Metal cans are a common form of packaging for food and beverage that offer numerous advantages when compared to other material packaging forms, including metal's ability to be hermetically sealed for long storage, its low cost, and its excellent recyclability. “Easy opening” metal food containers which, for purposes of this disclosure include opening systems that do not require a separate can opening tool to access the contents, offer even greater consumer convenience for many packaged products. Two common systems for providing easy opening functionality are “Stay on Tab” (SOT) systems and peel-seam systems.
SOT easy opening systems, such as those described in U.S. Pat. No. 3,731,836, score a line in the container end panel to outline a weakened opening area and use the leverage of a rivet-retained tab to take advantage of the weakened score line to push the opening area through the end panel. As the name suggests, the tab remains affixed to the end panel after opening.
Partial aperture pour openings in beverage containers are well known in the art. In some instances, the score line does not create a fully contiguous opening within the end of the panel so that, after the opening is pushed through the end panel, the area within the scored line remains connected to the end panel.
The SOT was an improvement over earlier forms of easy opening end panel systems such as those described in U.S. Pat. No. 3,664,543 wherein the scored tab was completely removable from the end panel and often discarded indiscriminately, thereby creating consumer safety and litter problems. Thus, it is well recognized that loose tabs are not acceptable to consumers in easy opening container end panels.
In some cases, SOT design principles have also been extended to produce full aperture easy opening ends for metal food cans and other containers. In these applications, the score line is now fully contiguous around the removable end panel to which the tab lever is joined.
Although there have been improvements to SOT container ends, there are some inherent disadvantages to scored openings that are forced open through the lever action of a tab. For example, it can be difficult to access and grip the tab, often resulting in broken finger nails or injury to a fingertip, and it can be difficult for a consumer to less than optimal ease of opening as the tab can be difficult for consumers. Even when the tab can be accessed, the force required to initiate the opening of the can and release the pressure inside the can is often too great for many consumers to apply. If the consumer is able to open the can, they are then exposed to the sharp edges inherent to the score line break, and, to top it off, these type of opening systems do not lend themselves to reclosing since the score line break deforms the freed panel in a way that is not readily reversed.
Peel-seam systems as exemplified by U.S. Pat. No. 5,752,614 can also be used for easy-opening closures on hermetically sealed containers. A bounded aperture, often in the form of a flattened circular rim, is covered by a membrane typically comprised of a tear-resistant metal foil/polymer laminate that extends over the opening and its periphery. The container is sealed by a continuous loop of food safe adhesive applied between the overlapping edges of the membrane and the container wall. The adhesive is selected to give a bond with sufficient shear and tensile strength to hold up in filling, processing, and storage conditions, yet a low enough peel strength to enable easy-opening of the container.
Directional pull by a consumer on an edge tab of the membrane stresses the adhesive bond in peel mode, and continuing this motion progressively overcomes the total bonding force of the adhesive around the full perimeter. However the detached membrane loses its adhesive character and curls and distorts and is not a useful structure for reclosing.
There is a need, therefore, for a container opening system with a tab or lever that is easy to access and grip and that, when used in connection with pressurized containers, does not require inordinate force to release the pressure inside the container. In addition, there is a need for a container that provides the convenience to consumers of reduced spillage or contamination of contents after the container has been opened. The need extends to a container opening system that, once opened, does not expose the user to sharp edges around the aperture and further allows reclosing of the container in a way that is readily reversed.
Various embodiments of the present invention include opening systems in a container end panel having a cover panel that covers, but is larger in area than, an aperture through the end panel. The cover panel can be bonded to the end panel around the perimeter of the cover panel. A rotatable lever is interposed between the end panel and cover panel. The lever is bonded at one end to the end panel and the cover panel through a rivet or other structural element. When assembled into the closure, the rotatable lever shares a common plane with the bonded perimeter but does not interfere with the bond seal in its initially assembled rest position.
To open the closure system, a user applies force to the rotating lever to move it axially around the attachment from its initial storage position against a first edge of the aperture. The axial rotation is continued until the movement of the rotating lever abuts against the opposite or second edge of the aperture. At this point of travel, the bond between the end panel and the cover panel has been broken along substantially all of the bond perimeter and the cover panel has been irreversibly affixed to the rotating lever.
At this point, when the rotating lever is positioned against the second edge, reversing the rotation of the rotating lever causes the latched cover panel to axially rotate with the rotating lever, progressively uncovering the aperture as the rotating lever and the cover panel are rotated until such time as the aperture is fully open at the point when the rotating lever returns to the first edge. Thereafter, because the rotating lever is affixed to the cover panel, the rotating lever can be moved from the first edge to the second edge and back to reversibly close and open the aperture.
When container opening systems are used in connection with pressurized containers, it is necessary to first relieve the pressure in the container by selectively debonding the cover panel from the end panel in an isolated location. Certain embodiments of the present invention provide a rotating lever configured with a proximal lever whereby, when the rotation described above is initiated, the proximal lever is first wedged between the end panel and the cover panel in the area adjacent to the structural element described above, forcing the two panels apart and debonding an isolated area. In this instance, the rotating lever and the proximal lever form a mechanical lever that pivots on the structural element creating a fulcrum. Because the distance from the point at which the force is applied to the rotating lever from the fulcrum is greater than the distance from the fulcrum to the point at which the proximal lever is wedged between the end panel and the cover panel, the force applied by the user to the rotating lever is significantly magnified making is substantially easier for the user to release the pressure in the container.
The foregoing has outlined rather broadly certain aspects of the present invention in order that the detailed description of the invention that follows may better be understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The present invention is directed to improved methods and systems for, among other things, reclosable container opening systems. The configuration and use of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of contexts other than reclosable container opening systems. Accordingly, the specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
Embodiments of the present invention pertain to a closure for a container, wherein the container has a substantially planar end panel with an aperture therethrough and, within the perimeter of the end panel, a separate and movable interior panel with an extended edge or flange area that covers the aperture and overlaps the boundary around it, the interior panel being initially fixed in place and sealed to the end panel by an adhesive, ultrasonic weld, or other means of bonding, and a moveable tool used to facilitate easy opening and progressively debond the interior panel from the end panel thereby rendering it moveable in relation to the end panel. In certain embodiments, the interior panel may also reclose and either partially or entirely seal the aperture.
Referring now to
Referring now to
The foregoing embodiments provide a hermetically sealed and reclosable sealed container. However, in both cases the full perimeter of the seal area must first be disrupted to initiate movement of the aperture cover that could require substantial applied force to spontaneously achieve. For everyday use by an average consumer, the peak applied force required to open an easy-opening container should be less than 5-10 lbf.
Note that it is the thin and highly flexible nature of the covering membrane that enables a user to stress the seam in peel mode. If a container having a peel seam opening is subject to significant internal pressure, a thin membrane cover may bulge over the aperture thereby exerting a peel force on the heat seal that then fails. Closures for carbonated beverages must be capable of withstanding internal pressures of at least 90 psi. Peel seam closures are not well suited for this application since increasing the shear strength of the adhesive sufficiently to withstand pressure would make manual peeling of the closure nearly impossible.
Cleavage stresses applied perpendicular to the bond line represent the most severe form of loading that can be applied to a bonded joint. Forcing a wedge into the bond line of a flat-bonded specimen as shown in
In the various embodiments of the invention described herein, the design of the bond joint, the adhesive selection, the mechanism by which the seal is de-bonded, and mechanical advantage of the movable tool provide for a good seal for storage yet with low force requirement for opening. By design, various embodiments are configured to cleave the bond between the cover panel and the end panel. In these embodiments, the aperture cover and end panel are of sufficient material thickness and structural design to mitigate flexing. The end panel may, for example, be stamped from an AA5182 aluminum alloy sheet of 0.2 to 0.3 mm thick. The aperture cover may be formed from the same material, from a somewhat thicker part molded from a food grade plastic material, or from other materials known in the art.
In various embodiments, a lever or tool is movably attached to an end panel and a cover panel and positioned to debond the bond therebetween. The lever or tool is accessible to the user who moves the lever or tool, which is sometimes configured with a handle or tab for convenience and/or leverage, in such a manner that an edge of the lever or tool is interposed between the seam between the cover panel and the end panel creating mechanical advantage to concentrate force at various points along its travel path, thereby apportioning the force and energy needed to fully debond the seam.
For container openings having cleave seam seals, a useful starting point for the bond joint and adhesive selection can be derived from peel seam systems. There are a variety of food-safe adhesives in commercial use strong enough to withstand the temperature and pressures associated with food processing. They are suitably chemically resistant with good barrier properties in different environments so as to provide a hermetic seal to the container. Practical methods to apply them to form a simple lap joint between container and lid are well known in the art. For example, heat-sealable polypropylene is one common material, but many others can be used. Single lap joints of 1.5 to 4 mm in width around the aperture perimeter provide a suitable joint geometry. Spot or ultrasonic micro-welds along the bond length can be used in combination with the adhesive to provide additional reinforcement.
The following additional example embodiments will further illustrate the arrangement described above as well as some alternative possible arrangements. For example, stress modes in addition to cleaving the bond may be applied to the bond joint. There may be more than a single working edge associated with the moveable tool. There may also be alternative means of providing mechanical advantage to applied force for example using a rivet to act as fulcrum for a lever tab.
A separate shaped cover panel 104 that is larger in area than the aperture 199, and thus can be used as a cover for the aperture 199, has, in some embodiments, a rivet preform structure 105A in the form of a hollow closed end cylinder, facing the bottom of the end panel. During assembly of the closure, the cover panel can be bonded to the end panel 101 in the bond perimeter 103 such as, for example through the use of a continuous loop of hot melt adhesive.
A tabbed rotatable lever 102 is interposed between the end panel 101 and cover panel 104. The lever 102 also has a small through hole 105C at one end. When assembled into the closure, the lever 102 shares a common plane with the bonded perimeter 103 but does not interfere with the bond seal in its initially assembled rest position (as can be seen in
The diameter of the rivet preform structure 105A is slightly smaller than that of the through holes 105B and 105C. These features are mating components to join and provide a pivot for the end and interior panels of the closure system. Methods of forming a rivet joint are well know in the art, for example, joining a tab to the end panel of an SOT closure.
Referring now to
Moving now to methods for operating the closure system of the present invention, various embodiments of which are shown in
Thereafter, because the rotating lever 102 is affixed to the cover panel 104, the rotating lever 102 can be moved clockwise and then counterclockwise to reversibly close and open the aperture 199. Mechanical détente features (not shown) may be included in the panels to hold the cover panel 104 in a fully open, a fully closed, or an intermediate position.
While the system and method described above present one embodiment of a reclosable opening method and system of the present invention, those of ordinary skill in the art will understand that other embodiments have also been enabled. Even though the foregoing discussion has focused on particular embodiments, it is understood that other configurations are contemplated.
It should be noted that, although the method of operating described above contemplates that the rotating lever 102 may be rotated axially “counterclockwise” from its initial storage position against first edge 107, it should be appreciated that the opening system of the present invention could be configured antipodally such that a reference to a “counterclockwise” rotation would represent a clockwise rotation and vice versa. In addition, any other configurations described herein as being directional in nature should be construed to include movements in the opposite directions and should not be taken as limiting the scope of the invention.
Referring now to
In numerous embodiments of the present invention, the composition of the cover panel 104 and the end panel 101, as well as the interaction of the two panels with the bond between the panels and the debonding tool, are designed to provide minimal deformation so that the shape and relative position of the cover panel are maintained throughout the opening process rendering the cover panel 104 suitable for use in reclosing the aperture, if desired. For example, industry standard grades of aluminum alloys, such as aluminum 5182 alloy or aluminum 3004 alloy, in typical thicknesses of 0.20 to 0.30 mm are suitable for metal forming of the end panel 101, the rotating lever 102, and the cover panel 104. The higher stiffness of the end panel 101 and the cover panel 104 helps to retain shape integrity which, when combined with an elastomeric adhesive, can more effectively seal the cover panel to the end panel. The stiffness can further be enhanced by alloy selection, plate thickness, and the incorporation of reinforcing structures, such as incorporating grooved ribs 901 into the cover panel 104.
Referring now to
As is well recognized by those skilled in the art, metal beverage containers are designed to accommodate some internal pressure, the level depending on the application. Increased internal pressure may be transitory for example due to thermal processing or sustained, for example an appreciable internal pressure is often present in unopened containers of carbonated soft drinks and beer. In applications where there is sustained internal pressure, the first stage in opening a beverage container should be to relieve the internal pressure. Once this is accomplished the user force required to complete the opening operation and the potential for spraying are both reduced. SOT beverage closures are usually designed to effect a two stage opening, the first stage being release of container pressure.
The previously described embodiments accommodate preliminary relief of container internal pressure in a novel manner. Referring back to
Continued counterclockwise rotation from the first edge 107 toward the second edge 108 brings lower distal end portion 702 into action sweeping along the circumference of the bonding perimeter 103 to cleave the seal designated as Zone 2 in
Referring now to
For example,
As will be readily apparent to those skilled in the art, variations of the foregoing embodiments are possible. For example, the arrangement of the post structure 105 used to join the end panel 101 with the cover panel 104 could alternatively project down from the underside of the end panel 101 through apertures in the rotating lever 102 and cover panel 104. Alternatively, the post structure 105 could be an entirely separate component formed from metal, plastic, other materials known in the art, or a combination thereof.
In addition, rather than aluminum sheet, the cover panel 104 and rotating lever 102 may be formed from other materials, for example molded plastic, in a variety of decorative colors, or even transparent PET for a translucent aperture cover. Logos or other graphics could be printed or formed into such components.
In addition, the working edges 701, 702, 703, 777 of the rotating lever 102 can be modified to alter its mode of action or the debonding sequence. For example, referring back to
Alternative bonding materials and methods may be applied. For example in addition to modifying the geometric parameters for bond thickness and width, various grades of hot melt or other adhesive systems can be selected to alter the mechanical strength and barrier properties for the bonding perimeter 103 between the end panel 101 and aperture cover 104. In cases where at least one of the panels is of a thermoplastic material, thermal processing or ultrasonic welding may be used as an alternative or adjunct to an adhesive joint. If both panels are of metal, micro-spot welds could similarly be used.
Referring now to
Referring now to
Referring now to
The foregoing embodiment is further illustrated in
Referring now to
In addition to the foregoing, those skilled in the art will recognize that alternative embodiments of the invention described herein are possible. For example,
Larger apertures for beverage containers are often preferred by consumers and the opening system of the present invention allows for a generally wedge shaped partial aperture opening with a center angle of anywhere from 1 to 180 degrees as shown in
Referring again to
After the seal has been fully debonded, the container is opened by lifting or removing the cover panel 89, possibly using the attached debonding tool 91 as a form of handle. The cover panel may be hinged to the container or removed completely but in either case retains its form so as to be suitable for reclosing the container. Thus, the cover panel 89 may provide a reseatable cap for the container. To provide rigidity, the cover panel 89 and end panel 92 may have rolled perimeter edges or rib features. Rather than attaching the debonding tool or lever 91 to the cover panel 89, the tool 91 may be coupled to a fitted plastic overcap. Alternatively, the working edges of the debonding tool 91 could be molded directly into the interior circumference of a fitted plastic overcap arranged so that they are initially sprung outwards and squeezing the edge of the cap forces them in to engage and debond the seal.
While the present system and method has been disclosed according to the preferred embodiment of the invention, those of ordinary skill in the art will understand that other embodiments have also been enabled. Even though the foregoing discussion has focused on particular embodiments, it is understood that other configurations are contemplated. In particular, even though the expressions “in one embodiment” or “in another embodiment” are used herein, these phrases are meant to generally reference embodiment possibilities and are not intended to limit the invention to those particular embodiment configurations. These terms may reference the same or different embodiments, and unless indicated otherwise, are combinable into aggregate embodiments. The terms “a”, “an” and “the” mean “one or more” unless expressly specified otherwise. The term “connected” means “communicatively connected” unless otherwise defined.
When a single embodiment is described herein, it will be readily apparent that more than one embodiment may be used in place of a single embodiment. Similarly, where more than one embodiment is described herein, it will be readily apparent that a single embodiment may be substituted for that one device.
In light of the wide variety of reclosable container opening systems known in the art, the detailed embodiments are intended to be illustrative only and should not be taken as limiting the scope of the invention. Rather, what is claimed as the invention is all such modifications as may come within the spirit and scope of the following claims and equivalents thereto.
None of the description in this specification should be read as implying that any particular element, step or function is an essential element which must be included in the claim scope. The scope of the patented subject matter is defined only by the allowed claims and their equivalents. Unless explicitly recited, other aspects of the present invention as described in this specification do not limit the scope of the claims.
This non-provisional application claims priority based upon prior U.S. Provisional Patent Application Ser. No. 62/113,850 filed Feb. 9, 2015 in the name of Brendan Coffey entitled “Closure System for Containers,” and U.S. Provisional Patent Application Ser. No. 62/149,825 filed Apr. 20, 2015 in the name of Brendan Coffey and Krzysztof Kwiatkowski entitled “Thermally Regulated Self-Heating Containers,” the disclosures of each of which are incorporated herein in their entirety by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3664543 | Brown et al. | May 1972 | A |
3731836 | Silver | May 1973 | A |
4077538 | Waterbury | Mar 1978 | A |
4122970 | Amabili | Oct 1978 | A |
4234099 | Tarro | Nov 1980 | A |
4361249 | Tuneski et al. | Nov 1982 | A |
4442950 | Wilson | Apr 1984 | A |
4605141 | Won | Aug 1986 | A |
5285924 | Morris | Feb 1994 | A |
5752614 | Nelson et al. | May 1998 | A |
6220470 | McHenry et al. | Apr 2001 | B1 |
6626314 | McHenry et al. | Sep 2003 | B1 |
7823740 | Perra | Nov 2010 | B2 |
7918359 | Paris et al. | Apr 2011 | B2 |
8240498 | Ramsey et al. | Aug 2012 | B2 |
8336725 | Ramsey et al. | Dec 2012 | B2 |
8469218 | Bratsch | Jun 2013 | B2 |
8720717 | Kaanta et al. | May 2014 | B2 |
8794469 | Bratsch | Aug 2014 | B2 |
20020050493 | Ball et al. | May 2002 | A1 |
20030000952 | Dyren | Jan 2003 | A1 |
20040256388 | Rossetti et al. | Dec 2004 | A1 |
20050051553 | Li et al. | Mar 2005 | A1 |
20060261068 | Schmidtner | Nov 2006 | A1 |
20070131690 | Nadal | Jun 2007 | A1 |
20070145055 | Gardiner | Jun 2007 | A1 |
20070164026 | Morrissey et al. | Jul 2007 | A1 |
20070215620 | Kasper | Sep 2007 | A1 |
20090173737 | Ramsey et al. | Jul 2009 | A1 |
20090314777 | Gross et al. | Dec 2009 | A1 |
20130180985 | Damaghi | Jul 2013 | A1 |
20130206766 | Ramsey et al. | Aug 2013 | A1 |
20130320012 | Lucas | Dec 2013 | A1 |
20150060450 | Phillips | Mar 2015 | A1 |
20150375910 | Bissu | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
102012023131 | Dec 2013 | DE |
2300328 | Mar 2011 | EP |
20-1991-0006503 | Aug 1991 | KR |
10-2011-0023382 | Mar 2011 | KR |
1008675 | Mar 1999 | NL |
02081322 | Oct 2002 | WO |
Entry |
---|
“Why Didn't I Think of That?: Resealable Can”, www.geekology.com, Jan. 22, 2016. |
Ian Cunningham, “Monster Energy Launches Resealable Cans”, www.drinkdaily.com, Jan. 22, 2016. |
Ross Brooks, “Resealable Soda Can Lets People Drink Spill-Free”, www.psfk.com, Oct. 4, 2013. |
“The can2close solution”, www.can2close.com, May 21, 2008. |
International Search Report and Written Opinion issued in corresponding international application No. PCT/US2016/017392. |
Number | Date | Country | |
---|---|---|---|
20160229598 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62113850 | Feb 2015 | US | |
62149825 | Apr 2015 | US |