The present disclosure relates to novel and advantageous storage and dispensing systems. More particularly, the present disclosure relates to novel and advantageous connector assemblies for use with liner-based assemblies, where material may be stored in, shipped in, and dispensed from the liner-based assembly.
Numerous manufacturing processes require the use of ultrapure liquids, such as acids, solvents, bases, photoresists, dopants, inorganic, organic, and biological solutions, pharmaceuticals, and radioactive chemicals. Such industries require that the number and size of particles in the ultrapure liquids be controlled to ensure purity. In particular, because ultrapure liquids are used in many aspects of the microelectronic manufacturing process, semiconductor manufacturers have established strict particle concentration specifications for process chemicals and chemical-handling equipment. Such specifications are needed because, should the liquids used during the manufacturing process contain high levels of particles or bubbles, the particles or bubbles may be deposited on solid surfaces of the silicon. This can, in turn, lead to product failure and reduced quality and reliability.
Storage and dispensing systems that are used to store, ship, and dispense the liquids described above, as well as other liquid-based contents, typically include a container of some kind, and/or a liner, a cap that may be used to seal and protect the contents of the storage system when the contents are not being dispensed, and a connector that may be used to dispense the contents from the container. The connector that is used during dispense is typically uniquely configured to provide a particular type of dispense. Accordingly, the connector that is used during dispense will have an effect on several aspects of the dispense, for example, whether the dispense is a pump or pressure dispense, what the rate of flow of dispense may be, and/or how much residue may remain in a liner or container after dispense.
In order to dispense the contents of a container, the sealing cap must be removed and the connector must be attached. Contaminants may be introduced into the system when the system is exposed to the outside environment during the process of removing the cap and attaching the connector.
Further, caps and connectors are often times relatively expensive. Many times, caps and connectors are made to be used repeatedly. Repeated use of caps and/or connectors, however, requires extensive washing and/or sterilizing prior to subsequent uses, which may be time consuming and/or expensive. Additionally, no matter how well a cap and/or connector may be cleaned, there is still the possibility that the cap and/or connector would not be completely cleaned and may thereby introduce contaminants into the contents of a container upon subsequent use. Accordingly, there is a need for a relatively inexpensive cap or closure that may function as both a closure for the system during storage and/or shipping, as well as a connector for use during dispense. There is also a need for a cost-effective combination closure/connector that may be used a single time.
In one embodiment, the present disclosure includes a closure/connector assembly for use with a dispense assembly. The closure/connector includes a closure body as well as a cap seat adaptor for operable connection to the closure body. The cap seat adapter has a proximal end and a distal end and is configured for fluid communication with a source of material to be dispensed. The closure/connector also has a cap for connection to the distal end of the cap seat adaptor. A pressurizing gas inlet fitting adapted for connection to a pressure source is also included as a part of the closure/connector. The closure/connector assembly, in conjunction with the dispense assembly, is configured for the secure transport and dispense of the material to be dispensed.
In another embodiment, the present disclosure relates to a dispense assembly. The dispense assembly includes a liner for holding a material to be dispensed and an overpack that has the liner disposed therein. The dispense assembly further includes a closure/connector assembly secured to the liner and overpack. The closure/connector has a closure body, as well as a cap seat adaptor for operable connection to the closure body. The cap seat adapter has a proximal end and a distal end and is configured for fluid communication with a source of material to be dispensed. The closure/connector also has a cap for connection to the distal end of the cap seat adaptor. A pressurizing gas inlet fitting adapted for connection to a pressure source is included as part of the closure/connector. The closure/connector assembly, in conjunction with the liner and overpack, is configured for the secure transport and dispense of the material to be dispensed.
In another embodiment, the present disclosure relates to a method for storing, shipping, and dispensing the contents of a dispense assembly. The method includes filling the dispense assembly with a desired material. The method further includes securing a closure/connector to the dispense assembly. The closure/connector of the method includes a closure body and a cap seat adaptor for operable connection to the closure body. The cap seat adapter includes a proximal end and a distal end and is configured for fluid communication with a source of material to be dispensed. A cap for connection to the distal end of the cap seat adaptor as well as a pressurizing gas inlet fitting adapted for connection to a pressure source are included as part of the closure/connector. The closure/connector assembly, in conjunction with the dispense assembly, is configured for the secure transport and dispense of the material to be dispensed, such that the material to be dispensed may be dispensed by removing the cap and connecting a liquid dispense outfitting to the distal end of the cap seat adaptor.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the various embodiments of the present disclosure, it is believed that the disclosure will be better understood from the following description taken in conjunction with the accompanying Figures, in which:
a is a perspective view showing the closure body, cap seat adaptor, and locking cap of the present disclosure, according to one embodiment of the present disclosure.
b shows a bottom view of a cap seat adaptor of the present disclosure, according to one embodiment.
c is a perspective view showing another embodiment of a cap seat adaptor of the present disclosure.
a-10c are perspective views showing the steps for shipping the system of the present disclosure, according to one embodiment.
a-11b are perspective views showing the steps for dispensing the contents of the system of the present disclosure, according to one embodiment.
The present disclosure relates to novel and advantageous storage and dispensing systems. More particularly, the present disclosure relates to novel and advantageous connector assemblies for use with storage devices and methods for using such connectors to store, ship, and/or dispense the contents of a container of the present disclosure.
One aspect of the present disclosure relates to a relatively inexpensive closure/connector that may function both as a cap that may secure a storage and dispensing system during storage and shipping, and as a connector that may allow the contents of a container of the storage and dispensing system to be removed. The closure/connectors of the present disclosure may be used with storage and dispensing containers that may hold up to approximately 200 liters. Alternatively, the dispensing containers may hold up to approximately 20 liters. Alternatively, the dispensing containers may hold approximately 1 to 5 liters. It will be appreciated that the referenced container sizes are examples only and that the closure/connectors of the present disclosure may be readily adapted for use with a wide variety of sized and shaped dispensing containers.
Example uses of storage and dispensing systems of the present disclosure may be, but are not limited to, transporting and dispensing acids, solvents, bases, photoresists, dopants, inorganic, organic, and biological solutions, pharmaceuticals, and radioactive chemicals. However, such liners may further be used in other industries and for transporting and dispensing other products such as, but not limited to, soft drinks, cooking oils, agrochemicals, health and oral hygiene products, and toiletry products, etc. Those skilled in the art will recognize the benefits of such storage and dispense systems and methods of their use, and therefore will recognize the suitability of the closure/connector assembly as used with a storage and dispense system to various industries and for the transportation and dispense of various products.
The closure/connector assembly of the present disclosure may be used a single-time and then disposed of, in some embodiments. Providing a single-time use closure/connector assembly that functions as both the closure cap and the connector during dispense may provide at least two distinct advantages over known covers and connectors for use with dispensing systems. Frequently, the contents of a dispensing system of the type described in the present disclosure are required to be substantially pure, or free from contaminants. In addition, and/or as a consequence of the required purity of the contents, the contents may also be relatively expensive, and in some cases may even be extremely expensive. In dispensing systems that include a closure cap and a separate connector, the contents of the container may be subjected to contaminants when the cap is removed and the connector is fitted onto the container. The closure/connector assembly of the present disclosure can avoid this risk by allowing the closure to also function as the connector.
As shown in
As shown in
The liner 320, in a further embodiment, may have a shape, when inflated or filled, that is different from, but complimentary with, the shape of the overpack 302 such that it may be disposed therein. In some embodiments, the liner 320 may be removably attached to the interior of the overpack wall 312. The liner 320 may provide a barrier, such as a gas barrier, against drive gas migration from the space between the liner wall 324 and the overpack wall 312. In some embodiments, the liner 320 may be manufactured using one or more polymers, including plastics, nylons, EVOH, polyolefins, or other natural or synthetic polymers. In a further embodiment, the liner 320 may be manufactured using a fluoropolymer, such as but not limited to, polychlorotrifluoroethylene (PCTFE), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroalkoxy (PFA), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly(butylene 2,6-naphthalate) (PBN), polyethylene (PE), linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), and/or polypropylene (PP). In some embodiments, the liner 320 may comprise multiple layers. The multiple layers may comprise one or more different polymers or other suitable materials. The mouth 328 of the liner 320 may also have a fitment portion 330. The fitment portion 330 may be made of a different material than the rest of the liner 320 and may be harder, more resilient, and/or less flexible than the rest of the liner 320. PCT Application No. PCT/US208/085264, entitled, “Blow Molded Liner for Overpack Container and Method of Manufacturing the Same,” filed Dec. 2, 2008, and International PCT Patent Application No. PCT/US10/41629, titled “Substantially Rigid Collapsible Liner and Flexible Gusseted or Non-Gusseted Liners and Methods of Manufacturing the Same and Methods for Limiting Choke-Off in Liners,” filed on Jul. 9, 2010, all disclose liners that may be used in accordance with the present disclosure and are all hereby incorporated herein by reference in their entirety. Similarly, U.S. Patent Appl. No. 61/391,945, titled “Substantially Rigid Collapsible Liner, Container and/or Liner for Replacing Glass Bottles, and Flexible Gusseted or Non-Gusseted Liners,” filed Oct. 11, 2010; U.S. Patent Appl. No. 61/405,567, titled “Substantially Rigid Collapsible Liner, Container and/or Liner for Replacing Glass Bottles, and Flexible Gusseted or Non-Gusseted Liners,” filed Oct. 21, 2010; and U.S. patent application Ser. No. 11/915,996, titled “Fluid Storage and Dispensing Systems and Processes,” which was filed Jun. 5, 2006, all of which are hereby incorporated herein by reference in their entirety, also disclose liners that may be used in accordance with the present disclosure.
The closure/connector assembly 4 of the present disclosure may include a number of separate or integral components. As shown in
The closure body 402 may have an exterior 404 and an interior 408 and may have a proximal end 406 and a distal end 410. The proximal end 406 may generally be the end of the closure body 402 that may be coupled to a container and/or liner. The distal end 410 may generally be the end of the closure body 402 that may couple to a means for filling the container, and/or dispensing the contents of the container, and/or sealing the system from outside contaminants.
As shown in
The base section 506 may be generally circular in one embodiment. The base section may include an outer rim 522 with substantially straight sides and an angled rim 524 that may be distal to the outer rim 522, wherein the sides of the angled rim 524 angle or curve in toward the center of the closure body 402. The angled rim 524 may have sides that have any degree of angle or curvature toward the center of the closure body 402, including in one embodiment, zero degree of angle. The closure body exterior 404 may also have a ribbed section 512 comprised of a plurality of ribs 526 that generally protrude from the base section 406. A rib rim 530 may extend around the entirety of the closure body exterior 404 and may be proximal to the outer rim 522. The rib rim 530 may protrude further from the closure body exterior 404 than the outer rim 522 and/or the angled rim 524. The plurality of ribs 526 may extend from the rib rim 530 to the distal end 410 of the closure body exterior 404. The rib section 512 may provide a gripping section to allow a user or machine to more easily couple and/or uncouple the closure body 402 from a container. In other embodiments the closure body may have any other suitable geometry, such as hexagonal, square, or any other shape.
The closure body exterior 404 may, in one embodiment, also include a center indentation 534 at the distal end 410 of the closure body 402, such that the center indentation 534 forms a depression toward the interior of the closure body 402. The center indentation 534 may be depressed any suitable degree. In one embodiment, the center indentation 534 may be depressed at least enough so that the cap connector portion of the cap seat adaptor 426 (described in detail below) does not extend above the distal end 410 of the closure body exterior 404. At the center of the center indentation 534 may be an adaptor coupling opening 536. A gas inlet coupling opening 538 may also be provided at the distal end 410 of the closure body exterior 404. The gas inlet coupling opening 538 may be generally positioned at the interface between the distal end 410 of the angled rim 524 and the center indentation 534. It will be recognized, however, that the gas inlet coupling opening 538 may be positioned at any suitable location on the closure body exterior 404.
As shown in
The closure body interior 406 may also include a gas inlet connector portion 620 corresponding to the gas inlet coupling opening 538 as seen on the closure body exterior 404. The gas inlet connector portion 620 may comprise threads that couple to complimentary threads on the pressurizing gas inlet fitting 460 (described more fully below). However, it will be recognized that any alternative or additional coupling structures or mechanisms may be employed to couple the gas inlet portion 620 to the pressurizing gas inlet fitting 460 such as, for example, a snap fitting mechanism. The closure body interior 406 may also have an interior cavity 618 for receiving the mouth of a container and/or liner. The gas inlet connector portion 620 may also include a tube opening 624 that generally permits a gas pressure in-line (described more fully below) to be inserted through the closure body 406 and into the interior cavity 618 of the closure body 406. In embodiments of the disclosure that use pump-dispense to discharge the contents of the container, the gas inlet connector portion 620 or gas inlet fitting may function as a vent, and accordingly may not need to be connected to a gas pressure in-line.
The closure body 402 may be comprised of any suitable material such as plastic, metal, glass, or any other suitable material, or combination of materials. In one embodiment, the closure body 402 may be comprised of polypropylene. The closure body 402 may be formed by any suitable means such as injection molding and/or machining, for instance.
The closure/connector assembly 4 of the present disclosure, in one embodiment, may also include a gas seal O-ring 420 (
As shown in
The cap connector portion 704 of the cap seat adaptor 426 may be longer and have a larger circumference than the luer connector portion 702. The cap connector portion 704 may comprise threads on the outside of its tubular body, such that the threads may couple with complimentary threads on the inner connector portion 610 of the closure body 402. It will be recognized that any alternative or additional coupling means may be employed to couple the cap connector portion 704 of the cap seat adaptor 426 with the inner connector portion 610 of the closure body 402, such as, for example, a snap fitting mechanism.
The base 706 of the cap seat adaptor 426 may be positioned proximal to the cap connector portion 704. The base 706 may comprise a wider shoulder section 716 that may be distal to a narrower section 718. An opening 708 may run through the entire length of the cap seat adaptor 426 such that a liquid and/or a gas may pass through the length of the cap seat adaptor 426. The cap seat adaptor 426 may be formed of any suitable material, such as plastic, metal, glass, or any other suitable material, or combination of materials. For example, the cap seat adaptor 426 in one embodiment may be comprised of PTFE (polytetrafluoroethylene).
The cap seat adaptor 426, in some embodiments, may also have one or more features to help reduce or prevent choke-off. For example, but not limited to, the interior side of the base 706 of the cap seat adaptor 426, in one embodiment, may have a cross-shaped cut-out as shown in
In another embodiment of the cap seat adaptor 770, shown in
The closure/connector assembly 4 of the present disclosure may also include, in one embodiment, a locking cap 440, such as a luer locking cap, as shown in
As is further illustrated in
The closure/connector assembly 4 may also comprise a pressurizing gas inlet fitting 460. As shown in
As shown in
As can be seen, the gas seal O-ring 420 may be placed on the cap seat adaptor 426, such that the O-ring 420 may generally be positioned at the interface between the shoulder portion 716 of the cap seat adaptor 426 and the cap connector portion 704 of the cap seat adaptor 426. The threads of the cap connector portion 704 of the cap seat adaptor 426 may be coupled to the threads of the inner connector portion 610 of the closure body 402, such that the O-ring 420 provides a substantially air-tight seal 902 between the cap seat adaptor 426 and the inner connector portion 610 of the closure body 402. In addition, the connection between the cap connector portion 704 of the cap seat adaptor 426 and the inner connector portion 610 of the closure body 402 may also provide a seal between the cap seat adaptor 426 and the closure body 402. As shown in
Still referring to
In one embodiment, the system of the present disclosure may also be configured in a shipping state, as may be seen in
As can be seen in
Once liquid dispense has been completed and/or the container 2 has been emptied, the gas pressure in-line 1108 may be removed from the pressurizing gas inlet fitting 460 to release the pressure gas in the container 2 and the gas fitting plug 480 may be recoupled to the receiving end 802 of the pressurizing gas inlet fitting 460. The liquid dispense out-fitting 1102 may be removed from the cap seat adaptor 426 and the luer locking cap 440 may be recoupled to the cap seat adaptor 426.
In another embodiment, the pressurizing gas inlet fitting 460 may have nothing inserted into the receiving end 802. Rather, the receiving end 802 may be open to the air and serve as a vent, for example, during a pump-dispense application. In such an embodiment, the contents 1202 of the liner 320 may be pumped out of the liner 320 through the liquid dispense out-fitting. The liner may collapse in as liquid is dispensed out of the container.
In yet another embodiment, the cap seat adaptor embodiment shown in
In the foregoing description various embodiments of the invention have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments were chosen and described to provide the best illustration of the principals of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth they are fairly, legally, and equitably entitled.
This application claims priority to U.S. Provisional Application No. 61/291,258, filed Dec. 30, 2009; U.S. Provisional Application No. 61/299,237, filed Jan. 28, 2010; U.S. Provisional Application No. 61/299,427, filed Jan. 29, 2010; and U.S. Provisional Application No. 61/393,583, filed Oct. 15, 2010, the contents of all of which are hereby incorporated in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5031801 | Osgar et al. | Jul 1991 | A |
5102010 | Osgar et al. | Apr 1992 | A |
5158204 | Martrich et al. | Oct 1992 | A |
5199609 | Ash, Jr. | Apr 1993 | A |
5213232 | Kraft et al. | May 1993 | A |
5230447 | Kirk | Jul 1993 | A |
5435460 | Osgar | Jul 1995 | A |
5693017 | Spears et al. | Dec 1997 | A |
5875921 | Osgar et al. | Mar 1999 | A |
5988422 | Vallot | Nov 1999 | A |
6015068 | Osgar et al. | Jan 2000 | A |
6206240 | Osgar et al. | Mar 2001 | B1 |
6453925 | Kamo | Sep 2002 | B1 |
6460730 | Liedtke | Oct 2002 | B1 |
6564973 | Brown et al. | May 2003 | B1 |
6848599 | Hammarth et al. | Feb 2005 | B2 |
7021500 | Finn et al. | Apr 2006 | B1 |
7025234 | Priebe et al. | Apr 2006 | B2 |
7316329 | Wertenberger | Jan 2008 | B2 |
7735300 | Outreman | Jun 2010 | B2 |
20040149348 | Wertenberger | Aug 2004 | A1 |
20040188449 | Thompson | Sep 2004 | A1 |
20090020176 | Hasegawa et al. | Jan 2009 | A1 |
20090057347 | Leys et al. | Mar 2009 | A1 |
20100112815 | O'Dougherty et al. | May 2010 | A1 |
20100186352 | Thomasset et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
1097899 | May 2001 | EP |
2388233 | Nov 2011 | EP |
06100087 | Apr 1994 | JP |
2008007154 | Jan 2008 | JP |
2005100203 | Oct 2005 | WO |
2006133026 | Dec 2006 | WO |
2007061967 | May 2007 | WO |
2007146892 | Dec 2007 | WO |
2008095024 | Aug 2008 | WO |
2009076101 | Jun 2009 | WO |
2011006146 | Jan 2011 | WO |
2011046802 | Apr 2011 | WO |
2011085012 | Jul 2011 | WO |
2012051496 | May 2012 | WO |
Entry |
---|
U.S. Appl. No. 61,251,430, filed Oct. 14, 2009, Tom et al. |
U.S. Appl. No. 61/391,945, filed Oct. 11, 2010, Tom et al. |
U.S. Appl. No. 61/405,567, filed Oct. 21, 2010, Tom et al. |
International Search Report and Written Opinion for related PCT Application PCT/US2012/065515, mailed Feb. 11, 2013 (6 pp.). |
Number | Date | Country | |
---|---|---|---|
20110210148 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61291258 | Dec 2009 | US | |
61299237 | Jan 2010 | US | |
61299427 | Jan 2010 | US | |
61393583 | Oct 2010 | US |