The present invention relates to a locking device comprising at least one locking mechanism with a catch and a pivotable first pawl, wherein an operating lever is movable such that the operating lever cooperates during its movement with a drive pin of the first pawl. Thus, the invention relates in particular to a locking system with a preferably electrically-openable locking mechanism comprising a catch and at least two pawls, preferably for locking and unlocking movable doors, hatches, or back rests in motor vehicles.
In such a locking mechanism, it is common for the catch and/or the pivotable pawl with a spring to be so biased that they are always returned safely to their normal position. A spring element serves in the context, for example, to move the catch into its open position. It is also customary to provide for the catch-arresting pawl a pawl spring that moves the pawl toward a position in which the catch-arresting pawl cooperates with the catch in a movement-blocking manner. It is common to position the catch spring on the rotational axis of the pawl itself to achieve a stacked position of the pawl spring and the first pawl.
Known are locks for motor vehicle doors in which a first locking pawl (and often also a second pawl) is blocked or supported by a so-called blocking lever. At the same time, the blocking lever has usually the purpose of increasing the safety of the lock against accidental opening or intrusion. In other locking mechanisms with two pawls, the main focus is on providing a low-audible noise opening (avoiding of a so-called audible opening snap). Especially by activating the latch using (separate) operating levers, it is important that during the opening and/or closing movement, the catch is guided as precisely as possible. To this end, the pawl can be implemented with stops, which are brought into contact with the operating lever (and/or with the second pawl) to initiate the opening movement.
Such locking devices have usually very narrow installation space conditions. Especially for locking mechanisms designed with more than one pawl, there exists the need not to enlarge the installation space for the locking device to allow, where necessary, for retrofitting systems with one pawl. The functionality of the locking device is to be further improved.
On this basis, it is the task of the present invention to solve the prior art problems, at least partially.
These tasks are achieved with a locking device having the features as in claim 1. Advantageous embodiments of the locking device are given in the dependent claims. It should be noted that in the claims, individually listed features can be combined in any technologically sensible way and to show further embodiments of the invention. The description, especially taken together with the figures, gives more details of the invention and the particularly preferred embodiments.
The inventive locking device comprises at least a locking mechanism with a catch and a pivotable first pawl, wherein an operating lever is movable in a way that during its movement the operating lever interacts with a drive pin of the first pawl and a lateral pawl spring acts between the drive pin and the operating lever.
The operating lever can be a separate component that is (directly) connected with an operating lever of the inner door handle and/or outer door handle. Similarly, the operating lever can also be a further pawl. It is particularly preferred to apply the invention to locking mechanisms with two pawls, as described, for example, in the (yet unpublished) application DE 10 2008 028 256. With regard to the design of such a locking device, the description of DE 10 2008 028 256 is incorporated herein by reference.
The drive pin is preferably shaped as a bolt disposed on a lateral surface of the first pawl, wherein possibly also several drive pins and/or other forms of a driver can be selected. A pawl spring is arranged laterally with respect to the first pawl, thus, in particular, not on a common axis of rotation with the first pawl. In other words, it is also preferred that the pawl and the pawl spring are arranged substantially in one plane. The pawl spring acts on the first pawl when the drive pin cooperates with the operating lever, whereby the action of the pawl spring is such that a safe coming together of the drive pin and operating lever is realized during the joint motion. Thus, it is possible to position other pawls and/or the operating lever on the rotational axis of the first pawl while not overly increasing the construction height along this axis.
In addition, it is considered advantageous that the operating lever and the pawl spring provide forced guidance for the first pawl. In other words, this means also that the operating lever exerts a force on the pawl in the direction of the open position and the pawl spring exerts a force on the first pawl in the direction of the closed position. This minimizes the range of motion of the first pawl so that a safe and controlled movement of the pawl is ensured, even taking into account vibrations and/or tolerances in the locking device.
In addition, it is preferred that the pawl spring is received in a seat of the first pawl. In other words, this means also that the pawl spring is hinged outside of the pivoting range of the first pawl and a portion of the pawl spring extends into the pivoting range, and this portion is received in the seat of the first pawl. The seat is preferably formed in the manner of a side recess at the bottom side of the first pawl. This seat is preferably so large that free play is possible. It is also preferred that the seat is several times wider than the pawl spring or the portion thereof that is disposed therein.
Precisely in this context, it is considered advantageous that the drive pin of the first pawl and the seat are formed opposite to one another. In other words, for example, the drive pin is formed on an upper side surface of one leg of the first pawl, and the seat is formed of the same leg side but on the lower side surface. The drive pin and the seat are preferably disposed on a portion of the first pawl, which is formed opposite to the locking surface of the first pawl.
The invention and the technical background are explained in more detail hereinbelow with reference to the figures. It should be noted that the figures show particularly preferred embodiments of the invention, but the invention is not limited to these embodiments.
A pawl 4 is provided in order to prevent the catch 3 from pivoting back to the open position. The pawl 4 partially engages the catch 3 and blocks the catch with respect to its opening movement. The first pawl 4 is mounted on the bearing 11 on the housing 27. On the side of the first pawl 4, opposite the catch 3, is positioned a second pawl 5. The second pawl 5 is partially covered by the electric motor 8, which lies above it. The electric motor 8 is a part of the actuator 6. The interaction among the catch 3, the first pawl 4, and the second pawl 5 will be explained in detail below.
An operating lever 7 is provided at the bearing 11 above the first pawl 4. The function thereof is described in detail below. Also attached to this bearing 11 is a drive wheel 10 of the actuator 6, which is located above the operating lever 7. The electric motor 6 comprises an output shaft 9 in the form of a worm pinion, which cooperates with the toothing on the periphery of the drive wheel 10.
The lower part of
Although the invention has been described and explained herein in connection with the figures with respect to a specific design of the locking device comprising two pawls, it can equally be implemented favorably for different locking devices.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 028 256.1 | Jun 2008 | DE | national |
10 2008 039 240.5 | Aug 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2009/000740 | 5/26/2009 | WO | 00 | 12/11/2010 |