Closure device with textured surface

Abstract
A closure device closes an opening in a body cavity. The closure device includes a plurality of fibrous tissue engaging members coupled to a proximally extending elongate member, a closure sheath sized to receive the elongate member and slidable over the elongate member to move the fibrous tissue engaging members from an expanded position to a collapsed position, a delivery sheath sized to receive the closure sheath and having a distal end sized to engage the fibrous tissue engaging members in the expanded position, and a closure member having an aperture sized to receive the closure sheath.
Description
BACKGROUND OF THE INVENTION

The present invention relates to closing openings in a vessel or other body cavity. More specifically, the present invention relates to a closure device that quickly closes openings in body tissue by engaging the adventitia closely adjacent the wall of the body cavity.


There are a wide variety of procedures which require gaining internal access to blood vessels or other body cavities. Many such procedures also require the insertion of treatment devices into the blood vessel or body cavity. Many of these procedures utilize accessible arteries as entry points for the treatment devices. For example, some such arteries include the femoral artery or subclavian artery. There are also a wide variety of procedures which gain access to other body cavities in a minimally invasive fashion.


One problem which must be addressed during these procedures is how to seal or close the opening in the blood vessel or other body cavity once the treatment procedure has been completed. Some prior techniques include simply applying pressure to the opening until it seals itself sufficiently that the pressure may be released. However, this technique often requires that pressure must be consistently applied for an undesirable amount of time after the procedure. Similarly, this type of technique can require a patient's hospitalization to be extended until the treating physician is certain that the closure is complete.


Other techniques have involved suturing the wall of the vessel or body cavity itself. This has typically required the physician to peel back a rather large portion of the tissue surrounding the puncture in order to gain sufficient access to the blood vessel or body cavity that it may be sutured adequately. This can be an undesirably time consuming procedure, and it can result in significant discomfort to the patient.


Still other techniques have involved the insertion of embolic materials adjacent the puncture. Of course, this carries with it its own difficulties. For instances, it is desirable that the embolic material not be placed within a blood vessel or body cavity because this can result in an embolus forming within the blood vessel or body cavity. Similarly, however, it is desirable that the embolic material not be located to far proximal of the puncture because this can result in the blood vessel or body cavity bleeding into the interstitial space proximal of the opening in the blood vessel or body cavity, but distal to the embolic material.


Similarly, when entry is gained into the lumen of the blood vessel by puncturing the blood vessel, the vessel may not have been punctured in a direction entirely orthogonal to the longitudinal axis of the blood vessel. Instead, the blood vessel may be punctured in a “side stick” fashion in which case the puncture is made in an off-center position. In such punctures, it is difficult to locate the outer wall of the blood vessel as well.


SUMMARY OF THE INVENTION

A closure device closes an opening in a body cavity. The closure device includes a closure member that has an external, tissue-engaging surface formed with tissue engaging surface irregularities. An elongate member is disconnectably connected to the closure member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a portion of a blood vessel with an opening therein.



FIGS. 2A-2C illustrate one embodiment of closing the opening in the vessel shown in FIG. 1.



FIG. 3 illustrates another embodiment for delivering a closure device.



FIGS. 4A-4C illustrate another embodiment for closing the opening shown in FIG. 1.



FIG. 5 illustrates another embodiment of a closure device.



FIGS. 6A-6F illustrate the operation of the closure device shown in FIG. 5.



FIG. 7 illustrates a closure plug in accordance with one embodiment of the present invention.



FIGS. 8A-8C illustrate the formation of another closure plug in accordance with one embodiment of the present invention.



FIGS. 9A and 9B illustrate a closure operation using the closure plug shown in FIGS. 8A-8C.



FIGS. 10A-10D illustrate a closure device in accordance with another embodiment of the present invention.





DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS


FIG. 1 is a side view of a portion of a blood vessel 10. While the present invention can be used with substantially any body cavity, a blood vessel is described herein for exemplary purposes only. Blood vessel 10 has a lumen 12 defined by a blood vessel wall 14. Blood vessel wall 14 is shown as having an opening 16 therein. Opening 16 can be an opening which was made, for example, in order to perform a treatment procedure during which access to lumen 12 is needed. FIG. 1 also illustrates an access tract or opening 20 which was made when opening 16 was made in vessel 10.


Vessel wall 14 is formed of media having an endothelium inner layer. The media is generally smooth muscular tissue. As is known, the media is surrounded by adventitia 18 which includes fibrous collagen.



FIG. 1A illustrates a closure apparatus in accordance with one embodiment of the present invention. FIG. 1A shows that closure apparatus 22 includes an elongate delivery member 24 and a closure plug 26. Elongate member 24 is, illustratively, a catheter or wire having a hollow distal tip. Closure plug 26 is made of a plugging material, such as collagen, or another suitable material, which has a proximal end 28 and distal surface irregularities (or hooks) 30. Hooks 30 illustratively comprise annular rings or discrete hooks disposed about the exterior surface of closure plug 26. The hooks 30 can form a regular pattern or be randomly located. Hooks 30 are illustratively oriented such that they are atraumatic when traveling in one direction, such as the direction indicated by arrow 32, and such that they grasp or grip surfaces which they engage when traveling in the opposite direction. In one embodiment, the hooks 30 face proximally so they only grip when traveling proximally. In another embodiment, hooks 30 are oriented randomly and are covered or encapsulated when traveling distally and are exposed when in a desired position or when moved proximally, so they only grip when traveling proximally.


The proximal end 28 of plug 26 is illustratively disconnectably connected to the distal end of elongate member 24. In one illustrative embodiment, proximal end 28 of plug 26 is frictionally engaged within the distal hollow opening in elongate member 24. In another embodiment, plug 26 is attached through a disconnectable adhesive to the distal end of elongate member 24. In yet another embodiment, an active actuation mechanism can be used to disconnect plug 26 from elongate member 24, or a frangible or other disconnectable connection can be used.


Plug 26 is illustratively formed of collagen or any other suitable plugging, biocompatible or bioabsorable material. Similarly, it may require rigidity, in some embodiments, during deployment. Therefore, if it is formed of collagen, it can illustratively be coated, using any suitable coating technique, by a coating which imparts rigidity for an initial 30-90 seconds, or so. However, after that time, the rigidity will illustratively give way to allow fluid to swell plug 26. One such coating may be, for example, hydroxypropycelluouse, which is a water soluble polymer with favorable biocompatabiltiy properties.



FIGS. 2A-2C illustrate the use of closure plug 26 in closing opening 16 in vessel 10. As shown in FIG. 2A, closure apparatus 22 is first inserted, in a distal direction shown by arrow 34, through access tract 20. Because hooks or ridges 30 are atraumatic when traveling in the distal direction shown by arrow 34, plug 26 and elongate member 24 slide easily through tract 20. Once inside the lumen 12 of vessel 10, elongate member 24 is retracted in the proximal direction opposite that of arrow 34. This is better illustrated in FIG. 2B.



FIG. 2B shows that hooks 30, when retracted in the proximal direction shown by arrow 36, do not engage the relatively smooth media which forms wall 14 of vessel 10. However, when hooks 30 encounter adventitia 18, they immediately become securely lodged in tract 20. In the embodiment shown, the hooks 30 become snagged and entangled in adventitia 18. However, other means of becoming securely lodged are contemplated as well, such as frictionally engagement of the surface irregularity and not simply entanglement. Because adventitia 18 lies immediately proximal of media 14, plug 26 becomes entangled, in place, immediately proximal of opening 16. This placement is highly desired.



FIG. 2C illustrates that elongate member 24 is further withdrawn in the proximal direction shown by arrow 36. However, because the hooks 30 of plug 26 have become securely entangled in the strong fibrous collagen in adventitia 18, the frictional engagement (or other disconectable engagement) between plug 26 and the distal end of elongate member 24 comes loose, such that plug 26 is disengaged from elongate member 24. This leaves plug 26 in place, where it became entangled, just proximal of opening 16 in media 14 of vessel 10. Elongate member 24 is then simply withdrawn through tract 20.



FIG. 3 illustrates another embodiment for deploying plug 26. Instead of simply advancing elongate member 24 and plug 26 through tract 20, as shown in FIG. 2A, elongate member 24 and plug 26 are advanced distally into lumen 12 of vessel 10 through an introducer sheath, such as sheath 40. Sheath 40 may be a sheath specially formed to be used with apparatus 22, or it can simply be the introducer sheath which was used in performing the treatment which required the formation of access tract 20. In any case, once plug 26 is in place within lumen 12, introducer sheath 40 is withdrawn proximally and the operation is completed as shown with respect to FIGS. 2B-2C.



FIGS. 4A-4C illustrate yet another embodiment in which plug 26 is used to close opening 16 in vessel 10. In the embodiment shown in FIGS. 4A-4C, instead of elongate member 24 being used to deploy plug 26, a core wire or other flexible wire or thread 42 is used. In this embodiment, plug 26 is advanced to within lumen 12 of vessel 10 through a delivery catheter (or through an introducer) designated as item 44 in FIG. 4A or it is advanced using a separate pusher, such as a catheter, not shown. In any case, once plug 26 is inserted within lumen 12 of vessel 10, the items used for delivering it, other than elongate wire 42, are withdrawn proximally.



FIG. 4B shows that wire 42 is then withdrawn proximally in the direction indicated by arrow 46. This causes proximal movement of plug 26, through the opening 16 defined by media 14. This also causes hooks or ridges 30 to engage adventitia 18 and become entangled therein.


In one embodiment, wire 42 is connected to the distal end of plug 26 by a frangible connection which can simply be broken when enough force is applied to the connection point. Therefore, as shown in FIG. 4C, once plug 26 becomes entangled in adventitia 14, and proximally directed force is applied to wire 42, the connection point between the proximal end of plug 26 and wire 42 is broken, leaving plug 26 in place. Again, plug 26 is placed just proximal of the media 14 which defines opening 16 in vessel 10. Wire 42 is then simply withdrawn proximally through tract 20.



FIG. 5 illustrates another embodiment of a closure apparatus 50 in accordance with one embodiment of the present invention. Apparatus 50 includes a delivery sheath 52, a closure sheath 54, and a wire array 56 which is disposed on a cone shaped seal member 58. Elongate members 52 and 54 illustratively extend proximally all the way to a proximal region accessible by a user. Wire array 56 includes a plurality of individual wires 60, each of which have a hook 62 on its distal end. The wires 60 in wire array 56 extend proximally in either a wire bundle 70, or they are connected to a single wire 70 which extends proximally. Hooks 62, like hooks or ridges 30 shown in the above Figures, are oriented such that, as they are advanced in the direction shown by arrow 64, they are atraumatic. However, when withdrawn in the opposite direction, they hook or snag some tissues. Hooks 62 can be formed of conventional hooks used with hook and loop fabric (one embodiment which is sold under the trade name VELCRO), or they can be other desired hooks as well.



FIGS. 6A-6F illustrate one embodiment in which apparatus 50 is used for closing opening 60 in vessel 10.



FIG. 6A shows vessel 10 with an introducer sheath 80 inserted through opening 16 in vessel 10. FIG. 6A also shows that delivery sheath 52 has been advanced distally relative to wire array 56 such that the distal end 82 of delivery sheath 52 is in engagement with hooks 62. In this position, delivery sheath 52 is advanced distally relative to introducer sheath 80 until the distal tip of apparatus 50 is within lumen 12 of vessel 10 as shown in FIG. 6A.



FIG. 6B shows apparatus 50 in the same position as that shown in FIG. 6A, except that introducer sheath 80 has been withdrawn proximally. It can be seen that the sides of opening 16, once introducer sheath 80 is withdrawn, close in around delivery sheath 52.



FIG. 6C shows that, in a next step, apparatus 50 is withdrawn proximally. In one embodiment, wire 70 is simply withdrawn proximally. This causes hooks 62 to withdraw delivery sheath 52 and elongate member 54 in the proximal direction as well. Hooks 62 readily pass through the generally smooth media tissue forming opening 16. However, once they encounter adventitia 18, they become firmly entangled therein, as shown in FIG. 6C. The treating physician can easily tell that apparatus 50 is in this position because the resistance to further proximal movement of wire 70 becomes significant.


Closure sheath 54 is than advanced proximally over wire 70, wire array 56, and wires 60, in the direction shown by arrow 84. This causes flexible cone-shape seal 58, and wires 60, to collapse inwardly pulling hooks 62 together. FIG. 6D shows closure sheath 54 advanced all the way proximally relative to wire 70, such that hooks 62 are pulled closely adjacent to one another at the distal end of closure sheath 54. Seal 58 is shown collapsed within closure sheath 52.


In one embodiment, the proximal end of closure sheath 54 is illustratively provided with a snap lock fitting. Therefore, when closure sheath 54 is advanced a sufficient distance distally such that hooks 62 are substantially closed and in the position shown in FIG. 6D, the snap lock engages so the user can readily tell this. Of course, any other relative measurement device can be used to indicate that the sheath 54 is in the position shown in FIG. 6D as well.



FIG. 6E shows that a plurality of closure plugs 86 have been delivered to the closure site. One embodiment of a plurality of generally disc shaped closure plugs 86 is shown in FIG. 7. The disc shaped plugs 86 are illustratively, arranged generally coaxially and have a central lumen 88 defined therethrough. The plugs can be formed of collagen, absorbable gel, or any other material or substance suitable for closing opening 16. FIG. 6E shows that plugs 86 are illustratively mounted over closure sheath 54 and advanced distally thereover by advancing a second delivery sheath 90. Sheath 90 has a distal end which is sized to engage the most proximal of disc-shaped plugs 86. The disc-shaped plugs 86 are advanced through delivery sheath 52 by advancing delivery sheath 90 over closure sheath 54. Plugs 86 are advanced to the position shown in FIG. 6E, just proximal of opening 16.


Next, wire array 56 is removed. This is better illustrated with respect to FIG. 6F. FIG. 6F shows that closure sheath 54 is advanced further distally until it deforms hooks 62 until they reside within the distal end of closure sheath 54. Once in that position, wires 70 and closure sheath 54 are withdrawn proximally, to the position shown in FIG. 6F relative to second delivery sheath 90. At anytime during this process, and after delivery of plugs 86, the first delivery sheath 52 can be withdrawn proximally.


Delivery sheath 90 can then be used to tamp plugs 86 firmly in place. Then, the entire system is withdrawn proximally, in any desired order.



FIGS. 8A-8C illustrate another embodiment of a plug 92 which can be formed and used in accordance with the system shown in FIGS. 6A-6F. Plug 92 is formed of a sheet of material 94 having a generally centrally located aperture 96 therein. Sheet 94 can be substantially any shape, but is shown in a generally circular shape for the sake of simplicity. Sheet 94 is illustratively formed of a vascular occluding material such as that in the QuickSeal Arterial Closure System from Sub-Q, Inc. of San Clamente, Calif. Sheets 94 are illustratively pliable material which can be bent and folded. Therefore, sheets 94 are folded or twisted to a fully collapsed shape having a generally central lumen extending therethrough, as shown in FIGS. 8B and 8C. Instead of loading disc-shaped plugs 86 over closure sheath 54, plugs 94 are loaded thereover.



FIGS. 9A and 9B illustrate delivery of a plug 94 using the apparatus shown in FIGS. 6A-6F. Plug 94 is advanced over closure sheath 54 using sheath 90. Delivery sheath 52 is then withdrawn proximally, and closure sheath 54 is advanced distally to retrieve hooks 62. Then, closure sheath 54 is withdrawn proximally and sheath 90 is advanced distally to tamp in place plug 94. This is shown in FIG. 9B. Of course, a plurality of plugs 94 can be loaded onto closure sheath 54 and delivered by sheath 90, either one at a time, or multiple plugs at a single time, as desired.



FIGS. 10A-10D illustrate another embodiment of a closure device in accordance with the present invention. In FIG. 10A, delivery sheath 52 is shown inserted within the lumen 12 of vessel 10. A small bolus of inert gas, such as CO.sub.2, is then injected into vessel 10 through sheath 52 (which can be attached to a source of the inert gas). This forms a dry field 100 of the inert gas within the lumen 12 of vessel 10. Distal pressure on vessel 10 may be used in order to better hold the gas bolus 100 in place.



FIG. 10B shows that a delivery apparatus 102 is then inserted through sheath 52 into lumen 12 of vessel 10. Delivery apparatus 102 includes an elongate delivery sheath 104 an elongate delivery member 106, and liquid swellable plug or plugs 108. Plugs 108 are inserted through sheath 52 until swellable plugs 108 are within the lumen 12 and reside at the distal end of sheath 52. This can be ensured by proximal markings on sheaths 52 and 104, or using any other desired mechanism or method. Because swellable plugs 108 are within a dry field formed by bolus 100, they do not begin to swell or to occlude.



FIG. 10C shows that sheath 52, along with swellable plugs 108, are then withdrawn proximally. As soon as sheath 52 and plugs 108 are withdrawn proximally to a point outside of vessel 10, the gas bolus 100 escapes from vessel 10. This produces a visual and audio feedback indicating that sheath 52 and plugs 108 have just cleared vessel 10. Sheath 52 is then withdrawn further proximally. Once the gas bolus 100 has vented, blood from within vessel 10 engages and wets swellable plugs 108. Sheaths 52 and 104 and delivery member (or wire) 106, are then withdrawn proximally as shown by FIG. 10B, leaving plugs 108 in place in the desired position.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A closure apparatus for closing an opening in a body cavity, a smooth media layer being located proximal to the opening and a fibrous tissue layer being located proximal to the smooth media layer, the closure apparatus comprising: a plurality of fibrous tissue engaging members coupled to a proximally extending elongate member, the fibrous tissue engaging members being movable between an expanded position and a collapsed position;a closure sheath sized to receive the elongate member and slidable thereover to move the fibrous tissue engaging members from the expanded position to the collapsed position;a delivery sheath sized to receive the closure sheath and having a distal end sized to engage the fibrous tissue engaging members when in the expanded position; anda closure member having an aperture defined therein sized to receive the closure sheath.
  • 2. The closure apparatus of claim 1, wherein the closure member comprises: a generally disc-shaped member having the aperture defined therein.
  • 3. The closure apparatus of claim 2, wherein the generally disc-shaped closure member comprises: a plurality of disc-shaped pieces each having an aperture defined therein and being arranged in a generally coaxial orientation.
  • 4. The closure apparatus of claim 1, wherein the closure member comprises: a sheet of pliable, swellable material folded into a generally tubular shape having the aperture defined therethrough.
  • 5. The closure apparatus of claim 1, wherein the closure member comprises: a plurality of sheets of pliable, swellable material, each folded into a generally tubular shape having the aperture defined therethrough.
  • 6. The closure apparatus of claim 5, wherein the plurality of sheets are disposed over the closure sheath in a generally coaxial arrangement.
  • 7. The closure apparatus of claim 1, wherein the fibrous tissue engaging members comprise: a plurality of hook-shaped members.
  • 8. The closure apparatus of claim 7, wherein the plurality of hook-shaped members are oriented to be proximally facing hook-shaped members.
  • 9. The closure apparatus of claim 8, wherein the proximally facing hook-shaped members are sufficiently resilient to deform to be received within the closure sheath upon distal advancement of the closure sheath distally beyond the proximally facing hook-shaped members.
  • 10. The closure apparatus of claim 1, wherein the delivery sheath is in engagement with the plurality of fibrous tissue engaging members in the expanded position as the plurality of fibrous tissue engaging members is advanced distally into the body cavity opening.
  • 11. The closure apparatus of claim 10, wherein the plurality of fibrous tissue engaging members is configured to pass through the smooth media layer and become entangled with the fibrous tissue layer when moved proximally away from the body cavity opening.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/325,710, filed Dec. 20, 2002, now abandoned, which is incorporated herein by reference.

US Referenced Citations (101)
Number Name Date Kind
3438374 Falb et al. Apr 1969 A
4002173 Manning et al. Jan 1977 A
4068655 LeRoy Jan 1978 A
4140537 Luck et al. Feb 1979 A
4292972 Pawelchak et al. Oct 1981 A
4365621 Brundin Dec 1982 A
4372314 Wall Feb 1983 A
4390519 Sawyer Jun 1983 A
4404970 Sawyer Sep 1983 A
4405324 Cruz, Jr. Sep 1983 A
4424208 Wallace et al. Jan 1984 A
4509504 Brundin Apr 1985 A
4515637 Cioca May 1985 A
4543410 Cruz, Jr. Sep 1985 A
4582640 Smestad et al. Apr 1986 A
RE32208 Mattei et al. Jul 1986 E
4597960 Cohen Jul 1986 A
4703108 Silver et al. Oct 1987 A
4744364 Kensey May 1988 A
4749689 Miyata et al. Jun 1988 A
4852568 Kensey Aug 1989 A
4890612 Kensey Jan 1990 A
4979947 Berman Dec 1990 A
5021059 Kensey et al. Jun 1991 A
5061274 Kensey Oct 1991 A
5100429 Sinofsky et al. Mar 1992 A
5108421 Fowler Apr 1992 A
5192300 Fowler Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5254105 Haaga Oct 1993 A
5290310 Makower et al. Mar 1994 A
5292309 Van Tassel et al. Mar 1994 A
5292332 Lee Mar 1994 A
5310407 Casale May 1994 A
5320639 Rudnick Jun 1994 A
5324306 Makower et al. Jun 1994 A
5330445 Haaga Jul 1994 A
5334216 Vidal et al. Aug 1994 A
5376376 Li Dec 1994 A
5383891 Walker Jan 1995 A
5383897 Wholey Jan 1995 A
RE34866 Kensey et al. Feb 1995 E
5391183 Janzen et al. Feb 1995 A
5431639 Shaw Jul 1995 A
5449375 Vidal et al. Sep 1995 A
5456693 Conston et al. Oct 1995 A
5460621 Gertzman et al. Oct 1995 A
5486195 Myers et al. Jan 1996 A
5522840 Krajicek Jun 1996 A
5540715 Katsaros et al. Jul 1996 A
5545180 Le et al. Aug 1996 A
5569297 Makower et al. Oct 1996 A
5591205 Fowler Jan 1997 A
5603698 Roberts et al. Feb 1997 A
5624669 Leung et al. Apr 1997 A
5643318 Tsukernik et al. Jul 1997 A
5643596 Pruss et al. Jul 1997 A
5645849 Pruss et al. Jul 1997 A
5690674 Diaz Nov 1997 A
5728132 Van Tassel et al. Mar 1998 A
5782860 Epstein et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5823198 Jones et al. Oct 1998 A
5868762 Cragg et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5906631 Imran May 1999 A
5964782 Lafontaine et al. Oct 1999 A
RE36370 Li Nov 1999 E
5984950 Cragg et al. Nov 1999 A
6071300 Brenneman et al. Jun 2000 A
6071301 Cragg et al. Jun 2000 A
6086607 Cragg et al. Jul 2000 A
6162192 Cragg et al. Dec 2000 A
6162240 Cates et al. Dec 2000 A
6183496 Urbanski Feb 2001 B1
6183497 Sing et al. Feb 2001 B1
6183498 Devore et al. Feb 2001 B1
6200328 Cragg et al. Mar 2001 B1
6267761 Ryan Jul 2001 B1
6270464 Fulton, III et al. Aug 2001 B1
6296657 Brucker Oct 2001 B1
6299619 Greene, Jr. et al. Oct 2001 B1
6315753 Cragg et al. Nov 2001 B1
6325789 Janzen et al. Dec 2001 B1
6350274 Li Feb 2002 B1
6440151 Cragg et al. Aug 2002 B1
6440153 Cragg et al. Aug 2002 B2
6447534 Cragg et al. Sep 2002 B2
6500152 Illi Dec 2002 B1
6500190 Greene, Jr. et al. Dec 2002 B2
6554851 Palasis et al. Apr 2003 B1
6623509 Ginn Sep 2003 B2
6663655 Ginn et al. Dec 2003 B2
6726696 Houser et al. Apr 2004 B1
6790220 Morris et al. Sep 2004 B2
7875054 LaFontaine Jan 2011 B2
7942897 Lafontaine May 2011 B2
20020010150 Cortese et al. Jan 2002 A1
20020025921 Petito et al. Feb 2002 A1
20020077657 Ginn et al. Jun 2002 A1
20030013989 Obermiller et al. Jan 2003 A1
Foreign Referenced Citations (35)
Number Date Country
0044624 Jun 1981 EP
0044624 Oct 1984 EP
0145970 Nov 1984 EP
0467516 May 1991 EP
1269951 Jan 2003 EP
0891193 Aug 2003 EP
55116736 Sep 1980 JP
62004232 Jan 1987 JP
63070507 Mar 1988 JP
02182259 Jul 1990 JP
05163157 Jun 1993 JP
09294765 Nov 1997 JP
2002143210 May 2002 JP
2122867 Dec 1998 RU
2135105 Aug 1999 RU
2165741 Apr 2001 RU
2178681 Jan 2002 RU
2179859 Feb 2002 RU
2180539 Mar 2002 RU
2185858 Jul 2002 RU
9325255 Dec 1993 WO
9512371 May 1995 WO
9640033 Dec 1996 WO
9737694 Oct 1997 WO
0019912 Apr 2000 WO
0029484 May 2000 WO
0156475 Aug 2001 WO
0182937 Nov 2001 WO
0197826 Dec 2001 WO
0209591 Feb 2002 WO
0209591 Feb 2002 WO
02054998 Jul 2002 WO
02072128 Sep 2002 WO
02096302 Dec 2002 WO
03002168 Jan 2003 WO
Related Publications (1)
Number Date Country
20100234884 A1 Sep 2010 US
Continuations (1)
Number Date Country
Parent 10325710 Dec 2002 US
Child 12790554 US