The present invention relates generally to postage metering systems. More particularly, the present invention is directed to closed postage metering systems that print digital indicia.
Presently, there are two postage metering types: closed systems and open systems. In a closed system, the system functionality is solely dedicated to metering activity. Examples of closed system metering devices include conventional digital and analog (mechanical and electronic) postage meters wherein a dedicated printer is securely coupled to a metering or accounting function. In a closed system, since the printer is securely coupled and dedicated to the meter, printing evidence of postage cannot take place without accounting for the evidence of postage. In an open system, the printer is not dedicated to the metering activity, freeing system functionality for multiple and diverse uses in addition to the metering activity. Examples of open system metering devices include personal computer (PC) based devices with single/multi-tasking operating systems, multi-user applications and digital printers. An open system metering device is a postage evidencing device with a non-dedicated printer that is not securely coupled to a secure accounting module. Open system indicia printed by the non-dedicated printer are made secure by including addressee information in the encrypted evidence of postage printed on the mailpiece for subsequent verification.
Conventional closed system mechanical and electronic postage meters have heretofore secured the link between printing and accounting. The integrity of the physical meter box has been monitored by periodic inspections of the meters. Digital printing postage meters, which are closed system postage meters, typically include a digital printer coupled to a metering (accounting) device, which is referred to herein as a postal security device (PSD). Digital printing postage meters have removed the need for physical inspection by cryptographically securing the link between the accounting and: printing mechanisms. In essence, new digital printing postage meters create a secure point to point communication link between the accounting unit and printhead. See, for example, U.S. Pat. No. 4,802,218, issued to Christopher B. Wright et al and now assigned to the assignee of the present invention. An example of a digital printing postage meter with secure printhead communication is the Personal Post Office™ manufactured by Pitney Bowes Inc. of Stamford, Conn. An example of a digital printing postage meter in a secure housing is the PostPerfect™ also manufactured by Pitney Bowes Inc. of Stamford, Conn.
Heretofore, closed system postage meters have generally been limited to printing postage indicia on mailpieces. Since open system postage meters, such as PC meters, have access to sender and recipient address information for each mailpiece, they have the capability to perform additional functions that are not available for closed system postage meters. For example, open system meters can perform address cleansing and other value-added services. Closed systems meters do not have such capability.
It has been found that closed system meters can print an open system indicium by scanning addressee information printed on a mailpiece before generating the indicium. In this manner, an indicium printed by a closed system meter is linked to a mailpiece. This potentially eliminates the need for closed system indicia. Consequently, there would be only one type of indicium printed and, therefore, only one verification system would be needed to verify all digitally printed indicium.
In operation, addressee information, such as a postal code or the entire address, is printed on the mailpiece, preferably in bar code format, when the envelope is addressed. The bar code is scanned by a bar code reader which is operatively coupled to a closed system postage meter, for example in a mailing machine that is processing the mailpiece. Alternatively, an optical character recognition (OCR) reader may scan an alphanumeric address printed on the mailpiece. The addressee information is then included in the information used to encode the indicium for postage evidencing. At verification, the indicium is verified using the same verification process used for verifying open system indicium.
An additional benefit has been found concerning the use by a closed system meter of addressee information scanned from a mailpiece. In accordance with the present invention, a closed system meter coupled to a scanner can determine and generate a Postnet bar code for a mailpiece that is printed on the mailpiece when the closed system meter prints an indicium on the mailpiece. In addition, the postage meter can perform change of address correction on the mailpiece, which provides expedited delivery of the mailpiece in addition to potential reduction in the postage for such delivery. Thus, the present invention increases the utility and value of such a closed system meter over conventional closed system meters.
In accordance with the present invention, system and method are provided for generating a Postnet bar code with a closed system metering device. Before an indicium is printed on a mailpiece, a scanner is used to scan recipient address information printed on a mailpiece. Using the scanned information, the metering device determines the Postnet bar code corresponding to the scanned information. A check is then made to determine if the recipient address information has changed from the scanned information. If it has not changed, the metering device prints the postal code on the mailpiece. When the recipient address information has changed, the metering device generates a corrected postal code and prints the corrected postal code and the corrected address on the mailpiece.
Therefore, it is now apparent that the present invention substantially overcomes the disadvantages associated with the prior art. Additional advantages of the invention will be set forth in the description, which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated herein and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention. As shown throughout the drawings, like reference numerals designate like or corresponding parts.
In accordance with the present invention, a postage meter is provided with an optical scanner for scanning a mailpiece as it is conveyed through the postage meter. Through OCR techniques, the processor of the meter can determine the Postnet bar code for the recipient's address based upon recipient's address information imprinted on the surface of the mailpiece. Using this information, the processor of the meter uses an address directory lookup table (preferably provided in the postage meter) to determine the Postnet bar code. Once the Postnet barcode is determined, a digital printer in the meter is then used to imprint the Postnet barcode on the outside of the mailpiece to provide expedited delivery of the mailpiece as well as potential reduction in postage for the mailpiece.
FASTforward™ is an address management tool provided by the United States Postal Service (USPS) that allows mailers to get the latest correct address on mailpieces immediately before entry into the mailstream service. Heretofore, FASTforward™ has not been available for direct use with closed system postage meters.
In accordance with the present invention, the postage meter can also perform FASTforword™ functions in which once the Postnet bar code is determined, it uses this barcode to determine if there has been a change of address registered for the recipient with the USPS. If there is no change, the Postnet bar code is printed on the mailpiece. If there is a change of address, the new Postnet barcode with the forwarding address is printed on the mailpiece also providing expedited delivery of the mailpiece as well as potential further reduction in postage for the mailpiece. This Fastforword information is obtained from a Fastforword lookup table preferably provided in the postage meter. The lookup table for both Fastforword and the Address directory can be any known electronic storage medium, such as hard drive, floppy disk, CR ROM, DVD and the like.
The postage meter can further connect to a remote database to download recent data from either an address directory database and/or a fast forward database. Of course, this new data could also be directly input into the postage meter via floppy disks, CD ROMs, DVD and the like.
Referring now to
Meter 150 also includes an address directory database 170 which is used to determine the Postnet barcode of the recipient address printed on the mailpiece, and an address correction database 180, such as FASTforward™, which is used to correct addresses the address printed on the mailpiece.
Postage meter 150 is in communication with a data center 200 over any suitable communication network 110 (LAN, WAN, telephone line, internet, etc.). Data center 200 includes a modem or server 210 for communicating with postage meter 150. Account information for a plurality of users is stored in a database 220. Data center 200 preferably includes an address directory database 270 and a FASTforward™ database 280, which comprise current address directory and address correction information that can be downloaded to corresponding databases in postage meter 150. Alternatively, address directory database 270 and FASTforward™ database 280 may be located remote from data center 200, for example, the databases may be maintained by the USPS. Generally, it is anticipated that the postage meter 150 would be located in small business offices and/or in private residences and used for a variety of purposes including obtaining postage. The data center 200 is maintained and operated by an authorized postage meter manufacturer or some other authorized agency.
During mailpiece generation, elements of the address are used to generate a code specific to the mailpiece destination address. Such elements may be a postal code (zip code) or may include other elements such as a house number or street name. Once the code has been generated, it can be printed, preferably in bar code format, with the address, for example, in the address block of the mailpiece. A bar code is preferable because it is more reliable to scan in a bar code than to OCR scan the alphanumeric characters from the address block of the mailpiece.
As the mailpiece passes under the scanner 120, information, such as addressee information, is read from the mailpiece. The scanned addressee information is transmitted to processor 152 so that it can be encoded into the indicium as previously noted. In accordance with the present invention, the scanned information is then processed to determine if the addressee information is correct and to determine the Postnet barcode for the mailpiece.
It is noted that printer 158 may be a conventional stationary printer that prints as envelope 20 is conveyed past. However, it will be understood that printer 158 may include movable printheads that move in an orthogonal path to the direction of envelope conveyance.
Referring primarily now to
Referring now to
An alternate embodiment of the present invention comprises a mailing machine/closed system meter system similar to that described in previously noted, related U.S. patent application Ser. No. 09/223,116. In the alternate embodiment, the databases are located within the mailing machine and a second printer in the mailing machine prints the Postnet bar code and corrected address.
Many features of the embodiments disclosed herein represent design choices selected to exploit the inventive concept as implemented in a particular virtual postage meter environment. However, those skilled in the art will recognize that various modifications can be made without departing from the spirit of the present invention. For example, the closed system postage meter 150 may be a virtual, closed system postage meter as described in U.S. patent application Ser. No. 08/993,358, filed Dec. 18, 1997, which is hereby specifically incorporated herein by reference. Other variations of this system would allow the printing of bar coded information to be done with invisible ink or on the back of the mail piece to avoid cluttering the face of the mail piece. It will be understood by those skilled in the art that the present invention is not limited for use with the USPS. Any postal code required by any Post can be substituted for the Postnet bar code.
Therefore, the inventive concept in its broader aspects is not limited to the specific details of the preferred embodiments described above, but is defined by the appended claims and their equivalents.
This application is related to the following co-pending applications filed concurrently herewith and commonly assigned to the assignee of this application: U.S. patent application Ser. Nos. 09/224,255 and 09/223,116, each of which are specifically incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4725718 | Sansone et al. | Feb 1988 | A |
4743747 | Fougere et al. | May 1988 | A |
4831554 | Storace et al. | May 1989 | A |
4831555 | Sansone et al. | May 1989 | A |
4959795 | Christensen et al. | Sep 1990 | A |
5058030 | Schumacher | Oct 1991 | A |
5168804 | Lee et al. | Dec 1992 | A |
5249687 | Rosenbaum et al. | Oct 1993 | A |
5387783 | Mihm et al. | Feb 1995 | A |
5390251 | Pastor et al. | Feb 1995 | A |
5437441 | Tuhro et al. | Aug 1995 | A |
5452654 | Connell et al. | Sep 1995 | A |
5454038 | Cordery et al. | Sep 1995 | A |
5490077 | Freytag | Feb 1996 | A |
5493106 | Hunter | Feb 1996 | A |
5509109 | Kim et al. | Apr 1996 | A |
5586036 | Pintsov | Dec 1996 | A |
5703783 | Allen et al. | Dec 1997 | A |
5731574 | Bodie et al. | Mar 1998 | A |
5761648 | Golden et al. | Jun 1998 | A |
5801944 | Kara | Sep 1998 | A |
5819240 | Kara | Oct 1998 | A |
5819241 | Reiter | Oct 1998 | A |
5953427 | Cordery et al. | Sep 1999 | A |
6026385 | Harvey et al. | Feb 2000 | A |
6041704 | Pauschinger | Mar 2000 | A |
6081795 | Ryan, Jr. | Jun 2000 | A |
6108643 | Sansone | Aug 2000 | A |
6125357 | Pintsov | Sep 2000 | A |
6157919 | Cordery et al. | Dec 2000 | A |
6175827 | Cordery et al. | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
0356228 | Feb 1990 | EP |
0604148 | Jun 1994 | EP |
0710930 | Oct 1995 | EP |
0759596 | Aug 1996 | EP |
2247376 | Feb 1992 | GB |