the above step. It should be noted that all aspects of this seventh step including the control of the coiled tubing rig, actuators for valves, any automated hopper functions, etc., can be completely automated under the control of the computer system making this portion of the well completion an entirely automated process or as part of a closed-loop system to complete oil and gas wells.




The eighth step includes suitably closing first blow-out preventer


316


or other valve as necessary, and removing in sequence the Coiled Tubing Lubricator System


634


, the Smart Shuttle Chamber System


372


, and the Wiper Plug Pump-Down Stack


322


, and then using usual techniques in the industry, adding suitable wellhead equipment, and commencing oil and gas production. Such wellhead equipment is shown in

FIG. 39

on page 37 of the book entitled “Testing and Completing”, Second Edition, Unit II, Lesson 5, published by the Petroleum Extension Service of the University of Texas, Austin, Tex., 1983, 56 pages total, an entire copy of which is incorporated herein by reference, that was previously defined as “Ref. 4” above.




List of Smart Completion Devices




In light of the above disclosure, it should be evident that there are many uses for the Smart Shuttle and its Retrieval Sub. One use was to retrieve from the drill string the Retrievable Instrumentation Package. Another was to deploy into the well suitable pump-down latching one-way valve means and a series of wiper plugs. And yet another was to deploy into the well and retrieve the Casing Saw.




The deployment into the wellbore of the well suitable pump-down latching one-way valve means and a series of wiper plugs and the Casing Saw are examples of “Smart Completion Devices” being deployed into the well with the Smart Shuttle and its Retrieval Sub. Put another way, a “Smart Completion Device” is any device capable of being deployed into the well and retrieved from the well with the Smart Shuttle and its Retrieval Sub and such a device may also be called a “smart completion means”. These “Smart Completion Devices” may often have upper attachment apparatus similar to that shown in elements


620


and


622


in FIG.


16


.




Any “Smart Completion Device” may have installed within it one or more suitable sensors, measurement apparatus associated with those sensors, batteries and/or power source, and communication means for transmitting the measured information to the Smart Shuttle, and/or to a Retrieval Sub, and/or to the surface. Any “Smart Completion Device” may also have installed within it suitable means to receive commands from the Smart Shuttle and or from the surface of the earth.




The following is a brief initial list of Smart Completion Devices that may be deployed into the well by the Smart Shuttle and its Retrieval Sub:




(1) smart pump-down one-way cement valves of all types




(2) smart pump-down one-way cement valve with controlled casing locking mechanism




(3) smart pump-down latching one-way cement valve




(4) smart wiper plug




(5) smart wiper plug with controlled casing locking mechanism




(6) smart latching wiper plug




(7) smart wiper plug system for One-Trip-Down-Drilling




(8) smart pump-down wiper plug for cement squeeze jobs with controlled casing locking mechanism




(9) smart pump-down plug system for cement squeeze jobs




(10) smart pump-down wireline latching retriever




(11) smart receiver for smart pump-down wireline latching retriever




(12) smart receivable latching electronics package providing any type of MWD, LWD, and drill bit monitoring information




(13) smart pump-down and retrievable latching electronics package providing MWD, LWD, and drill bit monitoring information




(14) smart pump-down whipstock with controlled casing locking mechanism




(15) smart drill bit vibration damper




(16) smart drill collar




(17) smart pump-down robotic pig to machine slots in drill pipes and casing to complete oil and gas wells




(18) smart pump-down robotic pig to chemically treat inside of drill pipes and casings to complete oil and gas wells




(19) smart milling “pig” to fabricate or “mill” any required slots, holes, or other patterns in drill pipes to complete oil and gas wells




(20) smart liner hanger apparatus




(21) smart liner installation apparatus




(22) smart packer for One-Trip-Down-Drilling




(23) smart packer system for One-Trip-Down-Drilling




(24) smart drill stem tester




From the above list, the “smart completion means” includes smart one-way valve means; smart one-way valve means with controlled casing locking means; smart one-way valve means with latching means; smart wiper plug means; smart wiper plug means with controlled casing locking means; smart wiper plugs with latching means; smart wiper plug means for cement squeeze jobs having controlled casing locking means; smart retrievable latching electronics means; smart whipstock means with controlled casing locking means; smart drill bit vibration damping means; smart robotic pig means to machine slots in pipes; smart robotic pig means to chemically treat inside of pipes; smart robotic pig means to mill any required slots or other patterns in pipes; smart liner installation means; and smart packer means.




In the above, the term “pump-down” may mean one or both of the following depending on the context: (a) “pump-down” can mean that the “internal pump of the smart shuttle”


402


is used to translate the Smart Shuttle downward into the well; or (b) force on fluids introduced by inlets into the Smart Shuttle Chamber and other inlets can be used to force down wiper-plug like devices as described above. The term “casing locking mechanism” has been used above that means, in this case, it locks into the interior of the drill pipe, casing, or whatever pipe in which it is installed. Many of the preferred embodiments herein can also be used in standard casing installations which is a subject that will be described below.




In summary, a “wireline conveyed smart shuttle means” has “retrieval and installation means” for attachment of suitable “smart completion means”. A “tubing conveyed smart shuttle means” also has “retrieval and installation means” for attachment of suitable “smart completion means”. If a wireline is inside the tubing, then a “tubing with wireline conveyed shuttle means” has “retrieval and installation means” for attachment of “smart completion means”. As described in this paragraph, and depending on the context, a “smart shuttle means” may refer to a “wireline conveyed smart shuttle means” or to a “tubing conveyed smart shuttle means”, whichever may be appropriate from the particular usage. It should also be stated that a “smart shuttle means” may be deployed into a well substantially under the control of a computer system which is an example of a “closed-loop completion system”.




Put yet another way smart shuttle means may be deployed into a pipe with a wireline means, with a tubing means, with a tubing conveyed wireline means, and as a robotic means, meaning that the smart shuttle provides its own power and is untethered from any wireline or tubing, and in such a case, it is called “an untethered robotic smart shuttle means” for the purposes herein.




It should also be stated for completeness here that any means that are installed in wellbores to complete oil and gas wells that are described in Ref. 1, in Ref. 2, and Ref. 4 (defined above, and mentioned again below), and which can be suitably attached to the retrieval and installation means of a smart shuttle means shall be defined herein as yet another smart completion means. For example, in another embodiment, a retrieval sub may be suitably attached to a wireline-conveyed well tractor, and the wireline-conveyed well tractor may be used to convey downhole various smart completion devices attached to the retrieval sub for deployment within the wellbore to complete oil and gas wells.




More Complex Completions of Oil and Gas Wells




Various different well completions typically used in the industry are described in the following references:




(a) “Casing and Cementing”, Unit II, Lesson 4, Second Edition, of the Rotary Drilling Series, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1982 (defined earlier as “Ref. 1” above)




(b) “Well Completion Methods”, Lesson 4, from the series entitled “Lessons in Well Servicing and Workover”, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1971 (defined earlier as “Ref. 2” above)




(c) “Testing and Completing”, Unit II, Lesson 5, Second Edition, of the Rotary Drilling Series, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1983 (defined earlier as “Ref. 4”)




(d) “Well Cleanout and Repair Methods”, Lesson 8, from the series entitled “Lessons in Well Servicing and Workover”, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1971.




It is evident from the preferred embodiments above, and the description of more complex well completions in (a), (b), (c), and (d) herein, that Smart Shuttles with Retrieval Subs deploying and retrieving various different Smart Completion Devices can be used to complete a vast majority of oil and gas wells. Here, the Smart Shuttles may be either wireline conveyed, or tubing conveyed, whichever is most convenient. Single string dual completion wells may be completed in analogy with

FIG. 21

in “Ref. 4”. Single-string dual completion wells may be completed in analogy with

FIG. 22

in “Ref. 4”. A smart pig to fabricate holes or other patterns in drill pipes (item 19 above) can be used in conjunction with the a smart pump-down whipstock with controlled casing locking mechanism (item 14 above) to allow kick-off wells to be drilled and completed.




It is further evident from the preferred embodiments above that Smart Shuttles with Retrieval Subs deploying and retrieving various different Smart Completion Devices can be also used to complete multilateral wellbores. Here, the Smart Shuttles may be either wireline conveyed, or tubing conveyed, whichever is most convenient. For a description of such multilateral wells, please refer to the volume entitled “Multilateral Well Technology”, having the author of “Baker Hughes, Inc.”, that was presented in part by Mr. Randall Cade of Baker Oil Tools, that was handed-out during a “Short Course” at the “1999 SPE Annual Technical Conference and Exhibition”, October 3-6, Houston, Tex., having the symbol of “SPE International Education Services” on the front page of the volume, a symbol of the Society of Petroleum Engineers, which society is located in Richardson, Tex., an entire copy of which volume is incorporated herein by reference.




During more complex completion processes of wellbores, it may be useful to alternate between wireline conveyed smart shuttle means and coiled tubing conveyed smart shuttle means. Of course, the “Wireline Lubricator System”


374


in FIG.


8


and the Coiled Tubing Lubricator System


634


in

FIG. 17

can be alternatively mated in sequence to the upper smart shuttle chamber flange


368


shown in

FIGS. 8 and 17

. However, if many such sequential operations, or “switches”, are necessary, then there is a more efficient alternative. One embodiment of this more efficient alternative is to suitably mount on top of the upper smart shuttle chamber flange


368


, and at the same time, both a Wireline Lubricator System and a Coiled Tubing Lubricator System. There are many ways to design and build such a system that allows for needed space for simultaneously disposing wireline conveyed smart shuttle means and coiled tubing conveyed smart shuttle means within the Smart Shuttle Chamber


346


, which chamber is generally shown in

FIGS. 8 and 17

, and in other pertinent portion of the system. Yet another embodiment comprises at least one “motion means” and at least one “sealing means” so that the Wireline Lubricator System and the Coiled Tubing Lubricator System can be suitably moved back and forth with respect to the upper smart shuttle chamber flange


368


, so that the unit that is required during any one step is centered directly over whatever pipe is disposed in wellbore. There are many possibilities. For the purposes herein, a “Dual Lubricator Smart Shuttle System” is one that is suitably fitted with both a Wireline Lubricator System and a Coiled Tubing Lubricator System so that either wireline or tubing conveyed smart shuttles can be efficiently used in any order to efficiently complete the oil and gas well. Such a “Dual Lubricator Smart Shuttle System” would be particularly useful in very complex well completions, such as in some multilateral well completions, because it may be necessary to change the order of the completion sequence if unforseen events transpire. No drawing is provided herein of the “Dual Lubricator Smart Shuttle System” for brevity, but one could easily be generated by suitable combination of the relevant elements in

FIGS. 8 and 17

and at least one “motion means” and at least one “sealing means”. Further, any “Dual Lubricator Smart Shuttle System” that is substantially under the control of a computer system that also receives suitable downhole information is another example of a closed-loop completion system to complete oil and gas wells.




Smart Shuttles and Standard Casing Strings




Many preferred embodiments of the invention above have referred to drilling and completing through the drill string. However, it is now evident from the above embodiments and the descriptions thereof, that many of the above inventions can be equally useful to complete oil and gas wells with standard well casing. For a description of procedures involving standard casing operations, see Steps 9, 10, 11, 12, 13, and 14 of the specification under the subtitle entitled “Typical Drilling Process”.




Therefore, any embodiment of the invention that pertains to a pipe that is a drill string, also pertains to pipe that is a casing. Put another way, many of the above embodiments of the invention will function in any pipe of any material, any metallic pipe, any steel pipe, any drill pipe, any drill string, any casing, any casing string, any suitably sized liner, any suitably sized tubing, or within any means to convey oil and gas to the surface for production, hereinafter defined as “pipe means”.





FIG. 18

shows such a “pipe means” disposed in the open hole


184


that is also called the wellbore here. All the numerals through numeral


184


have been previously defined in relation to

FIG. 6. A

“pipe means”


664


is deployed in the wellbore that may be a pipe made of any material, a metallic pipe, a steel pipe, a drill pipe, a drill string, a casing, a casing string, a liner, a liner string, tubing, or a tubing string, or any means to convey oil and gas to the surface for production. The “pipe means” may, or may not have threaded joints in the event that the “pipe means” is tubing, but if those threaded joints are present, they are labeled with the numeral


666


in FIG.


18


. The end of the wellbore


668


is shown. There is no drill bit attached to the last section


670


of the “pipe means”. In

FIG. 18

, if the “pipe means” is a drill pipe, or drill string, then the retractable bit has been removed one way or another as explained in the next section entitled “Smart Shuttles and Retrievable Drill Bits”. If the “pipe means” is a casing, or casing string, then the last section of casing present might also have attached to it a casing shoe as explained earlier, but that device is not shown in

FIG. 18

for simplicity.




From the disclosure herein, it should now be evident that the above defined “smart shuttle means” having “retrieval and installation means” can be used to install within the “pipe means” any of the above defined “smart completion means”. Here, the “smart shuttle means” includes a “wireline conveyed shuttle means” and/or a “tubing conveyed shuttle means” and/or a “tubing with wireline conveyed shuttle means”.




Smart Shuttles and Retrievable Drill Bits




A first definition of the phrases “one pass drilling”, “One-Trip-Drilling” and “One-Trip-Down-Drilling” is quoted above to “mean the process that results in the last long piece of pipe put in the wellbore to which a drill bit is attached is left in place after total depth is reached, and is completed in place, and oil and gas is ultimately produced from within the wellbore through that long piece of pipe. Of course, other pipes, including risers, conductor pipes, surface casings, intermediate casings, etc., may be present, but the last very long pipe attached to the drill bit that reaches the final depth is left in place and the well is completed using this first definition. This process is directed at dramatically reducing the number of steps to drill and complete oil and gas wells.”




This concept, however, can be generalized one step further that is another embodiment of the invention. As many prior patents show, it is possible to drill a well with a “retrievable drill bit” that is otherwise also called a “retractable drill bit”. For example, see the following U.S. Patents: U.S. Pat. No. 3,552,508, C. C. Brown, entitled “Apparatus for Rotary Drilling of Wells Using Casing as the Drill Pipe”, that issued on Jan. 5, 1971 ; U.S. Pat. No. 3,603,411, H. D. Link, entitled “Retractable Drill Bits”, that issued on Sep. 7, 1971 ; U.S. Pat. No. 4,651,837, W. G. Mayfield, entitled “Downhole Retrievable Drill Bit”, that issued on Mar. 24, 1987; U.S. Pat. No. 4,962,822, J. H. Pascale, entitled “Downhole Drill Bit and Bit Coupling”, that issued on Oct. 16, 1990; and U.S. Pat. No. 5,197,553, R. E. Leturno, entitled “Drilling with Casing and Retrievable Drill Bit”, that issued on Mar. 30, 1993; entire copies of which are incorporated herein in their entirety by reference. Some experts in the industry call this type of drilling technology to be “drilling with casing”. For the purposes herein, the terms “retrievable drill bit”, “retrievable drill bit means”, “retractable drill bit” and “retractable drill bit means” may be used interchangeably.




For the purposes of logical explanation at this point, in the event that any drill pipe is used to drill any extended reach lateral wellbore from any offshore platform, and in addition that wellbore perhaps reaches 20 miles laterally from the offshore platform, then to save time and money, the assembled pipe itself should be left in place and not tripped back to the platform. This is true whether or not the drill bit is left on the end of the pipe, or whether or not the well was drilled with so-called “casing drilling” methods. For typical casing-while-drilling methods, see the article entitled “Casing-while-drilling: The next step change in well construction”, World Oil, October, 1999, pages 34-40, and entire copy of which is incorporated herein by reference. Further, all terms and definitions in this particular article, and entire copies of each and every one of the 13 references cited at the end this article are incorporated herein by reference.




Accordingly a more general second definition of the phrases “one pass drilling”, “One-Trip-Drilling” and “One-Trip-Down-Drilling” shall include the concept that once the drill pipe means reaches total depth and any maximum extended lateral reach, that the pipe means is thereafter left in place and the well is completed. The above embodiments have adequately discussed the cases of leaving the drill bit attached to the drill pipe and completing the oil and gas wells. In the case of a retrievable bit, the bit itself can be left in place and the well completed without retrieving the bit, but the above apparatus and methods of operation using the Smart Shuttle, the Retrieval Sub, and the various Smart Production Devices can also be used in the drill pipe means that is left in place following the removal of a retrievable bit. This also includes leaving ordinary casing in place following the removal of a retrieval bit and any underreamer during casing drilling operations. This process also includes leaving any type of pipe, tubing, casing, etc. in the wellbore following the removal of the retrievable bit.




In particular, following the removal of a retrievable drill bit during wellboring activities, one of the first steps to complete the well is to prepare the bottom of the well for production using one-way valves, wiper plugs, cement, and gravel as described in relation to

FIGS. 4

,


5


, and


8


and as further described in the “fifth step” above under the subtopic of “Steps to Complete Well Shown in FIG.


6


”. The use of one-way valves installed within a drill pipe means following the removal of a retrievable drill bit that allows proper cementation of the wellbore is another embodiment of the invention. These one-way valves can be installed with the Smart Shuttle and its Retrieval Sub, or they can be simply pumped-down from the surface using techniques shown in FIG.


1


and in the previously described “fifth step”.





FIG. 18A

shows a modified form of

FIG. 18

wherein the last portion of the “pipe means”


672


has “pipe mounted latching means”


674


. This “pipe mounted latching means” may be used for a number of purposes including at least the following: (a) an attachment means for attaching a retrievable drill bit to the last section of the “pipe means”; and (b) a “stop” for a pump-down one-way valve means following the retrieval of the retrievable drill bit. In some contexts this “pipe mounted latching means”


674


is also called a “landing means” for brevity. Therefore, an embodiment of this invention is methods and apparatus to install one-way cement valve means in drill pipe means following the removal of a retrievable drill bit to produce oil and gas. It should also be stated that well completion processes that include the removal of a retrievable drill bit may be substantially under the control of a computer system, and in such a case, it is another example of automated completion system or a part of a closed-loop completion system to complete oil and gas wells.




The above described “landing means” can be used for yet another purpose. This “landing means” can also be used during the one-trip-down-drilling and completion of wellbores in the following manner. First, a standard rotary drill bit is attached to the “landing means”. However, the attachment for the drill bit and the landing means are designed and constructed so that a ball plug is pumped down from the surface to release the rotary drill bit from the landing means. There are many examples of such release devices used in the industry, and no further description shall be provided herein in the interests of brevity. For example, relatively recent references to the use of a pumpdown plugs, ball plugs, and the like include the following: (a) U.S. Pat. No. 5,833,002, that issued on Nov. 10, 1998, having the inventor of Michael Holcombe, that is entitled “Remote Control Plug-Dropping Head”, an entire copy of which is incorporated herein by reference; and (b) U.S. Pat. No. 5,890,537 that issued on Apr. 6, 1999, having the inventors of Lavaure et. al., that is entitled “Wiper Plug Launching System for Cementing Casing with Liners”, an entire copy of which is incorporated herein by reference. After the release of the standard drill bit from the landing means, a retrievable drill bit and underreamer can thereafter be conveyed downhole from the surface through the drill string (or the casing string, as the case may be) and suitably attached to this landing means. Therefore, during the one-trip-down-drilling and completion of a wellbore, the following steps may be taken: (a) attach a standard rotary drill bit to the landing means having a releasing mechanism actuated by a releasing means, such as a pump down ball; (b) drill as far as possible with standard rotary drill bit attached to landing means; (c) if the standard rotary drill bit becomes dull, drill a sidetrack hole perhaps 50 feet or so into formation; (d) pump down the releasing means, such as a pump down ball, to release the standard rotary drill bit from the landing means and abandon the then dull standard rotary drill bit in the sidetrack hole; (e) pull up on the drill string or casing string as the case may be; (f) install a sharp retrievable drill bit and underreamer as desired by attaching them to the landing means; and (f) resume drilling the borehole in the direction desired. This method has the best of both worlds. On the one-hand, if the standard rotary drill bit remains sharp enough to reach final depth, that is the optimum outcome. On the other-hand, if the standard rotary drill bit dulls prematurely, then using the above defined “Sidetrack Drill Bit Replacement Procedure” in elements (a) through (f) allows for the efficient installation of a sharp drill bit on the end of the drill string or casing string, as the case may be. The landing means may also be made a part of a Smart Drilling and Completion Sub. If a Retrievable Instrumentation Package is present in the drilling apparatus, for example within a Smart Drilling and Completion Sub, then the above steps need to be modified to suitably remove the Retrievable Instrumentation Package before step (d) and then re-install the Retrievable Instrumentation Package before step (f). However, such changes are minor variations on the preferred embodiments herein described.




To briefly review the above, many descriptions of closed-loop completion systems have been described. One particular version of a closed-loop completion system uses a preferred embodiment that discloses methods of causing movement of shuttle means having lateral sealing means within a “pipe means” disposed within a wellbore that includes at least the step of pumping a volume of fluid from a first side of the shuttle means within the pipe means to a second side of the shuttle means within the pipe means, where the shuttle means has an internal pump means. Pumping fluid from one side to the other of the smart shuttle means causes it to move “downward” into the pipe means, or “upward” out of the pipe means, depending on the direction of the fluid being pumped. The pumping of this fluid causes the smart shuttle means to move, translate, change place, change position, advance into the pipe means, or come out of the pipe means, as the case may be, and may be used in other types of pipes. The “pipe means” deployed in the wellbore may be a pipe made of any material, and may be a metallic pipe, a steel pipe, a drill pipe, a drill string, a casing, a casing string, a liner, a liner string, tubing, a tubing string, or any means to convey oil and gas to the surface for oil and gas production. There are many embodiments of smart shuttles, but the particular embodiment of a smart shuttle described in the foregoing is particularly useful for operation within any pipe means and for closed-loop completion systems.




Smart Shuttle with Progressive Cavity Pump




As stated earlier, several embodiments of the Smart Shuttle use a positive displacement pump. There is a particularly useful version of a positive displacement pump called a Progressive Cavity Pump (“PCP”). In turn, that PCP is coupled to a gear box that is in turn driven by an Electrical Submersible Motor (“ESM”). Such a configuration is called a “PCP/ESM” for short. Sometimes, the overall assembly is simply called an Electrical Submersible Pump (“ESP”).





FIG. 19

shows a PCP/ESM Smart Shuttle generally designated with the numeral


676


that is located within a “pipe means”


678


that includes a casing, drill pipe, tubing, etc. The PCP/ESM Smart Shuttle is comprised of a Progressive Cavity Pump


680


of the type typically used in the oil and gas industries such as that manufactured by Tarby Inc., 2205 E. L. Anderson Boulevard, Clarmore, Okla. 74017, that is further described in that firm's catalogue entitled “Progressing Cavity Solutions thru Service, Parts and Pumps”. That Progressive Cavity Pump has a rotor


681


and stator


682


as is typical of such pumps. The Progressive Cavity Pump is coupled to gear box


683


that is in turn coupled to the Electrically Submersible Motor


684


, which in turn is connected to electronics assembly


685


having any downhole computer, the downhole sensors, and communications system, which in turn is connected by the quick change collar


686


to the cablehead


688


that is suspended by the wireline


690


. The lower wiper plug assembly


692


has sealing lobe


694


and this assembly is firmly attached to the body of the Progressive Cavity Pump at the location generally specified by numeral


696


and this assembly further has lower bypass passage


698


which has electrically operated valves


700


and


702


. The upper wiper plug assembly


704


has sealing lobe


706


and this assembly is firmly attached to the sections of the apparatus having the gear box and the Electrically Submersible Motor at the location generally designated by numeral


708


. The upper wiper assembly also has permanently open upper bypass port


710


in the embodiment shown in FIG.


19


.




In terms of

FIG. 19

, and when the Electrically Submersible Motor is suitably turning the rotor of the Progressive Cavity Pump (PCP), a volume of fluid ΔV


2


in the wellbore is pumped into the lower side port


712


of the PCP and out of the upper side port


714


of the PCP. With valves


700


and


702


closed, the fluid ΔV


2


is then forced through the upper bypass port


710


into the portion of the well above the upper surface of the upper wiper plug assembly that is identified by numeral


716


. In this manner, the Smart Shuttle is then forced downward into the wellbore.




In analogy with previous embodiments, the Retrieval Sub


718


is attached to the body of the Smart Shuttle by quick change collar


720


that in turn is connected to the lower body of the Progressive Cavity Pump. The Smart Shuttle and its Retrieval Sub otherwise operate in manners and for purposes previously described herein. The point is that this embodiment of the invention is particularly relevant to operation within any pipe means which may be a casing, a drill pipe, etc. The electrical wiring from the cablehead and the electronics assembly


685


that passes through the PCP to the Retrieval Sub is not shown in

FIG. 19

for the purposes of simplicity only.




In

FIG. 19

, the lobe


706


of the upper wiper plug assembly


704


must seal against the inside of the pipe means for proper operation of the Smart Shuttle. To that end, various different embodiments of the invention provide for different adjustable sealing means to compensate for variations in the ID of the pipe means present.





FIG. 20

shows one embodiment of the invention that has an adjustable sealing means generally designated by the numeral


722


in FIG.


20


. In this case, the adjustable sealing means, or adjustable sealing apparatus


722


, is comprised of a hydraulic port


724


from inside of the adjacent tool body


725


that provides hydraulic oil under pressure which inflates inflatable gland


726


. With a first hydraulic pressure “P


1


” on the fluid within the inflatable gland, the solid lines show the outline of the adjustable sealing apparatus. With a second hydraulic pressure “P


2


” on the fluid within the inflatable gland, the dotted lines show the outline of the adjustable sealing apparatus. With hydraulic pressure “P


2


”, the lobe


728


of the adjustable sealing apparatus makes suitable contact with the interior of the pipe means


730


. A bypass port


732


is shown in

FIG. 20

which also shows the relaxed state under pressure P


1


(solid line) and the energized state under pressure P


2


(dotted line).




Closed-Loop System to Complete Cased Wells with Smart Shuttles




Any type of Smart Shuttle with Retrieval Sub may be used to complete cased wells. However, the above PCP/ESM Smart Shuttle is particularly attractive. This PCP/ESM Smart Shuttle may be wireline conveyed as shown in

FIG. 19

, or may be “tubing conveyed”, or may be “tubing with wireline conveyed” as desired. The PCP/ESM Smart Shuttle is particularly useful for the close-loop completion of oil and gas wells. Several embodiments of the invention involving the closed-loop completion of oil and gas wells follow in

FIGS. 21 and 22

.




As a brief review,

FIGS. 18 and 18A

showed a casing being disposed in the wellbore.

FIGS. 19 and 20

showed a particular type of Smart Shuttle that can be used to complete any “pipe means” disposed in a wellbore, where this “pipe means” specifically includes a casing string.

FIG. 21

shows a casing string in the process of being completed with a Smart Shuttle and other devices disposed in the casing string.




All the numerals in FIG.


21


through numeral


666


have been previously defined heretofore in the specification. In

FIG. 21

, the final length of casing


734


possesses “pipe mounted latching means”


736


that is also called a “landing means”. This “landing means” was previously described in relation to

FIG. 18A

, and in its simplest form, it provides at least a mechanical stop for various devices. Wiper plug


738


with one-way valve means


740


had been pumped down from the surface and it wiped drilling mud off the interior of the casing and it came to rest against the “landing means”. Then, perforable wiper plug


742


pumped down a charge of cement


744


shown in FIG.


21


. Then, perforable wiper plug


746


pumped down a charge of gravel


748


. Then, solid wiper plug


750


pumped down the final charge of cement


752


. As further shown in

FIG. 21

, a Smart Shuttle


754


having a Retrieval Sub


756


is attached to a Casing Saw


758


that in turn saws slots in the casing as previously described. The cable head


760


is attached to the Smart Shuttle as previously described, and in turn, it is attached to the wireline


762


. The operations shown in

FIG. 21

may be executed substantially under the control of a computer system which is another example of a “closed-loop completion system”. One embodiment of such a computer system is shown in FIG.


14


. It should also be noted that if the above wiper plugs are deployed into the wellbore by initial attachment to the Retrieval Sub, then these wiper plugs can also be described as “smart wiper plugs”.





FIG. 22

shows a section view of the pump-down single zone packer apparatus installed in the casing string. The slots


764


made by the Casing Saw are evident in the casing string. The pump-down single zone packer apparatus


766


is shown in FIG.


22


and it had been previously described in relation to element


658


in FIG.


17


. As is the case in

FIG. 17

, in several preferred embodiments of the invention, one or more downhole sensors, related electronics, batteries or other power source, and one or more communication systems within the pump-down single zone packer apparatus


766


provide information to a computer system controlling the well completion process. The pump-down single zone packer apparatus


766


is attached to coiled tubing


768


as previously described in relation to FIG.


17


. Again, the operations shown in

FIG. 22

may be executed substantially under the control of a computer system which is another example of a “closed-loop completion system”. Again, one embodiment of such a computer system is shown in FIG.


14


.

FIG. 14

provides for the computer operation of a coiled tubing rig because of the following quote from the text that describes FIG.


14


: “Electronics interfacing system


572


also provides power and electronic control of any coiled tubing rig designated by element


591


(not shown in FIG.


14


), including the coiled tubing drum hydraulic motor and pump assembly of that coiled tubing rig, but such a coiled tubing rig is not shown in

FIG. 14

for the purposes of simplicity.”




Definitions of Closed-Loop Systems and Automated Systems to Complete Oil and Gas Wells




The Glossary of Ref. 4 described earlier defines the term “to complete a well” to be the following: “to finish work on a well and bring it to productive status. See well completion.” The term “to complete a well” may also be used interchangeably with the term “to complete a wellbore”.




The Glossary of Ref. 4 further defines term “well completion” to be the following: “1. the activities and methods of preparing a well for the production of oil and gas; the method by which one or more flow paths for hydrocarbons is established between the reservoir and the surface. 2. the systems of tubulars, packers, and other tools installed beneath the wellhead in the production casing, that is, the tool assembly that provides the hydrocarbon flow path or paths.” To be precise for the purposes herein, the term “completing a well” or the term “completing the well” are each separately equivalent to performing all the necessary steps for a “well completion”.




For the purposes herein, in several preferred embodiments of the invention, the term “well completion system” shall mean apparatus and required procedures that are used “to complete a well” and which are capable of providing the equipment and methods of operation necessary for “well completion”.




For the purposes herein, in several preferred embodiments of the invention, the term “automated well completion system”, or “automated system for well completion”, or “automated system to complete an oil and gas well” shall mean the following: a well completion system having at least one downhole component located in the well that may also have one or more uphole components located in the vicinity of a drilling rig which are controlled by a computer executing programmed steps during at least “one significant portion of the well completion process”—a term defined below. Here, “uphole” may be on the ocean bottom near the present location of the drilling rig or near the location were the drilling rig was previously positioned during the drilling of the well.




For the purposes herein, in several embodiments of the invention, the word “automated” as it refers to any process in many embodiments of the invention shall mean that the process is simply under computer control.




For the purposes herein, and for several preferred embodiments of the invention, the term “closed-loop system for well completions”, or “a closed-loop system to complete wellbores”, or “a closed-loop system to complete oil and gas wells”, shall mean the following: an automated well completion system having at least a downhole component and/or one or more uphole components controlled by a computer, that has at least one downhole sensor and at least one uphole sensor that provide information to the computer, whereby the execution of the programmed steps by the computer to control the components takes into account the information from the uphole and the downhole sensors to optimize and/or change the steps executed by the computer to complete the well. Here, “uphole” may be on the ocean bottom near the present location of the drilling rig or near the location were the drilling rig was previously positioned during the drilling of the well. Further, the downhole component may also include the downhole sensor. Yet further, any uphole component may also include any uphole sensor.




For the purposes herein, in several preferred embodiments of the invention, the phrase “closed-loop” as it refers to any process in many embodiments of the invention shall mean that the process is not only under computer control, but in addition, this process uses at least some downhole information that is communicated to the surface to optimize and/or change the steps executed by the computer to complete the well.




As an example of the above, the title of an invention for many preferred embodiments herein described could have read as follows: “CLOSED-LOOP AUTOMATED SYSTEM TO COMPLETE OIL AND GAS WELLS”. However, from the above definitions, the term “closed-loop” implies that an automated system is executing steps that depend in part on information communicated from at least one downhole sensor to the surface. Therefore, for certain preferred embodiments, the word “automated” following “closed-loop” would be redundant.




As another example of the above, the title of an invention for many preferred embodiments herein described could also have read as follows: “AUTOMATED SYSTEM TO COMPLETE OIL AND GAS WELLS”. However, using the exact phrases as defined herein, this might not necessarily include all “closed-loop” systems having at least one downhole sensor.




For the purposes herein, in several preferred embodiments of the invention, the term “one significant portion of the well completion process”, shall be defined as the series of steps executed by the computer that sends a device attached to a wireline or coiled tubing into any depth in the well and returns the wireline or coiled tubing to the surface—whether or not the device is installed in the well or is attached to the wireline or coiled tubing. The definition of the term “one significant portion of the well completion process” also includes the step of sending a device attached to a wireline or coiled tubing into the well during “one trip”, meaning “one trip down” into the well and “one trip back” to the surface. Here, the term “one trip” does not necessarily imply any time duration, and this step may be done in an hour, a day, or many years in the case of semi-permanently installed instrumentation for reservoir monitoring purposes that are installed during the well completion process. It should also be stated for clarity that the term “well completion process” in some preferred embodiments also includes the steps of installing into the wellbore devices to monitor production for long periods of time.




Following the above described steps of installing into the wellbore devices to monitor production, several preferred embodiments also provide steps for installing into the wellbore devices to adjust, change, or control the production of oil and gas from within the wells. In several embodiments, the step to monitor production and the step to control production may be executed during the sequence of steps that are necessary to complete the oil and gas well.




Alternatively, and in several embodiments, the step to monitor production and the step to control production may be executed following the sequence of steps that are necessary to complete the oil and gas well. For the sake of brevity, several alternative sequence of events evident from the above disclosure will not be further discussed here. Therefore, production monitoring means to monitor production may be installed during, or after the well completion process. Therefore, production controlling means may be installed during, or after the completing the well. It should also be realized that the means to monitor production may include means to monitor the total hydrocarbon production, and/or to separately monitor the oil and/or gas and or/water production. Further, the means to control production may include means to control the total production of hydrocarbons, and/or to separately control the production of the oil and/or gas and/or water from the wellbore.




To further elaborate on the previous paragraph, various preferred embodiments include at least one sensor remaining in the wellbore as means to monitor the production of hydrocarbons from the wellbore after completing the wellbore. Other preferred embodiments include means to control the production of hydrocarbons that are disposed into the wellbore and remain installed in the wellbore after completing the wellbore. And further, in yet other preferred embodiments, the means to monitor the production of hydrocarbons from the wellbore may also be used to adjust the means to control the production of hydrocarbons from the wellbore following the completion of the wellbore, which latter means may be defined herein as an “adjustable means to control the production of hydrocarbons” from within the wellbore. Yet further, other embodiments provide for the “remote actuation of the adjustable means to control the production of hydrocarbons”, a term defined herein. The remote actuation includes remote actuation from the surface of the earth, from an offshore drilling platform, or from any device installed within the wellbore, such as from the means to monitor the production of hydrocarbons within the wellbore. In yet further embodiments of the invention, a closed-loop system to complete a well for producing hydrocarbons from the earth may also be used for the second purpose as a closed-loop system to monitor, control, and maintain production from the well.




For the purposes herein, in several preferred embodiments of the invention, the phrase “computer system”, and/or the word “computer”, and/or the phrase “computer means”, shall mean: one or more electronic machines which by means of stored instructions and information, performs rapid, calculations and/or compiles, correlates, and selects data including remote sensory data, that is used to control the well completion process and related processes through a series of steps executed by the machine or machines, each of which may have a data bus, a processor, a nonvolatile memory, a read only memory, an analogue to digital converter, a controller, electronic systems, and any other means necessary to control an automated well completion system. It should be explicitly stated that the steps actually executed by the computer system may change or be altered as a result of data provided by one or more remote sensors. The term “computer system”, or the word “computer”, shall also explicitly include one or more “distributed computers” linked together by suitable data communications systems, or “communications means”. For example, and for the purposes herein, the term “computer system”, or the word “computer”, shall mean the combination of any or all computers at the wellsite, and any or all remotely located computers, such as computers onshore during offshore drilling and completion operations, and all of their associated communications links, and other related computation means and data banks, which together comprise a “distributed computer system” or simply as a “computer system means”. Accordingly, and under various circumstances, the phrases “computer system”, “computer”, “computer means”, “distributed computer system”, and “computer system means” may be used equivalently as the case may be.




For the purposes herein, in many preferred embodiments, the term “wireline” shall mean a flexible, armor encapsulated, collection of insulated wires that may include one or more optical cables, and where the collection of insulated wires often includes 7 conductors, but which may in principle mean any number of such conductors capable of carrying any amount of current, providing any voltage levels required, and providing any net required power that is to be delivered downhole. Such wirelines are routinely used in the oil and gas industries for logging, production, and for other proposes.




Using the above definitions, it should also be noted that another embodiment of a closed-loop system to complete oil and gas wells is comprised of a Retrieval Sub that is suitably attached to a wireline-conveyed well tractor. In this embodiment, the wireline-conveyed well tractor is used to convey downhole various Smart Completion Devices attached to the Retrieval Sub for deployment within the wellbore to complete oil and gas wells. In one embodiment, the Smart Completion Device attached to the Retrieval Sub during conveyance downhole provides information to the computer system, and this information affects the series of steps leading to the completion of the oil and gas well. Therefore, one embodiment is a wireline-conveyed well tractor automated under the control of a computer system that also possesses means to convey uphole various sensory data that affects the series of steps to complete the well. Consequently, this embodiment is also yet another example of a closed-loop system to complete oil and gas wells.




It is also to be noted that in preferred embodiments of the invention, the well is initially completed using a closed-loop system. Consequently, this initially completed well is “completed a first time”, a term defined herein. If there are problems with the initial production, or if there are ongoing production problems, the well may be “completed a second time”, a term defined herein. As is often the case with aging reservoirs, initially satisfactory hydrocarbon producing intervals may begin to produce progressively unacceptably large amounts of water in time. Accordingly, it may be required to complete the well a second time, or using other words, it may be necessary to “recomplete the well”, a term defined herein. The term “to recomplete the well” may also refer to any successive third, fourth, fifth, etc. completion of a given well. Therefore, after completing a well a first time, the well may be recompleted, thereby completing the well a second time to optimize the production of hydrocarbons from the earth.




Closed-Loop Systems and Automated Systems in Relation to FIGS.


21


and


22






In relation to

FIG. 21

, the Smart Shuttle, the Retrieval Sub, and any one of the Smart Completion Devices including the smart wiper plugs, may have one or more downhole sensors, related electronics, batteries or other power source, and one or more communications systems to provide measured information to the computer system controlling the well completion process.




In relation to

FIG. 22

, and in several preferred embodiments of the invention, one or more downhole sensors, related electronics, batteries or other power source, and one or more communication systems within the pump-down single zone packer apparatus


766


provide information to the computer system controlling the well completion process.




Therefore, in relation to

FIGS. 21 and 22

, many different devices may be conveyed into the well having sensors that provide information to a computer system. An example of such a computer system is element


556


in FIG.


14


. Various embodiments describe the computer system in

FIG. 14

controlling the steps to complete the oil and gas well as shown in

FIGS. 21 and 22

.




Put differently, in various embodiments shown in

FIGS. 21 and 22

, the computer system


556


is used to control the well completion process. The steps in this well completion process depend in part upon information provided from the downhole sensors described in relation to

FIGS. 21 and 22

.




Accordingly, it is now evident that the disclosure related to

FIGS. 21 and 22

describe an automated well completion system for producing hydrocarbons from a wellbore in the earth that is substantially under the control of a computer system that executes a sequence of programmed steps.




Further, disclosure related to

FIGS. 21 and 22

describe a closed-loop system to complete a well for producing hydrocarbons from the earth.




Yet further, disclosure related to

FIGS. 21 and 22

provide a method of completing a wellbore to produce hydrocarbons from the earth that is substantially under the control of an automated computer system that executes a sequence of programmed steps.




And finally, disclosure related to

FIGS. 21 and 22

provide a method to complete a wellbore to produce hydrocarbons from the earth that is substantially under the control of a closed-loop automated system that executes a sequence of programmed steps, whereby the steps depend upon information obtained from at least one sensor located within the wellbore, and whereby the steps are executed during one significant portion of the well completion process.




In relation to

FIGS. 1

,


2


,


3


,


4


,


5


,


6


,


7


,


8


,


9


,


10


,


17


,


17


A,


18


,


18


A,


19


,


20


,


21


, and


22


, it is evident that after completing the wellbore, the wellbore is comprised of at least a borehole in a geological formation that surrounds a pipe located within the borehole, and this pipe may be any one of the following: a metallic pipe; a casing string; a casing string with any retrievable drill bit removed from the wellbore; a steel pipe; a drill string; a drill string possessing a drill bit that remains attached to the end of the drill string after completing the wellbore; a drill string with any retrievable drill bit removed from the wellbore; a coiled tubing; a coiled tubing possessing a mud-motor drilling apparatus that remains attached to the coiled tubing after completing the wellbore; or a liner.




Smart Shuttle Assisted Coiled Tubing Deployment




As a brief review,

FIG. 22

shows a section view of the pump-down single zone packer apparatus installed in the casing string. In this simple application of coiled tubing technology, the pump-down single zone packer apparatus


766


was pumped down with pressure from the surface and with the assistance of force added by the mechanical “injectors” that were described in relation to FIG.


17


.




However, the Smart Shuttles may be conveyed downhole with coiled tubing. Such a Smart Shuttle with Retrieval Sub that is conveyed downhole by coiled tubing is shown in FIG.


23


. In fact, the coiled tubing conveyed Smart Shuttle in

FIG. 23

is forced downhole by three different mechanisms: (a) mechanical “injectors” at the surface force the coiled tubing downward at the wellhead; (b) the PCP/ESM assembly may be used to assist by “pulling” the Smart Shuttle into the wellbore; and (c) yet further, hydraulic forces from the surface also force the Smart Shuttle into the wellbore. That these three independent methods may be used to force the Smart Shuttle with its attached Retrieval Sub downward into the wellbore will become better apparent with the following description of the elements in FIG.


23


.




All the elements in FIG.


23


through element


720


have been previously described. The Progressive Cavity Pump is labeled with element


680


. The Progressive Cavity Pump is coupled to gear box


683


that is in turn coupled to the Electrically Submersible Motor


684


, which in turn is connected electronics assembly


685


having any downhole computer, sensors, and communications system, which in turn is connected to the quick change collar


770


. The assembly below the quick change collar in

FIG. 23

is often referred to as the Progressive Cavity Pump/Electrical Submersible Motor assembly that is abbreviated as the “PCP/ESM assembly”. Therefore, the “PCP/ESM assembly” is attached to the quick change collar


770


in FIG.


23


.




Coiled tubing


772


has wireline


774


installed within it. Coiled tubing


772


also has threaded end


776


. Tubing Termination Assembly


778


has threads


780


that mate to the threaded end


776


of the coiled tubing. So, the Tubing Termination Assembly is suspended within the casing from the threaded end


776


of the coiled tubing. Any fluids that flow into, or out of, the coiled tubing are conducted to and from the interior of the casing through fluid channel


782


. Valve


783


located within fluid channel


782


can be used to positively shut off fluid flow through the channel, but valve


783


is not shown in

FIG. 23

solely for the purposes of simplicity. For many of he following embodiments, it is assumed that this valve


783


is open unless explicitly stated otherwise. The wireline


774


is connected to top submersible plug


784


that connects to lower submersible plug


786


which in turn passes the electrical conductors from the wireline to the quick change collar. The bundle of electrical conductors passing to the quick changer collar is designated with the numeral


788


in FIG.


23


. Within the quick change collar is yet another electrical plug assembly that provides power and electrical signals through a bundle of wires to the “PCP/ESM assembly” that is not shown in

FIG. 23

solely for the purposes of simplicity. Typical design and assembly procedures used in the industry are assumed throughout this application. It is often the case that a quick change collar surrounds male and female mating electrical connectors, which is typically the case in “logging tools” used in the wireline logging industry. Those connectors mate at the location specified by the dashed line


789


shown on the interior of the quick change collar in FIG.


23


.




In addition, the Tubing Termination Assembly


778


also possesses expandable packer


790


. Upon command from the surface, this expandable packer can be inflated within the casing to seal against the casing as may be required during typical well completion procedures, and typical workover procedures, that are used in the industry. This expandable packer can also be used for a second purpose of forcing the Smart Shuttle into the wellbore as described below.




With reference to

FIG. 23

, the Smart Shuttle may be forced downhole by three mechanisms that are described in separate paragraphs as follows.




First, mechanical “injectors” at the surface force the coiled tubing downward at the wellhead. These mechanical “injectors” have been previously described.




Second, the electrically energized Progressive Cavity Pump forces fluid ΔV


2


into the lower side port


712


of the PCP and out of the upper side port


714


of the PCP, and the Smart Shuttle is conveyed downhole. If this method is used by itself, then no fluid would necessarily flow to the surface through fluid channel


782


. It could, but it is not necessary in this embodiment, and under the circumstances described.




Third, and in analogy with the pump-down single zone packer apparatus


658


described in

FIG. 17

, the expandable packer


790


in

FIG. 23

is inflated so as to make a reasonable seal against the casing, but not so firmly so as to lock the device in place. In

FIG. 23

, the solid line labeled with numeral


790


shows the uninflated state of the expandable packer, and the dotted line shows the expanded state of expandable packer


790


. Then, in analogy with fluid flow described in

FIG. 17

, fluid forced into the upper wellbore will force the apparatus attached to the expandable packer downward into the wellbore, and any fluid ΔV


3


displaced is forced upward through fluid channel


782


and into the interior of the coiled tubing which in turn flows to the surface in analogy with previous description of fluid flow through coiled tubing to the surface in relation to FIG.


17


.




In principle, all first, second, and third methods of conveyance downhole can be used simultaneously, provided that valves


698


and


700


are closed, and provided the Progressive Cavity Pump


680


is suitably energized.




For simplicity, the particular embodiment of the invention shown in

FIG. 23

will be called in certain portions of the text that follows a “coiled tubing with wireline Smart Shuttle” abbreviated “CTWWSS”, that is generally designated as numeral


792


in FIG.


23


.




Any smart completion device may be attached to the Retrieval Sub


718


during any such conveyance downhole. For example, a casing saw or another packer can be installed on the Retrieval Sub so that many different services can be performed during one trip downhole. These include perforating, squeeze cementing, etc.—in fact many of the methods to complete oil and gas wells defined in the book entitled “Well Completion Methods”, “Well Servicing and Workover”, Lesson


4


, from the series entitled “Lessons in Well Servicing and Workover”, Petroleum Extension Service, The University of Texas at Austin, Austin, Tex., 1971 (previously defined as “Ref. 2” above), an entire copy of which is incorporated herein by reference.




The apparatus in

FIG. 23

may be used to test production or to assist production if it is used in another manner. In this embodiment, an electrically actuated casing lock


794


(not shown in

FIG. 23

) is attached to the Retrieval Sub


718


. It has passages through it so that hydrocarbons below it can pass through it if necessary, but it otherwise locks the apparatus in

FIG. 23

to the inside of the casing. Once locked in place, the PCP/ESM assembly can pump hydrocarbons through lower side port


712


of the PCP and out of the upper side port


714


of the PCP. Thereafter, hydrocarbons are pumped through fluid channel


782


of the Tubing Termination Assembly


778


in

FIG. 23

provided that the expandable packer


790


is suitably inflated. There are many variations on this embodiment of the invention but they are not further described here solely in the interests of brevity.




Universal Smart Completion Devices for Closed-Loop Systems to Complete Oil and Gas Wells





FIG. 24

shows a Universal Smart Completion Device (USCD) that is generally designated by the element


796


. The USCD in

FIG. 24

is used in several preferred embodiments of closed-loop systems to complete oil and gas wells. The USCD is disposed within “pipe means”


798


that includes a casing, drill pipe, tubing, a metallic pipe of any type, any type of pipe, etc. Upper attachment apparatus


800


of the USCD provides similar apparatus and mechanical functions as provided by element


620


in

FIG. 16

, and by element


206


of the Retrieval Instrumentation Package in FIG.


7


. The USCD also has top electrical connector


802


that mates to the retrieval sub electrical connector


313


shown in FIG.


9


and to connector


313


shown in FIG.


23


. The body


804


of the USCD has first recession


806


and second recession


808


. First controlled casing locking mechanism


810


is conveyed downhole with its arm retracted within the first recession. Upon a suitable command, it is locked into place against the inside of the casing or pipe. Second controlled casing locking mechanism


812


is conveyed downhole with its arm retracted within the second recession. Upon a suitable command, it is also locked into place against the inside of the casing or pipe. Internal bore


814


within the USCD allows fluids to flow through the interior of the USCD under certain circumstances. Lower valve


816


of the USCD may be opened or closed on command. Upper valve


818


of the USCD may be opened or closed on command.




The USCD in

FIG. 24

also possesses expandable packer


820


. Upon command from the surface, this expandable packer can be inflated within the casing (or pipe) to seal against the casing as may be required during typical well completion procedures and typical workover procedures that are used in the industry. The solid line shows the expandable packer in a position where fluids can flow by it between the USCD and the pipe wall. The dashed line shows the expandable packer in a position where fluids cannot flow by it between the USCD and the pipe wall.




First internal fluid flow control valve


822


is used to control the flow of fluids through the internal bore


814


within the USCD. Second internal fluid flow control valve


824


is also used to control the flow of fluids through the internal bore


814


within the USCD. The pressure in the fluids flowing through the internal bore of the USCD is measured with pressure gauge


826


in FIG.


24


. Ancillary measurement package


828


measures the temperature, and provides any other desirable physical measurements such as measurements of the “basic flow rate, or the detailed measurements of the relative amounts of water, oil and gas flowing by this measurement package. Ancillary measurement package


828


provides any downhole sensors, or sensor means, and any downhole monitors, or monitoring means.




In

FIG. 24

, USCD electronics package


830


provides all necessary electronics to operate the upper and lower valves, to operate the first and second controlled casing locking mechanisms, to operate the first and second internal fluid flow control valves, to accept communicated commands from the surface and/or from the Smart Shuttle and its Retrieval Sub, to provide all desired downhole sensors, to provide measurements from the downhole sensors, and to provide communications to the surface and/or the Smart Shuttle and its Retrieval Sub. Virtually any electronic, sensor, or sensor measurement function previously described with regards to a Smart Shuttle, a Retrieval Sub, a Smart Completion Device, and/or a Retrievable Instrumentation Package may be incorporated into the USCD as different embodiments of the invention herein.




Electronics package


830


also possesses suitable power sources to provide any required power to the USCD such as batteries and/or batteries that may be recharged through the wireline if the USCD is connected to the Retrieval Sub of a Smart Shuttle. Such rechargeable batteries may be recharged downhole or uphole as desired by the operator. It may be desirable to have additional features incorporated into the USCD for different classes of well completions. However, such additional electronics and other features would be conveniently added to the USCD in a modular fashion so that in this preferred embodiment, no substantial changes would be required to the mechanical apparatus shown in FIG.


24


.




In addition to batteries, or rechargeable batteries to suitably power the USCD as described above, a motor generator system may be also provided in several embodiments of the USCD shown in

FIG. 24

that is generally designated with the numeral


832


(which comprises equivalent individual elements such as elements


264


,


266


,


268


,


270


, and


272


of the mud-motor generator system in FIG.


7


). Fluids flowing through the motor generator are used to generate power in analogy with the mud-motor generator system described in FIG.


7


. These fluids are often production fluids under high pressure that are in the process of flowing to the surface. In low pressure reservoirs, fluids pumped to the surface may also similarly impart energy to the USCD. Therefore, even after the USCD has been disconnected from the Retrieval Sub, it may still communicate to the Smart Shuttle and/or to the surface by using power from the motor generator, any batteries present, and suitable acoustic telecommunication devices, located in the electronics package


830


—which is just one example of this preferred embodiment. Other communications systems located in electronics package


830


may be used in yet other embodiments to communicate between the USCD and the surface. In another embodiment, the motor generator may be used to charge rechargeable batteries in the electronics package


830


if the USCD is disconnected from the Retrieval Sub and its associated Smart Shuttle and wireline.




Measurements performed by the USCD, and the status of various valves, etc. are conveyed to a computer system, such as computer system


556


in FIG.


14


. That computer system processes the information, and determines a sequence of steps in part related to the information that it has received. Accordingly, suitable commands are sent downhole during the process of completing a well. Therefore, the USCD in

FIG. 24

is a portion of one embodiment of a closed-loop system to complete oil and gas wells.




Communications from the USCD to the computer system may be accomplished in at least the following manners: (a) if the USCD is attached to its Retrieval Sub, Smart Shuttle, and wireline, then communications may be sent from the USCD over the wireline to the computer system; or (b), if the USCD is not attached to its Retrieval Sub, then an acoustic signal or an electromagnetic signal generated within the USCD may be sent to the Smart Shuttle, and that signal may then be interpreted in the Smart Shuttle and suitably electronically relayed to the surface over the wireline; or (c) Smart Cricket Repeaters may be used as described in the U.S. Disclosure Document No. 465344 that is entitled “Smart Cricket Repeaters In Drilling Fluids for Wellbore Communications While Drilling Oil and Gas Wells” that was previously described above. Similar methods to (a), (b), and (c) may be used to convey commands and other information sent downhole to the USCD from the computer system on the surface.




Therefore, it is evident that any one USCD may be installed within any pipe means such as within a casing, a drill pipe, etc. In several preferred embodiments related to

FIG. 24

, any USCD installed within a wellbore possesses at least one sensor as means to monitor the production of hydrocarbons from the wellbore after completing the wellbore. In other preferred embodiments, means to control the production of hydrocarbons that are disposed into the wellbore and remain installed in the wellbore after completing the wellbore are provided such as internal fluid flow control valves


822


and


824


of the USCD. In yet other preferred embodiments of the USCD in

FIG. 24

, the means to monitor the production of hydrocarbons from the wellbore may also be used to adjust the means to control the production of hydrocarbons from the wellbore following the completion of the wellbore, which latter means may be defined herein as an “adjustable means to control the production of hydrocarbons” from within the wellbore. Yet further, other embodiments provide for the “remote actuation of the adjustable means to control the production of hydrocarbons”, a term previously defined. The remote actuation includes remote actuation from the surface of the earth, from an offshore drilling platform, or from any device installed within the wellbore, such as from the means to monitor the production of hydrocarbons within the wellbore. In yet further embodiments of the invention, a closed-loop system to complete a well for producing hydrocarbons from the earth may also be used for the second purpose as a closed-loop system to monitor, control, and maintain production from the well.




Closed-Loop Completions of Multilateral Wellbores




As another embodiment of closed-loop well completions,

FIG. 25

shows two Universal Smart Completion Devices installed in wellbores to make a TAML Level 5 Well Completion. This is one category of well completion configurations defined by an industry group generally known as the “Technology Advancement of Multilaterals” (“TAML”) group. The definitions of TAML Level well completions appear in at least the following references: (a) the article entitled “Multilateral Classification System with Example Applications” by Alan MacKenzie and Cliff Hogg, World Oil, January 1999, pages 55-61, an entire copy of which is incorporated herein by reference; and (b) Section 2, page 19, of the volume entitled “Multilateral Well Technology”, having the author of “Baker Hughes, Inc.”, that was presented in part by Mr. Randall Cade of Baker Oil Tools, that was handed-out during a “Short Course” at the “1999 SPE Annual Technical Conference and Exhibition”, October 3-6, Houston, Tex., having the symbol of “SPE International Education Services” on the front page of the volume, a symbol of the Society of Petroleum Engineers, which society is located in Richardson, Tex., which was previously described above, an entire copy of which is incorporated herein by reference.




In

FIG. 25

, the main wellbore


834


has casing


836


installed that has been cemented into place with cement


838


. That main wellbore was completed using Smart Shuttles, Retrieval Subs, and Universal Smart Completion Devices. A smart bridge plug


840


was set in place by a Smart Shuttle, and perforations


842


and


844


were made in the casing by a Smart Shuttle conveyed perforation gun.




In a preferred embodiment, a first USCD is shown installed in the main wellbore and it is labeled with numeral


846


in FIG.


25


. The first USCD has its expandable packer in its inflated position, has its casing locking mechanisms deployed thereby locking the first USCD into place, has its upper and lower valves closed, and has the first and second fluid control valves set at some nominal level as described below.




Lateral wellbore


848


has casing


850


that is cemented in place with cement


852


to a point defined with numeral


854


and has an open-hole segment


856


in FIG.


25


. The lateral wellbore casing


850


joins into the main wellbore casing


836


at the location generally designated with numeral


857


in

FIG. 25. A

screen


858


having upper attachment apparatus


860


capable of connecting to a Retrieval Sub was deployed into the open-hole lateral by a Smart Shuttle and its Retrieval Sub. Gravel


861


surrounds the screen


858


as is typically installed in certain completions. A second USCD is installed within the cased section of the lateral wellbore and it is labeled with numeral


862


. The second USCD has its expandable packer in its inflated position, has its casing locking mechanisms deployed thereby locking the first USCD into place, has its upper and lower valves closed, and has the first and second fluid control valves set at some nominal level as described below.




As shown in

FIG. 24

, the particular embodiment of the Smart Shuttle and Retrieval Sub that deployed the various elements into the wellbore is the “coiled tubing with wireline Smart Shuttle” abbreviated “CTWWSS”, previously generally designated as element


792


in relation to

FIG. 23

, which is generally designated with numeral


864


in FIG.


25


. Other preferred embodiments of the CTWWSS may have suitable flex joints installed along its length so that the radius of curvature of the length of the tool can match what is required to complete the well, although no such flex joints are explicitly shown in FIG.


25


. For example, such a flex joint designated by numeral


865


(not shown) may be installed in the CTWWSS between elements


684


and


685


in

FIG. 23

, however no such flex joint having numeral


865


is shown in

FIG. 23

, nor is it shown in

FIG. 25

, solely for the purposes of simplicity (although numeral


865


is reserved for this purpose in the event that future elaborations on this, and related, preferred embodiments are provided at a later time). From this disclosure, any Smart Shuttle and Retrieval Sub having at least one flex joint is yet another embodiment of this invention. Further, the CTWWSS has suitable measurement apparatus used in the industry such as MWD sensors, mechanical diverters, orientational apparatus, etc., to locate the position of the entry to the cased lateral wellbore at location


857


, but that apparatus is not shown in

FIG. 25

for the purposes of simplicity only.




Commingled production to the surface is perfectly acceptable for many applications provided that the production rates from the main wellbore and the lateral are acceptable and cause positive flow rates out of each portion of the geological formation produced. There are many ways to monitor commingled production.




A first way to monitor commingled production is as follows. Open the upper and lower valves in the first USCD, measure the flow rates, and send this information acoustically to the “CTWWSS” for relay to the surface. Then close these two valves. Then, open the upper and lower valves in the second USCD, measure the flow rates, and send this information acoustically to the CTWWSS to relay to the surface. Then, suitably adjust the first and second fluid control valves within either the first or second USCD to achieve the proper flow rates. Then, remove the CTWWSS, and replace with a “pump-down single-zone packer apparatus” of the type shown in FIG.


17


. Here, of course, there is commingled production to the surface from perhaps several zones.




A second way is to actually sample the flow rates separately from the first USCD and from the second USCD. Please note that with expandable packer


866


of the CTWWSS in

FIG. 25

expanded to form a seal on the inside of the casing, that any flow through the first USCD will be directed towards the surface. The Progressive Cavity Pump can be used to assist this flow, or valves


700


and


702


shown in

FIG. 23

can be opened instead. The flow rate through the first USCD can the be adjusted by communications provided from the CTWWSS. Similarly, the flow rate can be sampled and adjusted through the second USCD by communications provided from the CTWWSS.




Third, the flow rates through the first and second USCD can be controlled from the surface, and suitable determinations made of the respective flow rates. There are many alternative preferred embodiments of this invention.




It should be noted that the Progressive Cavity Pump can be used to assist production, but in several preferred embodiments, it helps to have the CTWWSS suitably anchored in place. If the Retrieval Sub of the CTWWSS engages the first USCD, and if the first USCD is locked in place, the CTWWSS will also be locked in place. Similar comments apply to the second USCD. Alternatively, the Retrieval Sub of the CTWWSS can be fitted with a separate smart casing lock to be conveyed downhole that will lock the CTWWSS in place. Of course, production would need to bypass the casing 2 lock, but there are many suitable designs for such a smart casing lock.




In the various preferred embodiments of the invention, measurements performed by the first and second USCD, and the status of various valves, etc. are conveyed to a computer system, such as computer system


556


in FIG.


14


. That computer system processes the information, and determines a sequence of steps in part related to the information that it has received from remote sensors located downhole. Accordingly, suitable commands are sent downhole to optimize the steps to complete the wellbore.




Therefore, the first and second USCD's in

FIG. 25

are a portion of a closed-loop system to complete oil and gas wells.




It should also be evident from the previous description how Smart Shuttles, Retrieval Subs, Smart Completion Devices, Universal Smart Completion Devices, and the associated computer system, or computer systems, communications systems, and downhole and uphole sensors, may be used to complete TAML Level 1, 2, 3, 4, 6, and 6s well completions.




Following the initial completion of the multilateral well a first time that is shown in

FIG. 25

, it may be necessary to recomplete the well a second time using apparatus and procedures already described herein. An example of such a recompletion might call for plugging the perforations


842


and


844


, re-perforating the well at different vertical positions, and recompleting the well. It is evident from the above description how this may be accomplished. As another example, the screen


858


may become clogged in time, and it may be necessary to replace that screen. It is also evident from the above description how this may be accomplished. There are many variations on the invention to recomplete wells. However, a closed-loop system to complete and oil and gas well a first time can be used a second time to recomplete the well. Therefore, recompleting the wellbore in

FIG. 25

is a minor variation of the invention. According, a closed-loop system to recomplete an oil and gas well is preferred embodiment of this invention.




Closed-Loop Systems and Automated Systems in Relation to FIGS.


23


,


24


and


25






Accordingly, it is now evident that the disclosure related to

FIGS. 23

,


24


and


25


describe an automated well completion system for producing hydrocarbons from a wellbore in the earth that is substantially under the control of a computer system that executes a sequence of programmed steps.




Further, disclosure related to

FIGS. 23

,


24


, and


25


describe a closed-loop system to complete a well for producing hydrocarbons from the earth.




Yet further, disclosure related to

FIGS. 23

,


24


and


25


provide a method of completing a wellbore to produce hydrocarbons from the earth that is substantially under the control of an automated computer system that executes a sequence of programmed steps.




And finally, disclosure related to

FIGS. 23

,


24


and


25


provide a method to complete a wellbore to produce hydrocarbons from the earth that is substantially under the control of a closed-loop automated system that executes a sequence of programmed steps, whereby the steps depend upon information obtained from at least one sensor located within the wellbore, and whereby the steps are executed during one significant portion of the well completion process.




In relation to

FIGS. 23

,


24


, and


25


, and in further reference to

FIGS. 1

,


2


,


3


,


4


,


5


,


6


,


7


,


8


,


9


,


10


,


17


,


17


A,


18


,


18


A,


19


,


20


,


21


, and


22


, it is evident that after completing the wellbore, the wellbore is comprised of at least a borehole in a geological formation that surrounds a pipe located within the borehole, and this pipe may be any one of the following: a metallic pipe; a casing string; a casing string with any retrievable drill bit removed from the wellbore; a steel pipe; a drill string; a drill string possessing a drill bit that remains attached to the end of the drill string after completing the wellbore; a drill string with any retrievable drill bit removed from the wellbore; a coiled tubing; a coiled tubing possessing a mud-motor drilling apparatus that remains attached to the coiled tubing after completing the wellbore; or a liner.




In view of the fact that any USCD may have downhole sensors and downhole monitors, it is evident that disclosure related to

FIGS. 23

,


24


, and


25


describe well completion methods wherein at least one sensor remains in the wellbore as means to monitor the production of hydrocarbons from the wellbore after completing the wellbore.




In view of the fact that any USCD may have downhole adjustable means to control production, it is evident that disclosure related to

FIGS. 23

,


24


, and


25


describe well completion methods wherein adjustable means to control the production of hydrocarbons are disposed into the wellbore and remain installed in the wellbore after completing the wellbore.




In view of the fact that the USCD may further have suitable monitoring means, it is evident that disclosure related to

FIGS. 23

,


24


, and


25


describe well completion methods wherein the means to monitor the production of hydrocarbons from the wellbore is used to adjust the means to control the production of hydrocarbons from the wellbore.




In view of the disclosure particularly related to

FIG. 25

, it is evident that disclosure related to

FIGS. 23

,


24


, and


25


describe a closed-loop system to complete a well for producing hydrocarbons from the earth, whereby following the completion of the well, the closed-loop system is also used to monitor, control, and maintain production from the completed well.




Closed-Loop Subsea Systems to Complete Oil and Gas Wells





FIG. 26

shows, in diagrammatic form, a closed-loop


16


subsea completion system. Subsea tree


868


is located on the ocean floor


870


and it is attached to casing


872


that is installed in wellbore


873


with cement


874


. The subsea tree has at least one hydraulically actuated ram


875


to prevent blowouts and it has top mating flange


876


. The Subsea Completion Module


878


, abbreviated as “SCM”, has a wall


880


so that the pressure may be controlled inside the SCM at location


882


, for example. The SCM has a bottom mating flange


883


that suitably engages the top mating flange of the subsea tree. Attached to the SCM bottom mating flange is pipe


884


that has hydraulic ram


886


to control blowouts and for other purposes.




The SCM in

FIG. 26

may be used, and deployed, as if it were a simple “diving bell” by hook support


888


. In one embodiment, the SCM is lowered through a large hole, or bay, in the bottom of a suitably designed surface vessel, although that surface vessel is not shown in

FIG. 26

solely for the purposes of brevity. Such a surface vessel has a suitable crane with drum having cable that is suitably attached to the hook support, although again, that crane is not shown in

FIG. 26

solely for the purposes of brevity. Known art in the industry may be used to design and build a suitable surface vessel. Similarly, and in different embodiments, the SCM may also be deployed from a drilling platform, a drillship, a semisubmersible, a submarine, a remotely operated vehicle (ROV), or from any ocean going vessel or ocean going means.




When the SCM is in place on the subsea tree, umbilical


890


is connected to the surface vessel, or instead to a platform, drillship, semisubmersible, or other support vessel on the surface as may be desirable. Electrical power, control signals, measurements, etc. are sent to and from the surface through the umbilical. It should be noted that for completeness, in various embodiments, the umbilical can also provide hydraulic controls, and fluids, etc., but solely for the purposes of simplicity, those features are not explicitly shown in FIG.


26


.




Umbilical


890


feeds through the wall of the SCM through the pressure feedthrough


892


. The signals to and from the umbilical proceed along wire bundles


894


to the computer and electronics system


896


. Computer and electronics system


896


controls the wireline drum


898


having wireline


900


. Signals from the computer and electronics system


896


are sent via wire bundle


902


to the slip-ring


904


as is typical in the wireline industry. The wireline proceeds to overhead sheave


906


. Suspended on the wireline are cablehead


908


, Smart Shuttle


910


, and Retrieval Sub


912


. Various Smart Completion Devices are figuratively shown


28


as elements


916


,


918


, and


920


on first automated rack


921


. For example, any of these elements can he one or more Universal Smart Completion Devices as shown in

FIGS. 24 and 25

. Second automated rack


922


holds more Smart Completion devices including a Casing Saw


924


, Smart Wiper Plug


926


, and Smart Perforation Gun


928


.




The automated racks are under the control of the computer and electronics system


896


, which in turn, may receive commands from a surface computer, and/or a computer onshore, which together comprise an entire distributed computer system. Upon suitable computer commands, the automated racks position the Smart Completion Devices in suitable orientation so that they may be grasped by the Retrieval Sub during sequential completion steps of the wellbore. Various sensors in the Smart Shuttles provide for the closed-loop control of the automated system to complete oil and gas wells shown in FIG.


26


. Universal Smart Completion Devices or other Smart Completion Devices having sensors also provide for the closed-loop control of the automated system to complete oil and gas wells shown in FIG.


26


. There are many variations of the embodiment shown in

FIG. 26

that provide for the closed-loop control of the automated completion system.




It should be noted that it is not necessary to have any human presence or operation in the SCM, although it is possible. Without human presence, then the pressure within the SCM can be raised to typical pressures available at the wellhead so that entering and leaving the well head does not necessarily require lubricators, etc. of the type already described in relations to

FIGS. 8 and 17

.




To keep excessive weight off the subsea tree, the weight of the SCM in

FIG. 26

is substantially supported by jack-up devices in contact with the ocean floor. First jack-up support is generally designated by numeral


930


in

FIG. 26

, and it has first jack-up foot


932


in contact with the ocean floor and first piston apparatus


934


attached to the bottom of the SCM. Typical art in the industry is used to construct and operate the jack-up apparatus. Second jack-up support is generally designated by numeral


936


in

FIG. 26

, and it has second jack-up foot


938


in contact with the ocean floor and second piston apparatus


940


attached to the bottom of the SCM. Not shown in

FIG. 26

is third jack-up support that is numeral


942


, and third jack-up foot


944


, and third piston apparatus


946


attached to the bottom of the SCM.




The alignment apparatus in

FIG. 26

used to align the SCM with the subsea tree is not shown for the purposes of simplicity only. Any alignment means located on the SCM is designated here as element


948


, and any alignment means located on, or near, the subsea tree is designated herein as element


950


, although these elements are not shown in

FIG. 26

solely for the purposes of brevity. These alignment means in several embodiments are completely automatic, in that no commands from the surface are necessary for the alignment means to properly guide the SCM into place over the subsea tree. Buoyancy controls


952


within the SCM are not shown in

FIG. 26

for brevity.




Accordingly,

FIG. 26

shows an automated well completion system for producing hydrocarbons from a wellbore in the earth that is substantially under the control of a computer system that executes a sequence of programmed steps.

FIG. 26

also shows a closed-loop system to complete a wellbore for producing hydrocarbons from the earth.




The embodiment of a subsea completion system shown in

FIG. 26

is the Subsea Completion Module


878


. However, the SCM may itself have its own thrusters and controls. Therefore, in several preferred embodiments, the SCM is in reality itself a remotely operated vehicle (“ROV”). In several embodiments, the automatic alignment means are used to guide the ROV into place over the subsea tree. Not shown in

FIG. 26

solely for the purposes of simplicity are suitable ROV thrusters


954


and suitable ROV thruster controls


956


. In other embodiments, separate remotely operated vehicles, or ROV's, or submarines, are be used to guide the SCM in

FIG. 26

into place over the subsea tree. Using other ROV's operated remotely from an offshore drilling platform to help guide the SCM into place over the subsea tree is yet another embodiment of the invention.





FIG. 26

shows a wireline within the SCM. However, a separate coiled tubing apparatus can be similarly be added within the SCM as another embodiment of the invention. That coiled tubing apparatus is numeral


958


in

FIG. 26

that is not shown solely for the purposes of brevity. Further, in another preferred embodiment, this coiled tubing apparatus can be fitted with a mud-motor assembly


960


, also not shown in

FIG. 26

, that may be used to drill holes with a mud-motor drilling apparatus of the types previously described herein. In an embodiment, sea water is used in part for the drilling fluid, and it is obtained through water intake port


962


, also not shown in FIG.


26


. Any drilling cuttings and the like will be exhausted into the ocean through drilling cutting exhaust port


964


in the SCM, but that is not shown in

FIG. 26

for the purposes of simplicity. Yet further, the mount for the coiled tubing apparatus can also be fitted to rotate about its base further enhancing the efficiency of the coiled tubing drilling apparatus.




Accordingly, it is now evident that the disclosure related to

FIG. 26

describes an automated well completion system for producing hydrocarbons from a wellbore in the earth that is substantially under the control of a computer system that executes a sequence of programmed steps.




Further, disclosure related to

FIG. 26

describes a closed-loop system to complete a well for producing hydrocarbons from the earth.




Yet further, disclosure related to

FIG. 26

provides a method of completing a wellbore to produce hydrocarbons from the earth that is substantially under the control of an automated computer system that executes a sequence of programmed steps.




And finally, disclosure related to

FIG. 26

provides a method to complete a wellbore to produce hydrocarbons from the earth that is substantially under the control of a closed-loop automated system that executes a sequence of programmed steps, whereby the steps depend upon information obtained from at least one sensor located within the wellbore, and whereby the steps are executed during one significant portion of the well completion process.




While the above description contains many specificities, these should not be construed as limitations on the scope of the invention, but rather as exemplification of preferred embodiments thereto. As have been briefly described, there are many possible variations. Accordingly, the scope of the invention should be determined not only by the embodiments illustrated, but by the appended claims and their legal equivalents.



Claims
  • 1. An automated well completion system for producing hydrocarbons from a wellbore in the earth that is substantially under the control of a computer system that executes a sequence of programmed steps comprising:(a) at least one computer system located on the surface of the earth; (b) at least one conveyance means to convey at least one completion device into said wellbore under the automated control of said computer system; (c) at least one sensor means located within said conveyance means; (d) first communications means that provides commands from said computer system to said conveyance means; (e) second communications means that provides information from said sensor means to said computer system, whereby the execution of the programmed steps of said computer system to control said conveyance means takes into account information received from said sensor means to optimize the steps executed by the computer system to complete the well.
  • 2. The apparatus in claim 1 whereby the conveyance means is a smart shuttle means that possesses at least one electrically operated pump.
  • 3. The apparatus in claim 1 whereby the first and second communications means are combined into a single bidirectional communications system means.
  • 4. A closed-loop system to complete a well for producing hydrocarbons from a borehole in the earth comprising:(a) at least one computer system located on the surface of the earth; (b) at least one conveyance means to convey at least one completion device into said borehole under the automated control of said computer system that executes a series of programmed steps; (c) at least one sensor means located within said conveyance means; (d) first communications means that provides commands from said computer system to said conveyance means; (e) second communications means that provides information from said sensor means to said computer system, whereby the execution of the programmed steps by said computer system to control said conveyance means takes into account information received from said sensor means to optimize the steps executed by the computer to complete the well.
  • 5. The apparatus in claim 4 whereby the conveyance means is a smart shuttle means that possesses at least one electrically operated pump.
  • 6. The apparatus in claim 4 whereby the first and second communications means are combined into a single bidirectional communications system means.
  • 7. A method of completing a wellbore surrounded by a pipe that penetrates subterranean geological formations to produce hydrocarbons from the earth that is substantially under the control of an automated computer system on the surface of the earth that executes a sequence of programmed steps comprising:(a) attaching at least one completion device to a conveyance means at the surface of the earth; (b) deploying into said pipe said completion device attached to said conveyance means; (c) sending control signals from said computer system to said conveyance means through a first communications means so that said conveyance means is under the automated control of said computer system that executed a series of programmed steps; (d) sending data from at least one sensor means located within said conveyance means to said computer system through a second communications means; (e) releasing said completion means from said conveyance means at a depth from the surface of the earth and installing the completion means in the pipe at said depth; (f) returning said conveyance means to the surface of the earth; and (g) producing hydrocarbons from the pipe with said completion means installed in said pipe at said depth, whereby the execution of the programmed steps by said computer system to control said conveyance means takes into account information from said sensor means to optimize the steps executed by said computer system to complete the well.
  • 8. The method in claim 7 whereby the information from said sensor means is used by said computer system to determine an optimum depth to install said completion device to complete the well.
  • 9. The method in claim 7 whereby the completion device is a packer.
  • 10. A method to complete a wellbore to produce hydrocarbons from subterranean geological formations within the earth that is substantially under the control of a closed-loop automated system that executes a sequence of programmed steps, whereby said steps depend upon information obtained from at least one sensor located within the wellbore, and whereby said steps are executed during one significant portion of the well completion process comprising:(a) attaching at least one completion device to a conveyance means at the surface of the earth; (b) deploying into said wellbore said completion device attached to said conveyance means; (c) sending control signals from said closed-loop automated system to said conveyance means through a first communications means so that said conveyance means is under the automated control of said closed-loop automated system that executed a series of programmed steps; (d) sending data from at least one sensor means located within said conveyance means to said closed-loop automated system through a second communications means; (e) releasing said completion means from said conveyance means at a depth from the surface of the earth and installing said completion means in said wellbore at said depth; (f) returning said conveyance means to the surface of the earth; and (g) producing hydrocarbons from said wellbore with said completion means installed in the wellbore at said depth, whereby the execution of the programmed steps by said closed-loop automated system to control said conveyance means takes into account information from said sensor means to optimize the steps executed by said closed-loop system to complete the well.
  • 11. The method in claim 10, wherein after completing said wellbore a first time, the wellbore is comprised of at least a borehole in a geological formation that surrounds a pipe located within said borehole.
  • 12. The method in claim 11, wherein said pipe is a metallic pipe.
  • 13. The method in claim 12 wherein the metallic pipe is a liner.
  • 14. The method in claim 11, wherein said pipe is a fiberglass pipe.
  • 15. The method in claim 11, wherein said pipe is a plastic pipe.
  • 16. The method in claim 11, wherein said pipe is made from any material.
  • 17. The method in claim 12 wherein said metallic pipe is a casing string.
  • 18. The method in claim 12 wherein said metallic pipe is a steel pipe.
  • 19. The method in claim 12 wherein said metallic pipe is a drill string.
  • 20. The method in claim 19 wherein said drill string possesses a drill bit that remains attached to the end of the drill string after completing the wellbore.
  • 21. The method in claim 12 wherein the metallic pipe is a coiled tubing.
  • 22. The method in claim 21 wherein said coiled tubing possesses a mud-motor drilling apparatus that remains attached to the coiled tubing after completing the wellbore.
  • 23. The method in claim 10 wherein at least one sensor remains in the wellbore as means to monitor the production of hydrocarbons from the wellbore after completing the wellbore.
  • 24. The method in claim 23 wherein adjustable means to control the production of hydrocarbons are disposed into the wellbore and remain installed in the wellbore after completing the wellbore.
  • 25. The method in claim 24 wherein said means to monitor the production of hydrocarbons from the wellbore is used to adjust the means to control the production of hydrocarbons from the wellbore.
  • 26. The method in claim 10 wherein said closed-loop automated system that executes a sequence of programmed steps is under the control of a computer.
  • 27. The method in claim 10 wherein said closed-loop automated system that executes a sequence of programmed steps is under the control of a distributed computer system.
  • 28. The method in claim 10 wherein said closed-loop automated system that executes a sequence of programmed steps is under the control of a computer system means.
  • 29. The method in claim 10, wherein said closed-loop said wellbore a first time, the wellbore is comprised of at least a borehole in a geological formation that surrounds a pipe located within said borehole.
  • 30. The method in claim 29, wherein the well is recompleted thereby completing the well a second time to optimize production hydrocarbons from the earth.
  • 31. A closed-loop computer system to complete a well for producing hydrocarbons from the earth, whereby following the completion of the well, said closed-loop system is also used to monitor, control, and maintain production from the completed well comprising:(a) at least one closed-loop computer system located on the surface of the earth; (b) at least one conveyance means to convey at least one completion device into said well under the automated control of said closed-loop computer system that executes a series of programmed steps; (c) at least one sensor means located within said conveyance means; (d) first communications means that provides commands from said closed-loop computer system to said conveyance means; (e) second communications means that provides information from said sensor means to said closed-loop computer system, whereby the execution of the programmed steps by said computer system to control said conveyance means takes into account information received from said sensor means to optimize the steps executed by the computer to complete the well, and whereby following the steps that are executed to complete the well, said closed-loop computer system is thereafter used to monitor, control, and maintain production from the completed well.
  • 32. The apparatus in claim 31 whereby the conveyance means is a smart shuttle means that possesses at least one electrically operated pump.
  • 33. The apparatus in claim 31 whereby first and second communications means are combined into a single bidirectional communications system means.
Parent Case Info

This application relates to Ser. No. 08/323,152, filed Oct. 14, 1994, having the title of “Method and Apparatus for Cementing Drill Strings in Place for One Pass Drilling and Completion of Oil and Gas Wells”, that issued on Sep. 3, 1996 as U.S. Pat. No. 5,551,521, an entire copy of which is incorporated herein by reference. This application further relates to Ser. No. 08/708,396, filed Sep. 3, 1996, having the title of “Method and Apparatus for Cementing Drill Strings in Place for One Pass Drilling and Completion of Oil and Gas Wells”, that issued on the date of Apr. 20, 1999 as U.S. Pat. No. 5,894,897, an entire copy of which is incorporated herein by reference. This application further relates to Ser. No. 09/294,077, filed Apr. 18, 1999, having the title of “One Pass Drilling and Completion of Wellbores with Drill Bit Attached to Drill String to Make Cased Wellbores to Produce Hydrocarbons”, that issued on the date of Dec. 12, 2000 as U.S. Pat. No. 6,158,531, an entire copy of which is incorporated herein by reference. This application further relates to Ser. No. 09/295,808, filed Apr. 20, 1999, having the title of “One Pass Drilling and Completion of Extended Reach Lateral Wellbores with Drill Bit Attached to Drill String to Produce Hydrocarbons from Offshore Platforms”, that issued on the date of Jul. 24, 2001 as U.S. Pat. No. 6,263,987, an entire copy of which is incorporated herein by reference. This application further relates to Ser. No. 09/375,479, filed Aug. 16, 1999, having the title of “Smart Shuttles to Complete Oil and Gas Wells”, that issued on Feb. 20, 2001 as U.S. Pat. No. 6,189,621, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 362582, filed on Sep. 30, 1994, that is entitled ‘RE: Draft of U.S. Patent Application Entitled “Method and Apparatus for Cementing Drill Strings in Place for One Pass Drilling and Completion of Oil and Gas Wells’”, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 445686, filed on Oct. 11, 1998, that is entitled ‘RE:—Invention Disclosure—entitled “William Banning Vail II , Oct. 10, 1998”’, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 451044, filed on Feb. 8, 1999, that is entitled ‘RE:—Invention Disclosure—“Drill Bit Having Monitors and Controlled Actuators”’, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 451292, filed on Feb. 10, 1999, that is entitled ‘RE:—Invention Disclosure—“Method and Apparatus to Guide Direction of Rotary Drill Bit” dated Feb. 9, 1999“’, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 452648 filed on Mar. 5, 1999 that is entitled ‘RE: “—Invention Disclosure—Feb. 28, 1999 One-Trip-Down-Drilling Inventions Entirely Owned by William Banning Vail III”’, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 455731 filed on May 2, 1999 that is entitled ‘RE:—INVENTION DISCLOSURE—entitled “Summary of One-Trip-Down-Drilling Inventions”, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 458978 filed on Jul. 13, 1999 that is entitled in part “RE:—INVENTION DISCLOSURE MAILED Jul. 13, 1999”, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 459470 filed on Jul. 20, 1999 that is entitled in part ‘RE:—INVENTION DISCLOSURE ENTITLED “Different Methods and Apparatus to ‘‘Pump-down’’ . . . ”’, an entire copy of which is incorporated herein by reference. This application further relates to disclosure in U.S. Disclosure Document No. 462818 filed on Sep. 23, 1999 that is entitled in part “Directional Drilling of Oil and Gas Wells Provided by Downhole Modulation of Mud Flow”, an entire copy of which is incorporated herein by reference. And yet further, this application also relates to disclosure in U.S. Disclosure Document No. 465344 mailed on Nov. 20, 1999 that is entitled in part “Smart Cricket Repeaters in Drilling Fluids for Wellbore Communications While Drilling Oil and Gas Wells”, an entire copy of which is incorporated herein by reference. Various references are referred to in the above defined U.S. Disclosure Documents. For the purposes herein, the term “reference cited in applicant's U.S. Disclosure Documents” shall mean those particular references that have been explicitly listed and/or defined in any of applicant's above listed U.S. Disclosure Documents and/or in the attachments filed with those U.S. Disclosure Documents. Applicant explicitly includes herein by reference entire copies of each and every “reference cited in applicant's U.S. Disclosure Documents”. In particular, applicant includes herein by reference entire copies of each and every U.S. Patent cited in U.S. Disclosure Document No. 452648, including all its attachments, that was filed on Mar. 5, 1999. To best knowledge of applicant, all copies of U.S. Patents that were ordered from commercial sources that were specified in the U.S. Disclosure Documents are in the possession of applicant at the time of the filing of the application herein. Applications for U.S. Trademarks have been filed in the USPTO for several terms used in this application. These U.S. Trademarks were filed after the original filing date, but are included herein by amendment. An application for the Trademark “Smart Shuttle™” was filed on Feb. 14, 2001 that is Ser. No. 76/213,676. The “Smart Shuttle™” is also called the “Well Locomotive™”. An application for the Trademark “Well Locomotive™” was filed on Feb. 20, 2001 that is Ser. No. 76/218211. An application for the Trademark “Universal Completion Device™” was filed on Jul. 24, 2001 that is Ser. No. 76/293,175.

US Referenced Citations (8)
Number Name Date Kind
4085808 Kling Apr 1978 A
4676310 Scherbatskoy et al. Jun 1987 A
5392715 Pelrine Feb 1995 A
5732776 Tubel et al. Mar 1998 A
5842149 Harrell et al. Nov 1998 A
6189621 Vail, III Feb 2001 B1
6192980 Tubel et al. Feb 2001 B1
6257332 Vidrine et al. Jul 2001 B1