Clot retrieval device for removing clot from a blood vessel

Information

  • Patent Grant
  • 11439418
  • Patent Number
    11,439,418
  • Date Filed
    Tuesday, June 23, 2020
    5 years ago
  • Date Issued
    Tuesday, September 13, 2022
    3 years ago
Abstract
A clot retrieval device is disclosed to remove clot from a blood vessel. The device can include a collapsed configuration and an expanded configuration. The device can include an inner expandable body with a framework of struts. The device can include an outer expandable body with a framework of struts that at least partially radially surrounding the inner expandable body. A distal portion of the outer expandable body can extend in the deployed configuration towards the outer expandable body to a greater extent than the inner expandable body, closed cells of the distal portion distally tapering and being smaller than cells proximal thereof in the outer expandable body. The plurality of closed cells of the distal portion can include a pair of axially aligned smaller diamond shaped cells formed by struts of the distal portion and positioned along upper and lower regions of the distal portion.
Description
FIELD

The present disclosure generally relates to devices and methods for removing blockages from blood vessels during intravascular medical treatments.


BACKGROUND

Clot retrieval devices are used in mechanical thrombectomy for endovascular intervention, often in cases where patients are suffering from conditions such as acute ischemic stroke (AIS), myocardial infarction (MI), and pulmonary embolism (PE). Acute obstructions may include clot, misplaced devices, migrated devices, large emboli and the like. Thromboembolism occurs when part or all of a thrombus breaks away from the blood vessel wall. This clot (now called an embolus) is then carried in the direction of blood flow. An ischemic stroke may result if the clot lodges in the cerebral vasculature. A pulmonary embolism may result if the clot originates in the venous system or in the right side of the heart and lodges in a pulmonary artery or branch thereof. Clots may also develop and block vessels locally without being released in the form of an embolus—this mechanism is common in the formation of coronary blockages. There are significant challenges associated with designing clot removal devices that can deliver high levels of performance. First, there are a number of access challenges that make it difficult to deliver devices. In cases where access involves navigating the aortic arch (such as coronary or cerebral blockages) the configuration of the arch in some patients makes it difficult to position a guide catheter. These difficult arch configurations are classified as either type 2 or type 3 aortic arches with type 3 arches presenting the most difficulty.


The tortuosity challenge is even more severe in the arteries approaching the brain. For example it is not unusual at the distal end of the internal carotid artery that the device will have to navigate a vessel segment with a 180° bend, a 90° bend and a 360° bend in quick succession over a few centimetres of vessel. In the case of pulmonary embolisms, access is through the venous system and then through the right atrium and ventricle of the heart. The right ventricular outflow tract and pulmonary arteries are delicate vessels that can easily be damaged by inflexible or high profile devices. For these reasons it is desirable that the clot retrieval device be compatible with as low profile and flexible a guide catheter as possible.


Second, the vasculature in the area in which the clot may be lodged is often fragile and delicate. For example neurovascular vessels are more fragile than similarly sized vessels in other parts of the body and are in a soft tissue bed. Excessive tensile forces applied on these vessels could result in perforations and hemorrhage. Pulmonary vessels are larger than those of the cerebral vasculature, but are also delicate in nature, particularly those more distal vessels.


Third, the clot may comprise any of a range of morphologies and consistencies. Long strands of softer clot material may tend to lodge at bifurcations or trifurcations, resulting in multiple vessels being simultaneously occluded over significant lengths. More mature and organized clot material is likely to be less compressible than softer fresher clot, and under the action of blood pressure it may distend the compliant vessel in which it is lodged. Furthermore the inventors have discovered that the properties of the clot may be significantly changed by the action of the devices interacting with it. In particular, compression of a blood clot causes dehydration of the clot and results in a dramatic increase in both clot stiffness and coefficient of friction.


The challenges described above need to be overcome for any devices to provide a high level of success in removing clot and restoring flow. Existing devices do not adequately address these challenges, particularly those challenges associated with vessel trauma and clot properties.


SUMMARY

It is an object of the present design to provide devices and methods to meet the above-stated needs. It is therefore desirable for a clot retrieval device to remove clot from cerebral arteries in patients suffering AIS, from coronary native or graft vessels in patients suffering from MI, and from pulmonary arteries in patients suffering from PE and from other peripheral arterial and venous vessels in which clot is causing an occlusion.


In some examples, a clot retrieval device is disclosed to remove clot from a blood vessel. The device can include a collapsed configuration and an expanded configuration. The device can include an inner expandable body with a framework of struts. The device can include an outer expandable body with a framework of struts that form closed cells larger than the closed cells of the inner expandable body and at least partially radially surrounding the inner expandable body. The outer expandable body can include a distal scaffolding zone with a plurality of struts that distally taper with closed cells smaller than cells proximal thereof in the outer expandable body. The plurality of closed cells of the distal scaffolding zone can include a first plurality of closed cells being axially aligned smaller diamond shaped cells formed by struts of the distal scaffolding zone; a second plurality of closed cells being larger than cells of the first plurality of closed cells and radially separated, each smaller diamond shaped cell being radially inward and distal of each of the second plurality of closed cells; and a third plurality of closed cells radially separated and proximal of each of the second plurality of closed cells.


In some examples, the first plurality of closed cells can include a different shape than the second plurality of cells. The second plurality of closed cells can include a different shape than the third plurality of closed cells.


In some examples, the distal scaffolding zone can be a protective strut structure can include at least twelve closed cells between the first, second, and third plurality of closed cells.


In some examples, the first plurality of closed cells can include a pair of axially aligned smaller diamond shaped cells formed by struts of the distal portion and positioned along upper and lower regions of the distal scaffolding zone.


In some examples, each diamond shaped cell can include a best fit diameter of approximately 1.2 mm.


In some examples, the second plurality of closed cells can include at least four cells.


In some examples, the at least four cells can include a best fit diameter of approximately 1.6 mm.


In some examples, each of the at least four cells can share only one common edge with one of the smaller diamond shaped cells.


In some examples, each of the at least four cells can be a pentagon.


In some examples, the third plurality of radially separated cells can include at least five radially separated cells proximal of the second plurality of cells.


In some examples, struts of the distal scaffolding zone are connected to the inner expandable body.


In some examples, struts of the distal scaffolding zone form a mesh-like structure.


In some examples, the distal scaffolding zone can include a porosity greater than a porosity provided by the plurality of struts of the outer expandable body proximal thereof.


In some examples, a clot retrieval device is disclosed to remove clot from a blood vessel. The device can include a collapsed configuration and an expanded configuration. The device can include an inner expandable body with a framework of struts. The device can include an outer expandable body with a framework of struts that at least partially radially surrounding the inner expandable body. A distal portion of the outer expandable body can extend in the deployed configuration towards the outer expandable body to a greater extent than the inner expandable body, closed cells of the distal portion distally tapering and being smaller than cells proximal thereof in the outer expandable body. The plurality of closed cells of the distal portion can include a pair of axially aligned smaller diamond shaped cells formed by struts of the distal portion and positioned along upper and lower regions of the distal portion.


In some examples, the distal portion is a protective strut structure that can include at least twelve closed cells of the plurality of closed cells.


In some examples, the plurality of closed cells of the distal portion can include at least four radially separated larger cells, each smaller diamond shaped cell being radially inward and distal of the at least four radially separated larger cells.


In some examples, the at least four radially separated larger cells can include a best fit diameter of approximately 1.6 mm.


In some examples, each of the at least four radially separated larger cells sharing only one common edge with one of the smaller diamond shaped cells.


In some examples, each of the at least four radially separated larger cells form a pentagon.


In some examples, the plurality of closed cells of the distal portion can include at least five radially separated cells proximal of the at least four radially separated larger cells.


In some examples, the framework of struts of the outer expandable body can include a plurality of discontinuous expandable members spaced from adjacent expandable members, struts of each expandable can form closed cells with at least some struts terminating in radially separated distal apexes free from connection to an adjacent closed cell.


In some examples, the device can include a plurality of clot inlet mouths between respective expandable bodies through which clot may pass and enter the device.


In some examples, each member can include at least four radiopaque markers equally radially separated about a longitudinal axis of the outer expandable body.


In some examples, the at least four radiopaque markers being separated approximately 10 mm apart in the collapsed configuration.


In some examples, the at least four radiopaque markers being separated approximately 8 mm apart in the expanded configuration.


In some examples, the at least four radiopaque markers radiopaque markers can include radiopaque material positioned in an eyelet.


In some examples, the at least four radiopaque markers radiopaque markers can include at least one of Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum, Iridium, Tantalum or an alloy of these materials.


In some examples, the device can include at least three expandable members longitudinally spaced apart.


In some examples, the plurality of closed cells of the distal portion forming a distal mesh; the inner expandable body can include a closed distal portion and the distal portion of the outer expandable body being closed; and the distal portion of the outer and inner expandable bodies together configured to prevent distal egress of clot or clot fragments from the device.


In some examples, the outer expandable body being expandable to a radial extent greater than the inner expandable body to define a clot reception space eccentrically arranged about a longitudinal axis of the outer tubular body.


In some examples, the outer expandable body can include a closed distal portion.


In some examples, a plurality of distal struts of the closed distal portion are spiraled.


In some examples, a plurality of distal struts of the closed distal portion extend normal to a longitudinal axis of the outer expandable body.


In some examples, a plurality of distal struts of the closed distal portion are configured in a bulged or flared pattern.


In some examples, the outer and inner expandable bodies each being monolithic structures.


In some examples, the outer expandable body can include at least two longitudinally spaced-apart expandable members connected by one or more struts configured as a longitudinal hinge between the spaced-apart expandable members, each expandable member can include a plurality of radially separated radiopaque markers.


In some examples, each marker is positioned at a junction between at least two connecting struts of a respective expandable member.


In some examples, each member can include at least four radiopaque markers equally radially separated about a longitudinal axis of the outer expandable body.


In some examples, the device can include at least three expandable members longitudinally spaced apart.


In some examples, the radiopaque markers can include radiopaque material positioned in an eyelet.


In some examples, the radiopaque markers can include at least one of Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum, Iridium, Tantalum or an alloy of these materials.


In some examples, a diameter of the flow channel in the expanded configuration being less than 50% of a diameter of the outer expandable body in the expanded configuration along a longitudinally-extending clot reception space between the inner and outer expandable bodies.


In some examples, the device can include a shaft extended proximally of a proximal end of inner and/or outer expandable bodies.


In some examples, the device can include struts of the distal portion being connected to the inner expandable body.


Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further aspects of this disclosure are further discussed with the following description of the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the disclosure. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation. It is expected that those of skill in the art can conceive of and combining elements from multiple figures to better suit the needs of the user.



FIG. 1 shows an isometric view of a clot retrieval device of this disclosure.



FIG. 2 shows an isometric view of another example of a clot retrieval device of this disclosure.



FIG. 3 shows a side view of the device of FIG. 1.



FIG. 4A shows a side plan view of the outer member of the clot retrieval device of FIGS. 1-2.



FIG. 4B shows a top plan view of the outer member of the clot retrieval device of FIGS. 1-2.



FIG. 5 shows a close-up view of section A-A of FIG. 1.



FIG. 6 shows a close-up view of section B-B of FIG. 3.



FIG. 7 shows a close-up view of section C-C of FIG. 3.



FIG. 8 shows a close-up view of section D-D of FIG. 3.



FIG. 9 shows a close-up isometric view of a distal region of the example clot retrieval device of FIG. 1.



FIG. 10A shows an end view of the distal region of FIG. 9.



FIG. 10B shows an isometric view of the distal region of FIG. 9.



FIG. 10C shows a top view of the distal region of FIG. 9.



FIG. 11A shows a close-up isometric view of an example marker.



FIG. 11B shows a side plan view of the example marker of FIG. 11A.



FIG. 12 shows a close-up of on expandable member of an example outer member in a collapsed configuration showing example laser cut patterns.





DETAILED DESCRIPTION

Specific examples of the present disclosure are now described in detail with reference to the Figures, where identical reference numbers indicate elements which are functionally similar or identical. The examples address many of the deficiencies associated with traditional catheters, such as inefficient clot removal and inaccurate deployment of catheters to a target site.


Accessing the various vessels within the vascular, whether they are coronary, pulmonary, or cerebral, involves well-known procedural steps and the use of a number of conventional, commercially-available accessory products. These products, such as angiographic materials and guidewires are widely used in laboratory and medical procedures. When these products are employed in conjunction with the system and methods of this disclosure in the description below, their function and exact constitution are not described in detail.


The following detailed description is merely exemplary in nature and is not intended to limit the disclosure or the application and uses of the disclosure. Although the description of the disclosure is in many cases in the context of treatment of intracranial arteries, the disclosure may also be used in other body passageways as previously described.


It will be apparent from the foregoing description that, while particular embodiments of the present disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure. For example, while the embodiments described herein refer to particular features, the disclosure includes embodiments having different combinations of features. The disclosure also includes embodiments that do not include all of the specific features described. Specific embodiments of the present disclosure are now described in detail with reference to the figures, wherein identical reference numbers indicate identical or functionality similar elements. The terms “distal” or “proximal” are used in the following description with respect to a position or direction relative to the treating physician. “Distal” or “distally” are a position distant from or in a direction away from the physician. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician.


Accessing cerebral, coronary and pulmonary vessels involves the use of a number of commercially available products and conventional procedural steps. Access products such as guidewires, guide catheters, angiographic catheters and microcatheters are described elsewhere and are regularly used in cath lab procedures. It is assumed in the descriptions below that these products and methods are employed in conjunction with the device and methods of this disclosure and do not need to be described in detail. The following detailed description is merely exemplary in nature and is not intended to limit the disclosure or the application and uses of the disclosure. Although the description of the disclosure is in many cases in the context of treatment of intracranial arteries, the disclosure may also be used in other body passageways as previously described. A common theme across many of the disclosed designs is a dual layer construction in which the device includes an outer expandable member within which runs an inner expandable member, both members being directly or indirectly connected to an elongate shaft, and a distal net or scaffold configured at the distal end of the device to prevent the escape of clot fragments. This distal net may be appended to either the shaft, the inner or the outer members or to several of these. A range of designs are envisaged for each of these elements as described throughout this document, and it is intended that any of these elements could be used in conjunction with any other element, although to avoid repetition they are not shown in every possible combination.


For example both the inner and outer expandable members are desirably made from a material capable of recovering its shape automatically once released from a highly strained delivery configuration. A superelastic material such as Nitinol or an alloy of similar properties is particularly suitable. The material could be in many forms such as wire or strip or sheet or tube. A particularly suitable manufacturing process is to laser cut a Nitinol tube and then heat set and electropolish the resultant structure to create a framework of struts and connecting elements. This framework can be any of a huge range of shapes as disclosed herein and may be rendered visible under fluoroscopy through the addition of alloying elements (e.g., Platinum) or through a variety of other coatings or marker bands. The inner expandable member may in some cases form a generally tubular structure and is ideally configured to expand to a lesser diameter than that of the smallest vessel in which it is intended to be used. This diameter is typically less than 50% that of the outer expandable member may be as low as 20% or less of the outer member diameter. A range of different distal scaffolding zone designs are disclosed, some of which incorporate strut elements from the framework of the outer and/or inner expandable members, and some of which incorporate fine wires or fibers to provide added scaffolding with minimal impact of overall device profile or deliverability. Suitable materials ideally have a high tensile strength so that a very fine wire or fiber with sufficient integrity for manufacturability and use can be produced, such as for example polymers materials such as UHMWPE, Aramid, LCP, PET or PEN, or metals such as Tungsten, MP35N, stainless steel or Nitinol.



FIG. 1 shows one embodiment of a clot retrieval device 100 with an outer expandable member 102 and an inner expandable member 103 to facilitate restoration of blood flow through clot immediately after device 100 is deployed at an obstructive site. As shown, member 102 can include four (4) expandable members proximal of the distal portion. However, any number of expandable members are contemplated. For example, FIG. 2 shows a modified device 100′ with fewer expandable member sections (e.g., two (2) as shown) of member 102. FIG. 3 shows a side of device 100 but without the proximal shaft. Device 100 has an elongate shaft 106 having a distal end that extends interior of the artery and a proximal end that extends exterior of the artery. Members 102 and 103 have a collapsed configuration for delivery and an expanded configuration for clot retrieval, flow restoration and fragmentation protection. Member 103 can have a generally tubular body section.


Member 103 is configured to self-expand upon release from a restraining sheath (e.g., a microcatheter) to a diameter larger than that of member 102. Expansion of member 102 can cause compression and/or displacement of the clot during expansion. When an expandable body provides a high level of scaffolding, the clot is compressed. When an expandable body provides an escape path or opening the expanding body will urge the clot towards the opening. However if the expandable body provides only modest scaffolding the clot will be displaced but since the clot has many degrees of freedom it may move in a variety of different directions and therefore cannot be controlled. By providing a tubular expandable body where the length of the tubular expandable body is substantially as long as the length of the occlusive clot or longer, many of the degrees of movement freedom available to the clot are removed.


Members 102 and 103 can specifically have a collapsed configuration for delivery and an expanded configuration for flow restoration and fragmentation protection. Members 102, 103 can be joined at the proximal and distal ends during assembly to minimize tension within members 102, 103 during use. In other examples, member 103 may not be connected to the distal end of member 103 at all or may be constrained within member 102 without being fixedly attached. In other examples, member 103 can have a non-cylindrical cross-section, may be non-uniform in diameter, and may have tailored strut patterns to provide regions of differing radial force or flexibility. The length of member 102 can be substantially the same as the length of member 103 in the freely expanded configuration and the loaded, collapsed configuration.


Member 103 can have an elastic or super-elastic or shape-memory metallic structure and can have a polished surface such as an electro-polished surface. Member 103 can be configured so as to provide a flow lumen or flow channel (e.g., generally cylindrical section) through device 100 to facilitate restoration of blood flow past the clot upon deployment. In one embodiment, member 103 is configured to scaffold the flow channel through the clot to prevent the liberation of fragments which might otherwise lodge in the distal vasculature. Member 103 can include one or more connected struts 131 configured to contact a clot when initially deployed in a target vessel within the clot. The contact of the one or more struts 131 with the clot provides additional grip and assists in the initial dislodgement of the clot from the vessel when device 100 is retracted.


The distal end of member 103 can include an expansile section formed from expanded struts 110 which have a diameter greater than that of member 103. These expanded struts 110 can be connected to a coil section 118 (see, e.g., FIG. 8) that can be laser cut from the tubing that member 103 can also be cut from. Coil 118 can also be configured to accommodate minor length differentials by stretching without applying significant tensile or compressive forces to device 100. Coil 118 can be formed from a stainless-steel material, a polymer or from a more radiopaque metal such as gold or platinum or an alloy of such a material. Coil 118 can be replaced with a longitudinal length of an elastic material such as a low modulus polymer or elastomer. The distal end of the coil 118 can be joined to the distal collar 109 of member 102 (e.g., by adhesive, a solder, weld or braze process). In some examples, struts 110 can elongate during loading so that the lengths of the members 102, 103 can be equal when fully loaded in a microcatheter. Length differentials between members 102, 103 can still occur when device 100 is deployed in a small vessel or during the loading or deployment process.


Members 102 and 103 are preferably made of a super-elastic or pseudo-elastic material such as Nitinol or another such alloy with a high recoverable strain. Shaft 106 may be a tapered wire shaft, and may be made of stainless steel, MP35N, Nitinol or other material of a suitably high modulus and tensile strength. Shaft 106 may have indicator bands 107 to indicate when the distal end of device 100 is approaching the end of the microcatheter during insertion. Shaft 106 can have a coil 104 adjacent its distal end and proximal of members 102, 103. Coil 104 may be metallic and may be formed from stainless steel or from a more radiopaque material such as platinum or gold for example or an alloy of such a material. In other examples, coil 104 can be coated with a low friction material or have a polymeric jacket positioned on the outer surface of the coil 104. Adjacent to coil 104 a sleeve 105 may be positioned on shaft 106. Sleeve 105 may be polymeric and may be positioned over a tapered section of shaft 106. Sleeve 105 may be rendered radiopaque through the addition of a filler material such as tungsten or barium sulphate. However, other radiopaque materials are contemplated, including but not limited to Bismuth SubCarbonate, Barium OxyChloride, Gold, Platinum, Iridium, Tantalum or an alloy of any of these materials. The sleeve 105 and shaft 106 may be coated with a material to reduce friction and thrombogenicity. The coating may include a polymer, a low friction lubricant such as silicon, a hydrophilic or a hydrophobic coating. This coating may also be applied to the member 102 and member 103.



FIG. 4A shows a side plan view of member 102 while FIG. 4B shows a top plan view of member 102. Inlet openings 122 are provided in member 102 whereby inlets 122 can provide a primary movement freedom available to the clot and so the expansion of member 102 urges the clot into reception space 111. Member 102 can have multiple inlet mouths 122 to accept clot. Inlet mouths 122 can be configured to allow portions of the clot to enter reception space 111 and thus allow the clot to be retrieved without being excessively compressed. This is advantageous because the inventors have discovered that compression of clot causes it to dehydrate, which in turn increases the frictional properties of the clot, and increases its stiffness, all of which makes the clot more difficult to disengage and remove from the vessel. This compression can be avoided if the clot migrates inward through the wall of member 102 as the porous structure migrates outward towards the vessel wall.


The inlet mouths 122 can also provide the added benefit of allowing member 102 when retracted to apply a force to the clot in a direction substantially parallel to the direction in which the clot is to be pulled from the vessel (i.e. substantially parallel to the central axis of the vessel). This means that the outward radial force applied to the vasculature may be kept to a minimum, which in turn means that the action of the clot retrieval device 100 on the clot does not serve to increase the force required to dislodge the clot from the vessel, thus protecting delicate cerebral vessels from harmful radial and tensile forces.


Member 102, as shown, can include proximal struts 120 connected at their proximal ends to collar 112 and at their distal ends to a first expandable member 126, which is more clearly shown in FIG. 6 at section B-B. As shown, struts 120 may have a tapered profile to ensure a gradual stiffness transition from shaft 106 to the clot engagement section of the device. Member 126 can be connected to a second expandable member 127 by a plurality of connecting arms 129, which can run from a proximal junction 139 to a distal junction 140. Arms 129 can include generally straight struts running parallel to the central axis of the device. In other embodiments these connecting arms may include a plurality of struts configured in one or more cells or may include curved or spiral arms. The region between the first and second expandable member includes two inlet mouths 122 through which clot may pass and enter the reception space 111 defined by the region between the inner and outer members.


Member 127 can in turn be connected to a third expandable member 128 by connecting arms 130, which run from a proximal junction 141 to a distal junction 142. Arms 130 can include generally straight struts running parallel to the central axis of device 100. In some examples, arms 130 can include a plurality of struts configured in one or more cells or may include curved or spiral arms. The region between members 127, 128 can include one or more inlet mouths 122 through which clot may pass and enter the reception space 111 defined by the region between members 102, 103. Arms 129 between members 126, 127 may be substantially aligned with arms 130 between members 127, 128 to align the neutral axis of members 126, 127, 128 during bending. In other examples, arms 129 between members 126, 127 may be aligned at an angle, such as 90 degrees, with arms 130 between members 127, 128.


In some examples, member 126 can include interconnected struts, such as with strut 143 terminating in crowns 133 with no distal connecting elements, and other struts such as 144 terminating in junction points 145 and 146. Struts in the expandable members may be configured so that during loading, multiple crowns (e.g., crowns 145, 150) do not align at the same distance from the proximal collar 112. During loading or resheathing, a higher force can be generally required to load a crown than a strut into the sheath. Accordingly, if multiple crowns are loaded at the same time the user may notice an increase in loading force. By offsetting the crowns (e.g., crowns 145, 150) by making alternative struts 144 and 151 different lengths the loading force may be reduced and the perception to the user is improved. Similarly, second expandable member 127 can include interconnected struts, such as strut 147, terminating in crowns 134 with no distal connecting elements, and other struts (e.g., strut 148) terminating in junction points. Similarly, third expandable member 128 can include interconnected struts, such as strut 152, terminating in crowns 135 with no distal connecting elements, and other struts terminating in junction points. FIG. 7 shows a close-view of section C-C of FIG. 3 more clearly showing member 128 and its struts (e.g., strut 152) and crowns 135. As shown, fewer or great expandable members 126, 127, 128 may be included with member 102.


In some examples, expandable members of member 102 may include one or more markers 125 with radiopaque materials such as, but not limited to, a radiodense material such as Gold, Tungsten, Tantalum, Platinum or alloy containing these or other high atomic number elements. Polymer materials (e.g., polyurethane, pebax, nylon, polyethylene, or the like) might also be employed, containing a Radiopaque filler such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum, Iridium, Tantalum, an alloy of these materials, and/or an adhesive filled with radiopaque filler. In this respect, marker 125 can be included as an eyelet on struts throughout member 102. Marker 125 can be positioned to indicate to the user the distal end of the barrel section of member 102 to aid in accuracy of deployment. The distal end of member 102 can include a circumferential ring of struts 123 connected to a series of struts 124 that can terminate at a distal junction point 109, which can include a collar. In some examples, member 102 can terminate in a closed distal end while in other aspects, the distal end of member 102 can be opened or not necessarily closed. In some examples, struts 124 may include a generally conical shape, as shown. In some examples, struts 124 can be arranged in a generally flat plane which may be inclined or may be normal to the longitudinal axis of device 100. Struts 124 and 149 can be tapered to a narrower width than those of the more proximal struts including the body of the expandable members (e.g., members 126, 127, 128, etc) thus creating a gradual transition in the stiffness of the device both in the expanded and collapsed states.



FIG. 5 is a close-up view of section A-A of FIG. 1 more clearly showing example markers 125 staggered on and along member 126. It is understood that the position of markers 125 as shown in FIG. 7 and throughout this disclosure are merely exemplary and markers 125 can be included elsewhere and with other features of device 100. In some examples, markers 125 can be separated approximately 10 mm apart in the collapsed, delivery configuration and be separated approximately 8 mm apart in the expanded configuration. However, markers 125 are not so limited and can separated as needed or required.



FIG. 8 shows a close-up view of section D-D of FIG. 3 more clearly showing distal region 155 while FIG. 9 shows close-up isometric view of a distal region 155 (sometimes referred herein interchangeably as a distal scaffolding zone) of device 100 at section E-E of FIG. 3. FIGS. 10A (end view) and 10B (isometric view) show the distal region 155 of member 102 only where a three-dimensional distal mesh of region 155 is configured for fragment protection feature is created by a framework of struts. As shown, a plurality of apexes or crowns 184 of distal region 155 shown in FIGS. 9-10C are provided connected to a plurality of arms 182 proximal thereof, which terminate at a junction proximate collar 109. Arms 182 can be shaped as needed or required, including generally bowed or conical as depicted. Preferably, arms 182 form a plurality of closed cells gradually going from larger closed cells at or adjacent the proximal end of region 155 to smaller closed cells at or adjacent the distal end. In some examples, at least twelve closed cells can be provided in distal region 155 of device 100. The distal region 155 shown can include a closed distal end of member 102 which, together with the mesh formed by arms 182 of region 155 and corresponding closed cells, can prevent egress of clot or clot fragments that have entered the previously described reception space 111 between members 102,103.


In some examples, axially aligned smaller diamond shaped cells 187 can be formed by arms 182 and positioned along upper and lower regions of the distal mesh. In some examples, at least two cells 187 are provided. Larger cells 189 can be positioned radially about longitudinal axis L of device 100 and radially inward of cells 187. In some examples, at least four cells 189 are provided joined at or adjacent a junction proximate collar 109. In some examples, cells 189 can measure approximately 1.2 mm, said measurement being the size of a best fit diameter of a circle placed in respective cell (e.g., cell 187 of shown drawn in the top view of FIG. 10C). In other examples, cells 189 can measure larger (e.g., approximately 1.6 mm).


Cells 186 can also be provided proximal of cells 187, 189. In some examples, at least five (5) cells 186 radially separated about axis L can be positioned proximal of cells 187, 189. Each of cells 186 can include struts common with cells 187, 189 as well as crowns 184. In some examples, the proximal struts of each of cells 186 can be bowed or otherwise curved. In some examples, the distal region 155 of FIGS. 9-10C shown can be a monolithic structure integrally formed with regions of member 102 proximal thereof (e.g., by being laser machined from the same tube as the rest of member 102). In some examples, radiopaque coil 108 (e.g., formed of platinum, gold, an alloy, etc.) can be positioned distal of the distal region 155 configured to couple at or against distal collar 109.



FIG. 11A shows a close-up isometric view of an example marker 125 while FIG. 11B shows a side plan view of marker 125. The markers 125 shown are formed generally of platinum-iridium, though as previously discussed, other radiopaque materials are contemplated as needed or required.



FIG. 12 shows a close-up of expandable member 127 in a collapsed configuration showing example laser cut patterns with enhanced visibility. It is understood that other expandable members of member 102 may follow the same or similar pattern. Member 12 may include three (3) eyelet cuts staggered for marker 125. In other examples, member 12 may include four (4) eyelet cuts staggered for marker 125. Fewer or greater eyelet cuts can be included as needed or required to incorporate markers 125. In those examples with 4 eyelet cuts, each expandable member of member 102 can include 4 markers 125. In this respect, if member 102 were to have three expandable members, then member 102 could include a total of at least twelve markers 125 staggered throughout. If member 102 were to have four expandable members, then at least twenty markers 125 could be included with member 102 staggered throughout.


The disclosure is not limited to the examples described, which can be varied in construction and detail. The terms “distal” and “proximal” are used throughout the preceding description and are meant to refer to a positions and directions relative to a treating physician. As such, “distal” or distally” refer to a position distant to or a direction away from the physician. Similarly, “proximal” or “proximally” refer to a position near to or a direction towards the physician.


In describing examples, terminology is resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method can be performed in a different order than those described herein without departing from the scope of the disclosed technology. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.


As discussed herein, a “patient” or “subject” can be a human or any animal. It should be appreciated that an animal can be a variety of any applicable type, including, but not limited to, mammal, veterinarian animal, livestock animal or pet-type animal, etc. As an example, the animal can be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like).


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%. Ranges can be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, other exemplary embodiments include from the one particular value and/or to the other particular value.


By “comprising” or “containing” or “including” is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.


It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


The descriptions contained herein are examples of the disclosure and are not intended in any way to limit the scope of the disclosure. While particular examples of the present disclosure are described, various modifications to devices and methods can be made without departing from the scope and spirit of the disclosure. For example, while the examples described herein refer to particular components, the disclosure includes other examples utilizing various combinations of components to achieve a described functionality, utilizing alternative materials to achieve a described functionality, combining components from the various examples, combining components from the various example with known components, etc. The disclosure contemplates substitutions of component parts illustrated herein with other well-known and commercially-available products. To those having ordinary skill in the art to which this disclosure relates, these modifications are often apparent and are intended to be within the scope of the claims which follow.

Claims
  • 1. A clot retrieval device to remove a clot from a blood vessel, the device comprising a collapsed configuration and an expanded configuration and comprising: an inner expandable body comprising a framework of struts that form closed cells; andan outer expandable body comprising a framework of struts that form closed cells larger than the closed cells of the inner expandable body and at least partially radially surrounding the inner expandable body, the outer expandable body comprising a distal scaffolding zone comprising a plurality of struts that distally taper with closed cells smaller than cells proximal thereof in the outer expandable body;the plurality of closed cells of the distal scaffolding zone comprising: a radially aligned and joined group of a first plurality of closed cells being axially aligned small diamond shaped cells formed by struts of the distal scaffolding zone;a radially aligned and joined group of a second plurality of closed cells being larger than cells of the first plurality of pentagon-shaped closed cells and radially separated, each small diamond shaped cell being radially inward, distal, and adjacent to the second plurality of closed cells; anda third plurality of closed cells radially separated and proximal of each of the second plurality of closed cells;wherein each of the second plurality of closed cells share common edges with two of the first plurality of closed cells; andwherein each of the first plurality of closed cells share common edges with two of the second plurality of closed cells.
  • 2. The device of claim 1, the first plurality of closed cells comprising a different shape than the second plurality of cells; and the second plurality of closed cells comprising a different shape than the third plurality of closed cells.
  • 3. The device of claim 1, the distal scaffolding zone being a protective strut structure comprising at least twelve closed cells between the first, second, and third plurality of closed cells.
  • 4. The device of claim 1, the first plurality of closed cells being a pair of axially aligned small diamond shaped cells formed by struts of the distal portion and positioned along upper and lower regions of the distal scaffolding zone.
  • 5. The device of claim 4, each diamond shaped cell comprising a best fit diameter of approximately 1.2 mm.
  • 6. The device of claim 4, the second plurality of closed cells comprising at least four cells.
  • 7. The device of claim 6, the at least four cells comprising a best fit diameter of approximately 1.6 mm.
  • 8. The device of claim 6, each of the at least four cells sharing only one common edge with one of the small diamond shaped cells.
  • 9. The device of claim 6, the third plurality of closed cells comprising at least five radially separated cells proximal of the second plurality of cells.
  • 10. A clot retrieval device to remove a clot from a blood vessel, the device comprising a collapsed configuration and an expanded configuration, and comprising: an inner expandable body comprising a framework of struts; andan outer expandable body comprising a framework of struts that at least partially radially surround the inner expandable body; anda distal portion of the outer expandable body that extends in a radially outward direction in the expanded configuration, wherein small diamond shaped closed cells of the distal portion distally taper and are smaller than pentagon-shaped large closed cells adjacent proximal thereof;the small diamond shaped closed cells of the distal portion comprising axially aligned cells formed by struts of the distal portion and positioned along upper and lower regions of the distal portion; andwherein each of small diamond shaped closed cells share common edges with two of the large closed cells; andwherein each of the large closed cells share common edges with two of the small diamond shaped closed cells.
  • 11. The device of claim 10, wherein the distal portion being a protective strut structure comprises at least twelve closed cells.
  • 12. The device of claim 10, wherein the large pentagon-shaped closed cells of the distal portion comprises at least four radially separated large cells, each small diamond shaped cell being radially inward and distal of the at least four radially separated large cells.
  • 13. The device of claim 12, wherein the at least four radially separated large cells comprise a best fit diameter of approximately 1.6 mm.
  • 14. The device of claim 12, wherein each of the at least four radially separated large cells share only one common edge with one of the small diamond shaped cells.
  • 15. The device of claim 12, wherein the closed cells of the distal portion comprise at least five radially separated cells proximal of the at least four radially separated large cells.
  • 16. The device of claim 10, wherein the framework of struts of the outer expandable body comprise a plurality of discontinuous expandable members spaced from adjacent expandable members, struts of each expandable forming closed cells with at least some struts terminating in radially separated distal apexes free from connection to an adjacent closed cell, each member comprising at least four radiopaque markers equally radially separated about a longitudinal axis of the outer expandable body.
  • 17. The device of claim 16, wherein the at least four radiopaque markers are separated approximately 10 mm apart in the collapsed configuration.
  • 18. The device of claim 16, wherein the at least four radiopaque markers radiopaque markers comprise at least one of Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum, Iridium, Tantalum or an alloy of these materials.
US Referenced Citations (895)
Number Name Date Kind
2828147 Peiffer Mar 1958 A
3361460 Gerhart Jan 1968 A
4455717 Gray Jun 1984 A
4611594 Grayhack et al. Sep 1986 A
4612931 Dormia Sep 1986 A
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5084065 Weldon et al. Jan 1992 A
5092839 Kipperman Mar 1992 A
5100423 Fearnot Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5108419 Reger et al. Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5163951 Pinchuk et al. Nov 1992 A
5171233 Amplatz Dec 1992 A
5171259 Inoue Dec 1992 A
5217441 Shichman Jun 1993 A
5234437 Sepetka Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5330482 Gibbs Jul 1994 A
5383887 Nadal Jan 1995 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5449372 Schmaltz Sep 1995 A
5499985 Hein et al. Mar 1996 A
5538512 Zenzon et al. Jul 1996 A
5538515 Kafry et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5609627 Goicoechea Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant Jun 1997 A
5639278 Dereume et al. Jun 1997 A
5645558 Horton Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5658296 Bates Aug 1997 A
5665117 Rhodes Sep 1997 A
5695519 Summer et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark Feb 1998 A
5769871 Mers Kelly Jun 1998 A
5769884 Solovay Jun 1998 A
5779686 Sato et al. Jul 1998 A
5779716 Cano Jul 1998 A
5800519 Sandock Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel Sep 1998 A
5827304 Hart Oct 1998 A
5853422 Huebsch et al. Dec 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5897567 Ressemann Apr 1999 A
5904698 Thomas et al. May 1999 A
5911702 Romley Jun 1999 A
5911725 Boury Jun 1999 A
5919126 Armini Jul 1999 A
5931509 Bartholomew Aug 1999 A
5935139 Bates Aug 1999 A
5947995 Samuels Sep 1999 A
6063113 Kavteladze May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates Aug 2000 A
6099559 Nolting Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin Aug 2000 A
6129739 Khosravi Oct 2000 A
6143022 Shull et al. Nov 2000 A
6146404 Kim Nov 2000 A
6156064 Chouinard Dec 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi Jan 2001 B1
6203561 Ramee Mar 2001 B1
6214026 Lepak Apr 2001 B1
6221006 Dubrul Apr 2001 B1
6231597 Deem et al. May 2001 B1
6238412 Dubrul May 2001 B1
6245012 Kleshinski Jun 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6290710 Cryer et al. Sep 2001 B1
6312444 Barbut Nov 2001 B1
6315778 Gambale Nov 2001 B1
6325815 Kusleika Dec 2001 B1
6325819 Pavcnik Dec 2001 B1
6334864 Amplatz Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6346116 Brooks Feb 2002 B1
6348056 Bates Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6355057 DeMarais et al. Mar 2002 B1
6361545 Macoviak Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6375668 Gifford Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick May 2002 B1
6391037 Greenhalgh May 2002 B1
6402771 Palmer Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6428558 Jones Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel Aug 2002 B2
6458139 Palmer Oct 2002 B1
6485497 Wensel Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6488701 Nolting et al. Dec 2002 B1
6511492 Rosenbluth Jan 2003 B1
6530935 Wensel Mar 2003 B2
6530939 Hopkins Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575996 Denison Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6592616 Stack Jul 2003 B1
6598265 Lee Jul 2003 B2
6602265 Dubrul Aug 2003 B2
6602271 Adams Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6605102 Mazzocchi Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi Sep 2003 B1
6632241 Hancock et al. Oct 2003 B1
6638245 Miller Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer Dec 2003 B1
6663650 Sepetka Dec 2003 B2
6673089 Yassour Jan 2004 B1
6685722 Rosenbluth Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6695858 Dubrul et al. Feb 2004 B1
6702782 Miller Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6726703 Broome Apr 2004 B2
6730104 Sepetka May 2004 B1
6783528 Vincent-Prestigiacomo Aug 2004 B2
6783538 McGuckin, Jr. et al. Aug 2004 B2
6824545 Sepetka Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6939361 Kleshinski Sep 2005 B1
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen Feb 2006 B2
7004956 Palmer Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto May 2006 B2
7048758 Boyle May 2006 B2
7052500 Bashiri et al. May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose Jun 2006 B2
7083633 Morrill et al. Aug 2006 B2
7083822 Brightbill Aug 2006 B2
7094249 Broome Aug 2006 B1
7097653 Freudenthal Aug 2006 B2
7101380 Khachin Sep 2006 B2
7172614 Boyle et al. Feb 2007 B2
7175655 Malaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7185922 Takayanagi et al. Mar 2007 B2
7220271 Clubb May 2007 B2
7226464 Garner et al. Jun 2007 B2
7229472 DePalma Jun 2007 B2
7241304 Boyle et al. Jul 2007 B2
7288112 Denardo et al. Oct 2007 B2
7300458 Henkes et al. Nov 2007 B2
7306618 Demond Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7316692 Huffmaster Jan 2008 B2
7323001 Clubb Jan 2008 B2
7331976 McGuckin, Jr. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Barillo et al. Jul 2008 B2
7410491 Hopkins Aug 2008 B2
7425215 Boyle Sep 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka May 2009 B2
7556636 Mazzocchi Jul 2009 B2
7582111 Krolik Sep 2009 B2
7594926 Linder Sep 2009 B2
7604649 McGuckin et al. Oct 2009 B2
7604650 Bergheim Oct 2009 B2
7609649 Bhandari et al. Oct 2009 B1
7618434 Santra Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi Mar 2010 B2
7678123 Chanduszko Mar 2010 B2
7691121 Rosenbluth Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder May 2010 B2
7717929 Fallman May 2010 B2
7736385 Agnew Jun 2010 B2
7758606 Streeter et al. Jul 2010 B2
7758611 Kato Jul 2010 B2
7766934 Pal Aug 2010 B2
7771452 Pal Aug 2010 B2
7780694 Palmer Aug 2010 B2
7780700 Frazier et al. Aug 2010 B2
7811305 Balgobin et al. Oct 2010 B2
7815659 Conlon et al. Oct 2010 B2
7819893 Brady Oct 2010 B2
7828815 Mazzocchi Nov 2010 B2
7828816 Mazzocchi et al. Nov 2010 B2
7833240 Okushi et al. Nov 2010 B2
7842053 Chanduszko et al. Nov 2010 B2
7846176 Mazzocchi Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7883516 Huang et al. Feb 2011 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
7998165 Huffmaster Aug 2011 B2
8002822 Glocker et al. Aug 2011 B2
8021379 Thompson et al. Sep 2011 B2
8021380 Thompson et al. Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8057507 Horan Nov 2011 B2
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8118856 Schreck et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137376 Clubb et al. Mar 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8262689 Schneiderman Sep 2012 B2
8282668 McGuckin, Jr. et al. Oct 2012 B2
8287538 Brenzel et al. Oct 2012 B2
8298257 Sepetka et al. Oct 2012 B2
RE43882 Hopkins et al. Dec 2012 E
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8357180 Feller, III Jan 2013 B2
8357893 Xu et al. Jan 2013 B2
8361095 Osborne Jan 2013 B2
8361110 Chanduszko Jan 2013 B2
8366663 Fiorella et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8414482 Belson Apr 2013 B2
8414543 McGuckin, Jr. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8512352 Martin Aug 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8545526 Martin et al. Oct 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8574915 Zhang et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osborne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8690907 Janardhan et al. Apr 2014 B1
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8777919 Kimura et al. Jul 2014 B2
8777976 Brady et al. Jul 2014 B2
8777979 Shrivastava et al. Jul 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Grandfield et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8852205 Brady et al. Oct 2014 B2
8870941 Evans et al. Oct 2014 B2
8900265 Ulm, III Dec 2014 B1
8920358 Levine et al. Dec 2014 B2
8939991 Krolick et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945160 Krolik et al. Feb 2015 B2
8945169 Pal Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8956399 Cam et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9011481 Aggerholm et al. Apr 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield Jul 2015 B2
9095342 Becking et al. Aug 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9155552 Ulm, III Oct 2015 B2
9161758 Figulla Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9173688 Dosta Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9221132 Bowman Dec 2015 B2
9232992 Heidner Jan 2016 B2
9254371 Martin et al. Feb 2016 B2
9301769 Brady et al. Apr 2016 B2
9332999 Ray et al. May 2016 B2
9402707 Brady et al. Aug 2016 B2
9445829 Brady et al. Sep 2016 B2
9456834 Folk Oct 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579104 Beckham et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642639 Brady et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655898 Palepu et al. May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9758606 Lambert et al. Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833304 Horan Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
9901434 Hoffman Feb 2018 B2
9918720 Marchand et al. Mar 2018 B2
9939361 Gajji et al. Apr 2018 B2
10070878 Ma Sep 2018 B2
10201360 Vale et al. Feb 2019 B2
10231751 Sos Mar 2019 B2
10292723 Brady et al. May 2019 B2
10299811 Brady et al. May 2019 B2
10363054 Vale et al. Jul 2019 B2
10376274 Farin et al. Aug 2019 B2
10390850 Vale et al. Aug 2019 B2
10524811 Marchand et al. Jan 2020 B2
10617435 Vale et al. Apr 2020 B2
10722257 Skillrud et al. Jul 2020 B2
20010001315 Bates May 2001 A1
20010016755 Addis Aug 2001 A1
20010037141 Yee et al. Nov 2001 A1
20010037171 Sato Nov 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010049554 Ruiz et al. Dec 2001 A1
20010051810 Dubrul Dec 2001 A1
20020004667 Adams Jan 2002 A1
20020016609 Wensel Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi Feb 2002 A1
20020042627 Brady et al. Apr 2002 A1
20020049468 Streeter Apr 2002 A1
20020052620 Barbut May 2002 A1
20020058911 Gilson et al. May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka Jun 2002 A1
20020082558 Samson Jun 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020143349 Gifford, III et al. Oct 2002 A1
20020143362 Macoviak Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020188276 Evans Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193824 Boylan et al. Dec 2002 A1
20020198588 Armstrong et al. Dec 2002 A1
20030004536 Boylan Jan 2003 A1
20030004538 Secrest Jan 2003 A1
20030004540 Linder Jan 2003 A1
20030004542 Wensel Jan 2003 A1
20030009146 Muni Jan 2003 A1
20030009191 Wensel Jan 2003 A1
20030038447 Cantele Feb 2003 A1
20030040772 Hyodoh Feb 2003 A1
20030050663 Khachin Mar 2003 A1
20030064151 Klinedinst Apr 2003 A1
20030108224 Ike Jun 2003 A1
20030114879 Euteneuer Jun 2003 A1
20030125798 Martin Jul 2003 A1
20030130682 Broome Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144688 Brady et al. Jul 2003 A1
20030153158 Ho et al. Aug 2003 A1
20030153943 Michael Aug 2003 A1
20030153944 Phung Aug 2003 A1
20030163064 Vrba Aug 2003 A1
20030163158 White Aug 2003 A1
20030171769 Barbut Sep 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030176884 Berrada Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030195537 Dubrul Oct 2003 A1
20030195554 Shen Oct 2003 A1
20030199917 Knudson Oct 2003 A1
20030204202 Palmer Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212430 Bose Nov 2003 A1
20030236533 Wilson Dec 2003 A1
20040064179 Linder et al. Apr 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka Apr 2004 A1
20040079429 Miller Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040088001 Bosma May 2004 A1
20040093065 Yachia May 2004 A1
20040098050 Foerster et al. May 2004 A1
20040133231 Maitland Jul 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138692 Phung Jul 2004 A1
20040153117 Clubb et al. Aug 2004 A1
20040153118 Clubb Aug 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040215318 Kwitkin Oct 2004 A1
20040220663 Rivelli Nov 2004 A1
20050033248 Machida et al. Feb 2005 A1
20050033348 Sepetka Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta Feb 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050049669 Jones Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050058837 Farnworth Mar 2005 A1
20050059995 Sepetka Mar 2005 A1
20050085849 Sepetka Apr 2005 A1
20050090779 Osypka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050125024 Sepetka Jun 2005 A1
20050149997 Wolozin et al. Jul 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050173135 Almen Aug 2005 A1
20050192627 Whisenant et al. Sep 2005 A1
20050216030 Sepetka Sep 2005 A1
20050216050 Sepetka Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20050251206 Maahs et al. Nov 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050267491 Kellett et al. Dec 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20050288686 Sepetka Dec 2005 A1
20060008332 Greenberg et al. Jan 2006 A1
20060009798 Callister et al. Jan 2006 A1
20060009799 Kleshinski Jan 2006 A1
20060020286 Niermann Jan 2006 A1
20060030877 Martinez Feb 2006 A1
20060041228 Vo et al. Feb 2006 A1
20060058836 Bose Mar 2006 A1
20060058837 Bose et al. Mar 2006 A1
20060058838 Bose Mar 2006 A1
20060064151 Guterman Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060074477 Berthiaume et al. Apr 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal Jul 2006 A1
20060161187 Levine Jul 2006 A1
20060195137 Sepetka Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060235501 Igaki Oct 2006 A1
20060241677 Johnson et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20060287701 Pal Dec 2006 A1
20060293706 Shimon Dec 2006 A1
20070010857 Sugimoto et al. Jan 2007 A1
20070032879 Levine et al. Feb 2007 A1
20070088382 Bei et al. Apr 2007 A1
20070088383 Pal et al. Apr 2007 A1
20070100348 Cauthen, III et al. May 2007 A1
20070118173 Magnuson et al. May 2007 A1
20070149997 Muller Jun 2007 A1
20070156170 Hancock Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070179527 Eskuri et al. Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella Sep 2007 A1
20070208371 French Sep 2007 A1
20070225749 Martin Sep 2007 A1
20070233175 Zaver et al. Oct 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas Nov 2007 A1
20070288054 Tanaka Dec 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080077227 Ouellette et al. Mar 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney Apr 2008 A1
20080097386 Osypka Apr 2008 A1
20080109031 Sepetka May 2008 A1
20080109032 Sepetka May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080177296 Sepetka Jul 2008 A1
20080178890 Townsend et al. Jul 2008 A1
20080183197 Sepetka Jul 2008 A1
20080183198 Sepetka Jul 2008 A1
20080183205 Sepetka Jul 2008 A1
20080188876 Sepetka Aug 2008 A1
20080188885 Sepetka Aug 2008 A1
20080188887 Batiste Aug 2008 A1
20080200946 Braun Aug 2008 A1
20080200947 Kusleika et al. Aug 2008 A1
20080215077 Sepetka Sep 2008 A1
20080221600 Dieck Sep 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234706 Sepetka Sep 2008 A1
20080243170 Jenson Oct 2008 A1
20080255596 Jenson Oct 2008 A1
20080262410 Jenson et al. Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080269871 Eli Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080281350 Sepetka Nov 2008 A1
20080312681 Ansel Dec 2008 A1
20090005858 Young et al. Jan 2009 A1
20090024157 Anukhin Jan 2009 A1
20090030443 Buser et al. Jan 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090069828 Martin Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090088793 Bagaoisan et al. Apr 2009 A1
20090088795 Cahill Apr 2009 A1
20090105722 Fulkerson Apr 2009 A1
20090105737 Fulkerson Apr 2009 A1
20090105747 Chanduszko et al. Apr 2009 A1
20090149881 Vale et al. Jun 2009 A1
20090163851 Holloway et al. Jun 2009 A1
20090177206 Lozier Jul 2009 A1
20090182336 Brenzel Jul 2009 A1
20090281610 Parker Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299393 Martin Dec 2009 A1
20090299403 Chanduszko Dec 2009 A1
20090306702 Miloslavski Dec 2009 A1
20090326636 Hashimoto et al. Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100076482 Shu et al. Mar 2010 A1
20100087850 Razack Apr 2010 A1
20100087908 Hilaire Apr 2010 A1
20100114017 Lenker May 2010 A1
20100125326 Kalstad May 2010 A1
20100125327 Agnew May 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100268264 Bonnett et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100274277 Eaton Oct 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100324649 Mattsson Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield Jan 2011 A1
20110009950 Grandfield et al. Jan 2011 A1
20110022149 Cox Jan 2011 A1
20110040319 Fulton, III Feb 2011 A1
20110054514 Arcand Mar 2011 A1
20110054516 Keegan Mar 2011 A1
20110060212 Slee et al. Mar 2011 A1
20110060359 Hannes Mar 2011 A1
20110054504 Wolf et al. May 2011 A1
20110106137 Shimon May 2011 A1
20110125181 Brady et al. May 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110184456 Grandfield et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110208233 McGuckin, Jr. et al. Aug 2011 A1
20110213297 Aklog et al. Sep 2011 A1
20110213393 Aklog et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110224707 Miloslavski Sep 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 diPalma et al. Mar 2012 A1
20120065660 Ferrera et al. Mar 2012 A1
20120083823 Shrivastava Apr 2012 A1
20120083868 Shrivastava et al. Apr 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120123466 Porter et al. May 2012 A1
20120022572 Braun et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120296362 Cam Jun 2012 A1
20120209312 Aggerholm et al. Aug 2012 A1
20120215250 Grandfield et al. Aug 2012 A1
20120143237 Cam Nov 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120316600 Ferrera et al. Dec 2012 A1
20120330350 Jones et al. Dec 2012 A1
20130030460 Marks et al. Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss May 2013 A1
20130131614 Hassan et al. May 2013 A1
20130144311 Fung et al. Jun 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130271788 Utsunomiya Oct 2013 A1
20130277079 Tsuzuki et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130325051 Martin et al. Dec 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140005712 Martin Jan 2014 A1
20140005713 Bowman Jan 2014 A1
20140046359 Bowman et al. Feb 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140134654 Rudel et al. May 2014 A1
20140135812 Divino et al. May 2014 A1
20140142598 Fulton, III May 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140180397 Gerberding et al. Jun 2014 A1
20140183077 Rosendall et al. Jul 2014 A1
20140194911 Johnson et al. Jul 2014 A1
20140194919 Losardo et al. Jul 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140243881 Lees et al. Aug 2014 A1
20140257362 Eidenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140303667 Cox et al. Oct 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy et al. Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140372779 Wong et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150032144 Holloway Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150150672 Ma Jun 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150224133 Ohri et al. Aug 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150272716 Pinchuk et al. Oct 2015 A1
20150297252 Miloslavski et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm, III Nov 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150366650 Zi et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022269 Ganske et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160045298 Thinnes, Jr. et al. Feb 2016 A1
20160066921 Brady et al. Mar 2016 A1
20160100928 Lees et al. Apr 2016 A1
20160106448 Seifert et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160143653 Vale et al. May 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160303381 Pierce et al. Oct 2016 A1
20160317168 Vale et al. Nov 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020542 Martin et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170056061 Ogle et al. Mar 2017 A1
20170071614 Vale et al. Mar 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170086863 Brady et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170112515 Brady et al. Apr 2017 A1
20170112647 Sachar et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170119409 Ma May 2017 A1
20170143465 Ulm, III May 2017 A1
20170147765 Mehta May 2017 A1
20170150979 Ulm Jun 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180055884 Barclay Dupere et al. Mar 2018 A1
20180263650 Iwanami et al. Sep 2018 A1
20180325537 Shamay et al. Nov 2018 A1
20180326024 Prochazka et al. Nov 2018 A1
20180344338 Brady et al. Dec 2018 A1
20190000492 Casey et al. Jan 2019 A1
20190015061 Liebskind et al. Jan 2019 A1
20190167284 Friedman et al. Jun 2019 A1
20190239907 Brady et al. Aug 2019 A1
20190292273 Hanotin et al. Sep 2019 A1
20190374239 Martin et al. Dec 2019 A1
20190380723 Grandfield et al. Dec 2019 A1
20190388097 Girdhar et al. Dec 2019 A1
20200009150 Chamorro Sanchez Jan 2020 A1
20200085444 Vale et al. Mar 2020 A1
20200100804 Casey et al. Apr 2020 A1
Foreign Referenced Citations (102)
Number Date Country
2557083 Jun 2003 CN
101172051 May 2008 CN
102307613 Jan 2012 CN
102596098 Jul 2012 CN
104042304 Sep 2014 CN
105208950 Dec 2015 CN
105662532 Jun 2016 CN
205359559 Jul 2016 CN
107530090 Jan 2018 CN
208582467 Mar 2019 CN
202009001951 Apr 2010 DE
102009056450 Jun 2011 DE
102010010849 Sep 2011 DE
10 2010 014778 Oct 2011 DE
102010024085 Dec 2011 DE
102011014586 Sep 2012 DE
1153581 Nov 2011 EP
2301450 Nov 2011 EP
2438891 Apr 2012 EP
2628455 Aug 2013 EP
3156004 Apr 2017 EP
2427554 Jan 2007 GB
2494820 Mar 2013 GB
9-19438 Jan 1997 JP
2014511223 May 2014 JP
2014525796 Oct 2014 JP
2015-505250 Feb 2015 JP
2019-526365 May 2016 JP
2016-513505 Sep 2019 JP
103764049 Apr 2014 VN
9424926 Nov 1994 WO
9727808 Aug 1997 WO
9738631 Oct 1997 WO
9920335 Apr 1999 WO
9960933 Dec 1999 WO
9956801 Apr 2000 WO
0121077 Mar 2001 WO
2004056275 Jul 2001 WO
0202162 Jan 2002 WO
0211627 Feb 2002 WO
0243616 Jun 2002 WO
02070061 Sep 2002 WO
02094111 Nov 2002 WO
03002006 Jan 2003 WO
03030751 Apr 2003 WO
03051448 Jun 2003 WO
2004028571 Apr 2004 WO
2005000130 Jan 2005 WO
2005027779 Mar 2005 WO
2006021407 Mar 2006 WO
2006031410 Mar 2006 WO
2006107641 Oct 2006 WO
2006135823 Dec 2006 WO
2007054307 May 2007 WO
2007068424 Jun 2007 WO
2008034615 Mar 2008 WO
2008051431 May 2008 WO
2008131116 Oct 2008 WO
2008135823 Nov 2008 WO
2009031338 Mar 2009 WO
2009076482 Jun 2009 WO
2009086482 Jul 2009 WO
2009105710 Aug 2009 WO
2010010545 Jan 2010 WO
201 0046897 Apr 2010 WO
2010075565 Jul 2010 WO
2010102307 Sep 2010 WO
2010146581 Dec 2010 WO
2011013556 Feb 2011 WO
2011066961 Jun 2011 WO
2011082319 Jul 2011 WO
2011095352 Aug 2011 WO
2011106426 Sep 2011 WO
2011110316 Sep 2011 WO
2011135556 Nov 2011 WO
2012052982 Apr 2012 WO
2012064726 May 2012 WO
2012081020 Jun 2012 WO
2012120490 Sep 2012 WO
2012110619 Oct 2012 WO
2012156924 Nov 2012 WO
2013016435 Jan 2013 WO
2013072777 May 2013 WO
2013105099 Jul 2013 WO
2013109756 Jul 2013 WO
2013187927 Dec 2013 WO
2014047650 Mar 2014 WO
2014081892 May 2014 WO
2014139845 Sep 2014 WO
2014169266 Oct 2014 WO
2014178198 Nov 2014 WO
2015061365 Apr 2015 WO
2015103547 Jul 2015 WO
2015134625 Sep 2015 WO
2015179324 Nov 2015 WO
2015189354 Dec 2015 WO
2016010995 Jan 2016 WO
2016089451 Jun 2016 WO
2017089424 Jun 2017 WO
WO 2017161204 Sep 2017 WO
WO 2020039082 Feb 2020 WO
WO 2021113302 Jun 2021 WO
Non-Patent Literature Citations (3)
Entry
US 6,348,062 B1, 02/2002, Hopkins (withdrawn)
Search Report issued in corresponding Chinese Patent Application No. 201680080064.4 dated Jun. 9, 2020 (English translation only).
US 6,348,062, 07/2003, Hopkins et al. (withdrawn)
Related Publications (1)
Number Date Country
20210393279 A1 Dec 2021 US