Clot retrieval device for removing occlusive clot from a blood vessel

Abstract
A clot retrieval device for removing an occlusive clot from a blood vessel. The device includes a clot engagement section having a constrained delivery configuration and an expanded deployed configuration, wherein in the expanded deployed configuration. The clot engagement section can include a plurality of peak sections configured to vary contact pressure between the clot and the device along a length of the device; and a plurality of troughs between respective peak sections comprising a clot reception space. Each peak is configured to exert a relatively high compressive force on the clot whereas each trough is configured to exert little or no compressive force on the clot.
Description
FIELD OF THE INVENTION

This invention relates to devices intended for removing acute blockages from blood vessels. Acute obstructions may include clot, misplaced devices, migrated devices, large emboli and the like. Thromboembolism occurs when part or all of a thrombus breaks away from the blood vessel wall. This clot (now called an embolus) is then carried in the direction of blood flow. An ischemic stroke may result if the clot lodges in the cerebral vasculature. A pulmonary embolism may result if the clot originates in the venous system or in the right side of the heart and lodges in a pulmonary artery or branch thereof. Clots may also develop and block vessels locally without being released in the form of an embolus—this mechanism is common in the formation of coronary blockages. The invention is particularly suited to removing clot from cerebral arteries in patients suffering acute ischemic stroke (AIS), from coronary native or graft vessels in patients suffering from myocardial infarction (MI), and from pulmonary arteries in patients suffering from pulmonary embolism (PE) and from other peripheral arterial and venous vessels in which clot is causing an occlusion.


STATEMENTS OF THE INVENTION

According to the invention there is provided a clot retrieval device for removing occlusive clot from a blood vessel comprising a clot engaging element having a constrained delivery configuration and an expanded deployed configuration, wherein at least a portion of the device has a longitudinally extending undulating edge.


In one case the clot engaging element has a first peripheral portion, a second peripheral portion and a clot engaging section extending between the first and second peripheral portions wherein, in the expanded configuration, the peripheral portions are laterally spaced-apart and the clot engaging section extends between the peripheral portions.


In one embodiment the undulating edge has a wave-like form. The undulating edge may have a sinusoidal wave form.


In one case the device has at least two wave patterns. The wave patterns may be superimposed on one another. In one case a first pattern has a wavelength and an amplitude and the second pattern has a wavelength and an amplitude which are larger than those of the first pattern.


In one embodiment the clot retrieval device comprises an activator for modifying the wave shape. The activator may comprise at least one push wire and/or at least one pull wire.


In one case the clot engagement element comprises one or more clot gripping features.


In one embodiment, in the constrained configuration, the clot engaging section is substantially flat.


In the expanded configuration the clot engaging section may be curvilinear.


In the expanded configuration the clot engaging section may be substantially flat.


In one embodiment in the constrained and expanded configurations the clot engaging section is substantially curvilinear.


In one case in the expanded configuration, the clot engaging section is of helical or spiral form.


In the expanded configuration, the clot engaging section may be of generally s-shape.


In one embodiment the clot engaging element has two surfaces which face in generally opposite directions and one or both surfaces is engagable with clot in the expanded deployed configuration.


In one embodiment the device comprises a portion defining a flow channel for flow of blood when the device is in the expanded deployed configuration.


In one case the device comprises a proximal section, a distal section and a clot engaging section between the proximal section and the distal section wherein the proximal section is slidably movable relative to the clot engaging section. The proximal section may comprise a slidable element such as a collar and proximal struts extending from the collar and the clot engaging section comprises a proximal shaft and the collar is slidably movable relative to the proximal shaft. At least some of the struts of the proximal section may extend in a distal direction for at least partial capture of clot between the clot engaging section and the proximal struts on proximal movement of the collar relative to the proximal shaft.


In one embodiment the wave pattern has an amplitude of from 2.0 mm to 6.0 mm. The wave pattern may have a pitch of from 3.0 mm to 8.0 mm.


In one embodiment the clot engaging section comprises a plurality of cells defined by struts and crowns and at least some of the struts and/or crowns are aligned with the wave-like form to enhance embedding of clot.


In one case the clot engaging section of the device has a transverse cross section having both flat and curved sections.


In one embodiment, in the expanded configuration, at least a portion of the clot engaging section of the device is a generally spiral or helical configuration relative to a longitudinal axis. The clot engaging section may further comprise a distal tubular section. A clot fragment portion may be provided at the distal end of the tubular section.


In one embodiment the clot engaging section comprises a pair of side rails formed from cell elements to which a plurality of clot engaging strut elements are connected, the cell elements protruding from opposite sides of a plane defined by the side rails.


In another embodiment the clot engaging section comprises a plurality of segments, adjacent segments being aligned at approximately 90° to each other. At least some of the segments may be of flat shape in transverse cross section.


In all embodiments the clot retrieval device may comprise a distal clot fragment protection section.


The invention also provides a method from removing occlusive clot from a blood vessel comprising the steps of:


providing a clot retrieval device having a clot engaging section with a longitudinally extending undulating form, the device having a constrained delivery configuration and an expanded deployed configuration;


advancing a microcatheter towards and across an occlusive clot;


loading the device into the microcatheter and advancing it to a distal portion of the microcatheter;


deploying the device to embed the clot; and


retrieving at least a portion of the device and the captured clot into a retrieval catheter.


In one embodiment the method comprises deploying the device within the clot.


In some cases the method comprises deploying a portion of the device between the clot and a portion of the vessel wall surrounding the clot.


In one embodiment the method comprises pulling the device proximally after deployment of the device within the clot.


The method may comprise delaying pulling of the device proximally after deployment to further embed in the clot prior to pulling of the device and the clot proximally.


In one embodiment the method comprises pulling the device proximally into a larger vessel before retrieval into a retrieval catheter.


In some cases the method comprises twisting the device to embed the device into the clot.


According to the invention there is provided a clot retrieval device for removing occlusive clot from a blood vessel comprising a clot engaging element having a constrained delivery configuration and an expanded deployed configuration, the clot engaging element having a first peripheral portion, a second peripheral portion and a clot engaging section extending between the first and second peripheral portions wherein, in the expanded configuration, the peripheral portions are laterally spaced-apart and the clot engaging section extends between the peripheral portions.


In one embodiment in the constrained configuration, the clot engaging section is substantially flat.


In one case in the expanded configuration the clot engaging section is curvilinear.


In another case in the expanded configuration the clot engaging section is substantially flat.


In one embodiment in the constrained and expanded configurations the clot engaging section is substantially curvilinear.


In one case in the expanded configuration, the clot engaging section is of helical or spiral form.


In another case in the expanded configuration, the clot engaging section is of generally s-shape.


In one embodiment the clot engaging element has two surfaces which face in generally opposite directions and either face is engageable with clot in the expanded deployed configuration.


In one case the device comprises a portion defining a flow channel for flow of blood when the device is in the expanded deployed configuration.


In one embodiment at least a portion of the device comprises an undulating edge. The undulating edge may have a sinusoidal or other wave-like form.


In one case the device has at least two wave patterns which may be superimposed. A first pattern may have a wavelength and an amplitude and the second pattern has a wavelength and an amplitude which are larger than those of the first pattern.


In one embodiment the device comprises an activator for modifying the wave shape. The activator comprises at least one push/pull wire.


In one case the clot engagement element comprises one or more clot gripping features.


The device may comprise a distal capture portion.


In one case the device is formed from a flat sheet of a shape memory material such as


Nitinol.


The invention also provides a method for removing occlusive clot from a blood vessel comprising:


providing a clot retrieval device of the invention; loading the device into a microcatheter in which the device is in a constrained delivery configuration; advancing the microcatheter to an occlusive clot; deploying the device to capture the clot; and retrieving the device together with the captured clot into a retrieval catheter.


The device may be deployed within the clot to pin the clot between the device and the vessel wall. Alternatively the device is deployed between the clot and a portion of the vessel wall surrounding the clot.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more clearly understood from the following description of some embodiments thereof, given by way of example only, with reference to the accompanying drawings, in which:



FIG. 1a is a view of a clot retrieval device of the invention;



FIG. 1b is a view of another clot retrieval device including a distal fragment protection portion;



FIG. 2a is a cross sectional view of the device of FIG. 1a within a microcatheter in the region of a clot in a vessel;



FIG. 2b is a view of the device of FIG. 2a in an expanded deployed configuration;



FIGS. 2c and 2d are sectional views of a microcatheter with the device of FIG. 2a in a wrapped configuration in a linear orientation and a circular orientation respectively;



FIGS. 3a and 3b are isometric and side views of a clot retrieval device deployed in a vessel;



FIGS. 4, 5 and 6 are views of clot retrieval devices with various different cell shapes and cut patterns;



FIG. 7 is an isometric view of a clot retrieval device with a flow lumen through the device;



FIGS. 8a and 8b are views of a flat pattern clot retrieval device with a circular or u-shaped channel;



FIGS. 9 and 10 are views of further clot retrieval devices with flow channels;



FIGS. 11a to d illustrate another clot retrieval device having a portion with a flat configuration;



FIGS. 12 and 13 illustrate a clot retrieval device which is in a helical shape;



FIGS. 14a, 14b and 15 illustrate another helical device with a distal protection portion;



FIG. 16 illustrates another clot retrieval device which is twisted along the length of the device;



FIG. 17a is an isometric view of another clot retrieval device of the invention;



FIG. 17b is a cross sectional view of portion of the device of FIG. 17a;



FIGS. 17c to e show the device of FIGS. 17a and b in use;



FIGS. 18a and 18b illustrate further clot retrieval devices with flow channels in which details of cell pattern(s) and strut(s) are omitted;



FIGS. 19a-19c illustrate a clot retrieval device with a wave-like edge combined with tubular s-shape or u-shape central sections;



FIG. 20 shows a clot retrieval device with an s-shape cross section which spirals along the length of the device;



FIGS. 21a-21c are views of another clot retrieval device with a flat mid-section;



FIG. 21d shows a fragment protection region of the device of FIG. 21a;



FIG. 21e shows a portion of the mid-section of the device of FIG. 21a;



FIGS. 22a-22c are isometric, plan and side views of a clot engaging portion of another device according to the invention;



FIGS. 23a and 23b are schematic views of a clot retrieval device, in use;



FIGS. 24a-24c are views of another clot retrieval device of the invention;



FIGS. 25a-25c are views of a further clot retrieval device of the invention;



FIGS. 26a-26d illustrate a method of use of a clot retrieval device of the invention;



FIGS. 27a-27d are a series of views of a schematic wave shaped device;



FIGS. 28a-28c are an isometric, side and plan views of a clot retrieval device;



FIGS. 29a and 29b are plan and section views of another clot retrieval device of the invention;



FIGS. 30a-30f illustrate a method of use of another clot retrieval device of the invention;



FIG. 31 is an isometric view of another clot retrieval device;



FIGS. 32a and 32b are an isometric view and an end view respectively of another clot retrieval device of the invention; and



FIGS. 33a and 33b are an isometric view and an end view respectively of another clot retrieval device of the invention.





DETAILED DESCRIPTION

Specific embodiments of the present invention are now described in detail with reference to the Figures, wherein identical reference numbers indicate identical or functionality similar elements. The terms “distal” or “proximal” are used in the following description with respect to a position or direction relative to the treating physician. “Distal” or “distally” are a position distant from or in a direction away from the physician. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician.


Accessing cerebral, coronary and pulmonary vessels involves the use of a number of commercially available products and conventional procedural steps. Access products such as guidewires, guide catheters, angiographic catheters and microcatheters are well known and are regularly used in catheter laboratory procedures. In the descriptions below that these products and methods are employed in conjunction with the device and methods of this invention and are not described in detail.


The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of the invention is in many cases in the context of treatment of intracranial arteries, the invention may also be used in other body passageways.


The expandable members of the devices disclosed are desirably made from a material capable of recovering its shape automatically once released from a highly strained delivery configuration. A superelastic material such as Nitinol or an alloy with similar properties is particularly suitable. The material could be in many forms such as wire or strip or sheet or tube. A particularly suitable manufacturing process is to laser cut a Nitinol tube and then heat set and electropolish the resultant structure to create a framework of struts and connecting elements. This framework can be any of a wide range of shapes as disclosed herein and may be rendered visible under fluoroscopy through the addition of alloying elements (such as Platinum for example) or through a variety of other coatings or marker bands.


Compression of the clot can alter the clot properties and make the clot less amenable to retrieval by making it firmer and “stickier” as described in our WO2012/120490A, the entire contents of which are herein incorporated by reference. The device of this invention is intended to facilitate clot retrieval by expanding between the clot and the vessel wall in such a way as to delaminate some or all of the clot from the vessel, engage with the clot over a significant surface area, and do so with minimal compression of the clot. The clot compression is minimal because the device does not need to significantly displace the clot in order to expand and engage with it. Rather the device uses the constraints of the clot itself and the vessel wall to guide its expansion, and expands within this interface region.


In its simplest form the unconstrained clot engaging portion of the device has two surfaces which face in generally opposite directions. When it is deployed within an occlusion it is constrained by the clot and vessel wall and thus must adopt a curved shape in order to expand. This curved shape can be considered to have an inside face (against the clot) and an outside face (against the vessel wall). When delivered through a microcatheter to a target site the device orientation may not be known to the user, and may not be within their power to control. An advantage of this design is that either surface of the device may become the inside or outside surface, so that the device is effectively reversible.


The flat device may comprise a portion that compresses an area of the clot in order to form a blood communication channel across the clot. Such a channel serves two key purposes: 1) it reduces the pressure gradient across the clot, thus reducing one of the forces that must be overcome in order to retract the clot and 2) it provides a flow path for oxygenated, nutrient carrying blood to reach the ischaemic area distal of the clot. This portion may comprise a tubular or cylindrical shape such as shown in FIGS. 7, 9, 10, or a partially cylindrical or “U” shape as shown in FIG. 19, or other shape such that a discrete portion of clot is displaced in order to create a channel free of clot from the proximal to the distal end of the clot.


All of the devices described herein may also comprise a distal fragment capture portion, such as illustrated in FIGS. 1, 9, 12 and 14. This portion is ideally deployed distal of the clot to prevent the distal migration of any clot fragments that might be liberated during retrieval.



FIG. 1a shows a clot retrieval system 100 of this invention comprising a clot engagement body 101 connected to a shaft 102 at its proximal end and to a fragment protection portion 113 at its distal end. The clot engagement body comprises a framework of axial struts 105 and cross struts 107, with the cross struts comprising proximal connection points 108 and distal crowns 106. In other embodiments alternative designs of the clot engagement body may be employed such as shown in FIGS. 3 to 10. The fragment protection portion 113 in this case comprises a strut framework 103 and a fibre matrix 104. The shape of the clot engagement body 101 in the freely expanded configuration is predominantly flat. The device has an inner and an outer side when deployed in the vessel, with the inner side 112 in contact with the clot and the outer side 111 facing away from the clot. The deployment orientation of the device defines which side is in contact with the clot and which side is facing away. The sides of the device are similar so that either side can be deployed in contact with the clot without affecting the device performance. The clot engagement body material may be Nitinol or a similar super elastic or pseudoelastic alloy, or may be stainless steel or other material with sufficient elastic strain to allow recovery upon deployment from a microcatheter. The material may be laser cut from a flat sheet of material or from a tube and then further processed to be flat.



FIG. 2a shows a section view through an occlusive clot 110 in a vessel 125 through which a microcatheter 109 has been passed. A thrombectomy device 100 is shown within the microcatheter 109 in its collapsed delivery configuration. To introduce this device the thrombus or blood clot 110 is first crossed with a guidewire and microcatheter 109 as per standard interventional procedures. The guidewire is then removed and the device introduced as per standard procedure. The flat shape of this device allows it to expand between the clot and the vessel wall following the circumference of the vessel as shown in FIG. 2b, resulting in the device forming a ‘U’ shape after deployment, with the inner side of the clot engagement body 112 facing and engaging with the clot, and the outer side of the clot engagement body 111 facing the vessel wall. Positioning the device between the clot and the vessel wall reduces the contact area between the clot and the vessel wall reducing the engagement between the clot and vessel wall and subsequently the force required to dislodge the clot from the vessel. Hence by retracting the device, the clot can be dislodged and retrieved to a proximally positioned catheter or sheath, aided by aspiration if required. Alternatively the microcatheter or intermediate catheter can be forwarded to partially resheath the device causing the cell pattern of the device 100 to close, pinching the clot between the struts improving the grip between the device and the clot. The arms of the ‘U’ shape may also bend in towards the clot during resheathing improving the grip of the device on the clot and facilitating removal. The device and clot may be resheathed and fully removed through the intermediate catheter or the partially resheathed device and clot may be retracted with the intermediate catheter to a proximally positioned guide catheter or sheath. This may be done with or without the aid of aspiration.


The distal end of the clot engagement body may be connected to or be integral to a fragment protection portion 113 as shown in FIG. 1b. The fragment protection portion may be flat, tubular, cone shaped or irregularly shaped in the freely expanded configuration, and may be substantially planar or occupy a volume to form a “3D” filtering body such as the mesh structure shown in FIG. 21d. In the deployed configuration in the vessel this portion provides a way of capturing embolic fragments preventing their release in the bloodstream. The fragment protection portion may be constructed from the struts of the device, threaded, knitted or braided fibres, polymer films or other material that traps embolic debris while only partially restricting blood flow.


In the embodiment shown in FIG. 1a, the clot engagement body 101 is formed of a repeating cell pattern 107 along the length of the device and is flat in the freely expanded configuration. The cut pattern may include various cell shapes and unconnected crowns.



FIGS. 2c and 2d show a detailed sectional view of the microcatheter and wrapped device of FIG. 2a. When the device is in this collapsed configuration the clot engagement body may be wrapped in a circular orientation 127 as shown in FIG. 2d or the device may wrap down so that the struts align in a linear orientation 126 as shown in FIG. 2c. This collapsed linear orientation may promote the device to expand in a linear manner facilitating the expansion of the device between the clot and the vessel wall.



FIG. 3a shows an embodiment of the device (in an isometric view) which maintains a flat shape even when deployed in the vessel. This Figure shows the flat device 150 deployed in a vessel 151, and positioned under an occlusive blood clot 152. The flat section of the device 154 is connected to a proximal shaft 153 to facilitate introduction and retrieval of the device. The flat section 154 consists of a pattern of struts 158 and cells 159 which engage with and embed into the clot. The use of a flat device may improve performance in gripping and removing the clot from the vessel, as the clot is not significantly compressed by the device unlike a tubular device which exerts a radial force along the length of the clot.



FIG. 3b shows a side view of the device and clot shown in FIG. 3a. In this view the struts 155 of the flat device 156 are shown embedded in the clot 152. This embedding causes portions of the clot 157 to protrude through the device cells improving the grip of the device on the clot. This view illustrates how significant clot compression is not required for the device to achieve good grip on the clot.


The level of strut embedding and clot protrusion into the device cells influence the level of grip the device can exert on the clot. The device cut pattern such as strut width, length, cell shape and size, crown inner diameter, floating crown design, all influence the level of strut embedding in the clot. FIGS. 4, 5, and 6 show various embodiments with different cell shapes and cut patterns. FIG. 4 shows a flat device 175 with a number of disconnected floating crowns 178. FIG. 5 shows a similar flat device 200 except the central crowns are connected together by a ‘backbone’ strut 208. FIG. 6 shows another iteration of the flat device with multiple cells 229 connected along the length of the flat device 225.


In another embodiment shown in FIG. 7 the flat pattern is combined with a tubular mid-section 252 which provides a flow lumen through the device on initial deployment in the clot. This flow lumen 252 may be formed by an integral or by a separate tubular component. On deployment the flat section of the device still expands between the clot and the vessel wall each side of the flow lumen. FIGS. 8a and 8b shows an alternative flat pattern 275 which can be heat-set to form a circular or U shape channel 288 in the device. This can be achieved by clamping the device in a fixture 285, such as that shown in FIG. 8b, prior to heat treatment. The cell pattern shown 280 has different cell sizes and shapes for the outer flat section 281 and the central U channel 279 to minimise the risk of the clot blocking the flow in the central channel on deployment, and to improve device flexibility.



FIG. 9 illustrates a device 300 which is very similar in design to device 250 of FIG. 7, but also comprises a distal mesh component 301. This distal mesh component may be attached to the distal end of the tubular mid-section 302 or to a connecting member 303 which runs through the tubular member and connects to a proximal elongate shaft 304. This distal mesh component 301 may be formed from one or more filaments or fibres, which may be monofilaments or multifilament's, and may be of a high strength polymeric material such as Ultra-High Molecular Weight Polyethylene (UHMWPE), Liquid Crystal Polymer (LCP), Polyethylene (PE), Polyethylene Terephthalate (PET), Polyamide (PA), Polyethylene Naphthalate (PEN) or an Aramid, or may be of a metal material. If of metal material the fibres or filaments are preferably formed from a shape memory or superelastic material such as Nitinol, so that they can recover form a compressed configuration within a microcatheter to form a dense mesh of a diameter approximately equal to that of the vessel in which the device is deployed so as to prevent the distal migration of clot fragments.


In the embodiment shown in FIG. 10 the device consists of a central tubular component 321 providing a flow lumen, combined with radiating arms 327 along the length of the device. These radiating arms 327 are connected to the proximal shaft 324 through connecting member 325, and are connected to a fibre or wire 323 at connection points 322 and expand between the clot and vessel wall on deployment, reducing friction between the clot and the vessel wall. During retraction the fibres provide additional engagement with the clot and help to grip and dislodge the clot from the vessel, and retrieve it to the proximal catheter or sheath. This Figure also shows the proximal shaft 324 and a distal radiopaque tip 328 on the device.


In another embodiment of the device as shown in FIGS. 11a-d, a flat section of the device 355 is formed by heat-setting a portion of a tubular device into a flat configuration, FIG. 11b. The section of the device heat-set into a flat configuration may be adjacent to a tubular section or cone section of the device or in between two tubular sections, or be the full length of the device. This forming method can result in the flat section containing 2 layers of struts and crowns 370 and 371. The cut pattern of the device 354 prior to flattening may be configured so that after reshaping to a flat configuration both layers have the same strut pattern with struts and crowns aligned on top and bottom. Alternatively the strut pattern may be designed so that the struts do not align but leave spaces for the clot to embed in between the struts 372. This allows the struts to pinch the clot, FIG. 11c, when the device is retracted or partially resheathed into an intermediate catheter, guide catheter or microcatheter. The clot pinching by the struts increases the grip of the device on the clot and improves the ability of the device to dislodge difficult clots. This construction method facilitates combining the flat section 355 with a tubular 356 and cone shaped 358 distal fragment protection section.


In another embodiment of the device shown in FIGS. 12 and 13, the device 400 is formed in a helical shape where the body of the device conforms within the vessel so that it is predominantly in contact with the vessel wall along the full length of the device. The centreline of the device also forms a helical path in this case. This device can be formed by laser cutting the required strut pattern 409 from a tube or by cutting a flat sheet and then wrapping the flat part around a cylinder 408 prior to heat-setting. Therefore the device has a similar shape to wrapping a wide ribbon around a cylinder.


When viewed along the vessel axis, this device does not impinge significantly into the vessel lumen. By positioning the device between the clot and the vessel wall, the area of clot in contact with the vessel wall is reduced which minimises the friction between the clot and the vessel and reduces the dislodgement force. This device also has the benefit of not compressing the clot when the clot is inside the lumen of the device which makes the clot easier to dislodge. Typical stentriever devices engage the clot so that the clot is predominantly positioned on the outer radial surface of the device with partial protrusion of the clot into the open cells of the cut pattern between the struts. The device of the invention facilitates the entire clot being positioned within the lumen of the device without the clot being compressed by the struts and crowns. During aspiration with a syringe or vacuum pump the engagement of the clot on the device with typical stentrievers can inhibit the flow of the clot into the aspiration or intermediate catheter due to the engagement between the clot and the device struts. This embodiment of the device facilitates aspiration as the clot is fully in the lumen of the device and the struts do not impede the flow path of the clot into the aspiration catheter.



FIG. 14a illustrates another embodiment 425 of a helical device of this invention similar to device 400 shown in FIGS. 12 and 13. This device comprises an elongate generally planar framework 429, which may be made from wire or from interconnected strut elements. Framework 429 is configured in a spiral or helical shape and is connected at its proximal end 428 to an elongate shaft 427, and at its distal end 430 to a fragment protection section 426, which itself terminates in a distal tip 431.



FIG. 14b shows an end view of the device of FIG. 14a, clearly illustrating the fragment protection section 426 which is intended to minimise the risk of losing embolic material during clot dislodgement and retrieval.


The helical shaped component can be used as an outer cage to engage and remove the clot, or as before, as shown in FIG. 15, can also be used as an inner component 451 within an outer cage 453 providing a flow channel for the restoration of flow when deployed within the clot.


An additional embodiment shown in FIG. 16 shows a flat device 485 which has been twisted along the length of the device. The device comprises a framework of struts 482. In an unconstrained configuration, the centre-line of the device is a straight line and the sides 481 of device are twisted around this axis in a double helix shape similar to a twisted ladder or ribbon. As in all the designs described here, this component could be used to engage the clot for dislodgement and retrieval or it could be part of an assembly and act as an inner component providing a flow channel for immediate restoration of flow on deployment. When acting as a flow channel, this component is positioned inside an outer cage which predominantly engages the clot.


The device 500 shown in FIG. 17a-e has a body section 501 and a distal fragment protection section 502. When viewed along the vessel axis the cross section of the body section has an ‘S’ shape as shown in FIG. 17b-e. In the unconstrained configuration, the outer arms of the ‘S’ shape 509 are curved with the mid-section 510 forming a diameter. This device diameter can vary in length typically in the range of 0.5 mm up to 10 mm. The device is designed so that on deployment in the clot 515, the clot engages with the cell pattern on the outer parts of the device, and can also protrude into the opening 511 between the device arms and diameter section potentially filling one side of the ‘S’ shape. The other side of the ‘S’ shape provides a protected flow lumen 512 for restoration of blood flow on deployment of the device. Both sides of the ‘S’ shape are equivalent and either side can be deployed in contact with the clot, as shown in FIGS. 17d and 17e. The side of the device in contact with the clot will depend on the deployment orientation. To dislodge the clot the device is retracted back to a proximally positioned balloon occlusion guide catheter, standard guide catheter or sheath, under aspiration. Alternatively an intermediate or distal access catheter may be used to apply distal aspiration and the device can be fully or partially resheathed into the catheter. During resheathing the clot protruding into one side of the ‘S’ profile can be pinched and gripped by the arms of the ‘S’ shape improving the grip of the device on the clot. The clot pinching can also be achieved by partial resheathing of the device into the microcatheter.


The edges 505 of the arms 509 of the ‘S’ shape may be profiled or curved to improve clot engagement and increase clot protrusion into one side of the device.



FIGS. 18a and 18b show other embodiments of the device where a flow channel 601 and ‘C’ shaped outer cage 602 are shown in a straight configuration (FIG. 18a) and a helical configuration (FIG. 18b). These images show only the outlines of both components and do not show the details of the cell pattern or struts which may be any of those described and/or illustrated herein.


In an alternative embodiment of the design shown in FIG. 19a-c, the flat portion of the device 610 has a sinusoidal or wave like edge 611 combined with a tubular, ‘S’ shape or ‘U’ shape central section 612 as shown in the cross sectional views in FIGS. 19b and 19c. The wave like edge 611 to the flat portion may improve the flexibility of the device as it is deployed or retracted around tortuous bends within the vasculature. The ‘S’ cross sectional shape 615 has the benefit of always providing a flow lumen through the device to restore blood flow on deployment in the clot regardless of orientation. Regardless of which side of the device is deployed in contact with the clot, a protected channel exists which allows blood flow through the device. The ‘S’ shape increases the clot contact area between the clot and the device improving the ability of the device to engage with and dislodge the clot. The ‘S’ cross section shape may also spiral along the length of the device as shown in FIG. 20. The ‘S’ shape also provides additional clot grip during partial or full resheathing of the device by the intermediate catheter as clot within the arms of the ‘S’ is pinched between struts and the intermediate catheter tip.



FIG. 21a-c shows another embodiment of the device 650 in which a mid-section 651 is formed so that when viewed from the side, FIG. 21b, perpendicular to the vessel axis, it has a sinusoidal or wave shape 652. The device consists of two sides as before with one side facing into or in contact with the clot and the other side generally facing away from the clot. If the device is inverted, the side previously facing into the clot would then be facing away from the clot.


Forming the device in a wave shape varies the contact pressure between the clot and the device along the length of the device, reducing the compression of the clot by the device in places. The device can also elongate when placed under tension such as during the dislodgement of a clot from the vasculature. This minimises the linear compression of the clot and may elongate the clot during dislodgement reducing the friction between the clot and the vessel wall and hence the dislodgement force required by the device to remove the clot.


In another embodiment of the device shown in FIG. 21c, the device has curved edges 655 when viewed along the axis of the vessel. This has the benefit of increasing the area of the device in contact with the vessel wall reducing the contact pressure applied to the wall by the device. When viewed along the vessel axis, the curved edges 655 can be tangential to a curve 657 which is tangential to flat section 656 or part of a continuous curve so that the cross sectional shape is that of a flattened ‘S’. This cross sectional shape has the benefit of an improved wrapping profile in the collapsed configuration. It also facilitates the curved sections of the device pinching the clot during partial or full resheathing into the intermediate catheter, guide catheter, sheath or microcatheter.



FIG. 21d shows a view of the fragment protection cone 653 which is formed of laser cut nitinol struts 660 and may also include polymer fibers to increase the density of the fragment protection mesh. This cone may be formed by laser cutting a flat sheet and then wrapping in a cone shape. The sheet material may then be joined together at the seam 662, for example by laser welding. Alternatively the seam may be left unconnected to facilitate ease of cleaning during the procedure if the device needs to be reused. A radiopaque coil 661 or tip may also be added to the cone for increased visibility under fluoroscopy.


A portion of the mid-section 651 is shown in FIG. 21e. This view shows the floating or unconnected crowns 665 and 667 which are formed to be out of plane with the remainder of the mid-section. These crowns contact the clot on deployment improving the ability of the device to dislodge the clot. In addition these crowns maintain contact with the clot as the device is retracted around a bend providing a particular benefit in retrieving the clot past bends and branches.



FIG. 22a-c show an isometric, plan and side view respectively of a clot engaging portion 700 of another device of this invention.


Device 700 comprises proximal struts 706 and 707, which may be connected to a proximal elongate member (not shown). These proximal struts are connected distally to a network of strut elements, comprising side rails 701 and 702, floating cells 705, and connecting arms 703.


Various devices of the invention such as the device 700 may have two superimposed wave patterns: a first pattern of a relatively short wavelength and amplitude superimposed on a second pattern of a relatively long wavelength and amplitude. The device strut elements are configured in such a way as to impart a relatively strong restorative force to the first wave pattern to restore it from its relatively straight delivery configuration within a microcatheter to an undulating or sinusoidal configuration when deployed within a clot in a blood vessel. This allows the device to engage with the clot and grip it gently but securely for initial dislodgement. In order to retrieve the clot it may be necessary to retract the device and clot proximally into larger vessel diameters before they can be safely withdrawn into a large receiving catheter. The second wave pattern assists the device in retaining control of the captured clot during this retraction. This large amplitude pattern effectively enables the device to size itself to the vessel as the vessel size increases, and thus enables the device to remain in contact with the clot in larger more proximal vessel diameters in which the clot might otherwise become dislodged from the device.


The two different wave patterns can be seen most clearly in side view in FIG. 22c, where the effective centerline of the entire clot engaging portion follow the large amplitude curve 723, and the two side rails 701 and 702 of the device follow shorter pitch sinusoidal patterns 721 and 722 respectively.



FIG. 23a shows a schematic view of a device 750 engaged with a clot 757 in a vessel segment 756. Device 750 is similar to device 700 but has an additional fragment protection portion 751 with a distal tip 752 appended to its distal end. Device 750 comprises a body section 754 which may be connected at proximal end 753 to an elongate shaft (not shown). Body section 754 is configured to expand into an undulating wave somewhat sinusoidal wave pattern when deployed as shown in FIG. 23a. This wave pattern comprises peaks 761 which cause local compression of the clot in discrete regions adjacent said peaks such as region 760 shown, but causes minimal overall compression on the bulk of the clot body. Thus the overall properties of the clot are relatively unchanged by the action of the device on deployment, but discrete regions 760 are compressed and gripped by the device. This compression causes some local dehydration of the clot, increasing its coefficient of friction and thus increasing its grip and engagement with the device. But because the bulk of the clot remains uncompressed by the device the frictional engagement of the clot with the vessel is not significantly increased.



FIG. 23b shows the system of FIG. 23a when retraced into a larger diameter more proximal vessel segment 758. In this larger diameter vessel the body section 754 adopts a second wave pattern generally described by centerline 759. This may be achieved by configuring the device to adapt the shape shown in FIG. 23b in its freely expanded state, which may be done by heat setting a Nitinol device in this shape for example. Thus the device when collapsed within a microcatheter for delivery has a certain stored energy. Upon deployment within a clot a significant portion of this energy is released to enable the device to adopt the short wavelength pattern of FIG. 23a. Upon retraction of the device into a larger diameter vessel the remaining stored energy is exerted to enable the device to adopt a superimposed long wavelength pattern as shown in FIG. 23b, which helps the device retain a grip on the captured clot by increasing the effective diameter of the device and maintaining apposition with clot and the vessel wall.


This and other embodiments of the device may have additional wave pattern features, such as the curvature of side rails 701 and 702 in plan view in FIG. 22b, and the “out of plane” protrusions of features such as floating crowns 705 which are illustrated more clearly in FIGS. 21b and 21c


The device 800 shown in FIG. 24a is another embodiment of the invention. This device consists of a mid-section 801 which in one embodiment is formed from a flat sheet and set in a series of wave shapes with a flat or profiled cross section. This section can also be formed by flattening a cut tube or using an oval or elliptical cross sectional shape tube when viewed along the vessel axis. In the embodiment shown, the mid-section 801 is combined with a fragment protection feature 802 and a proximal section 803. The proximal section may be a separate component and be formed in a tubular or cone shape. This section is connected to the device by one or more proximal struts 804, which are connected to a collar 805 positioned on the device shaft 806.


The collar 805 may be fixed to shaft 806 or it may be free moving and be able to slide along the shaft. FIG. 24b shows a plan view of the device with the proximal section 803 in a proximal position relative to the mid-section 801. This is typical of the orientation of the device on initial deployment in the blood clot or occlusion. When the device 800 is retracted to dislodge the clot, the proximal section 803 initially remains static due to friction between the component and the vessel wall. On device retraction the mid-section 801 and clot move proximally relative to section 803 allowing the clot to be partially retracted under the struts of the proximal section. This helps to grip the clot and prevent loss of contact with the clot as the device is retracted into larger diameter vessels. Continued retraction of the device causes all sections to move proximally as a single unit as travel of the proximal section 803 is limited by the collar 805 on shaft 806 contacting the proximal joint of the mid-section 801. The device and clot can then be retracted to a proximal catheter for removal from the vasculature.



FIG. 25a shows an isometric view of another embodiment of the invention. In this device 850 the body section 851 is formed with a longitudinal wave shape similar to that described in FIG. 22. The body section 851 is also connected to two or more pull wires 853 and 854 at one or more connection points 855. These pull wires 853, 854 extend to a proximal handle (not shown) where the user or physician can apply tension to the wires. By placing these wires under tension the wave profile of the body section 851 can be modified and the pitch distance between peaks 859 and 860 can be shortened. This can cause increased pinching of the clot within the valley 856 sections of the wave shape. FIG. 25b shows the device 850 deployed in a vessel (not shown) and engaging with a blood clot 857. By actuating the pull wire 853 through the microcatheter 858, the clot 857 is gripped and compressed in the valley section 856 of the device.



FIG. 25c shows an end view along the vessel axis of another iteration of the device. In this design, applying tension to the pull wires 861 and 862 by the user causes the side wings of the ‘S’ shape 863 and 864 to move in towards the diameter section 865 of the ‘S’. When this device is deployed in contact with a blood clot (not shown), the actuation of the side wings 863 and 864 pinch the clot improving the grip of the device on the clot. Alternatively by pushing the wires 862 and 861 the user may improve the ability of the device to expand fully and engage the clot over a bigger area.



FIGS. 26a-26d show a method of use of a device of this invention. A guidewire 904 and microcatheter 902 are inserted in the vasculature 900 and are advanced across the obstructive clot 901 using conventionally known techniques. When the microcatheter 902 is positioned distal to the occlusive clot 901, the guidewire 904 is removed from the vasculature 900 to allow the clot retrieval device 910 to be advanced through the microcatheter 902. The device 910 is advanced in a collapsed configuration until the distal tip of the device reaches the distal end of the microcatheter 902. The microcatheter 902 is retracted while the position of device 910 is maintained to deploy the clot retrieval device across the clot 901 in a manner that the distal end of the device 910 is preferably positioned distal of the clot 901. The device 910 consists of a clot engagement portion 912 connected to an elongated proximal shaft portion 911. The device 910 expands so that it engages with the occlusive clot in a wave pattern which causes local compression of the clot in discrete regions adjacent the peaks of the device, but causes minimal overall compression on the bulk of the clot body. The device 910 may be allowed to incubate for a period of time within the clot 901 if desired. Flow arrest in the vessel may be utilised by inflating a balloon 915 on the guide catheter as per standard technique. Retracting the device 910 dislodges the clot from its position in the artery and further withdrawal of the device retrieves the clot 901 until it can be retrieved into the guide catheter 903 or introducer sheath. FIG. 26d illustrates the clot engaged with the device during retrieval into the guide catheter 903. Flow occlusion, aspiration and other standard techniques may be used during the clot retrieval process. The device 910 may be rinsed in saline and gently cleaned before reloading in the insertion tool. The device 910 may be reintroduced into the microcatheter to be redeployed in additional segments of occlusive clot, if required.



FIGS. 27a-27d show schematic details of the device shown in FIGS. 26a-26d and illustrate one embodiment of the device shown in FIG. 23. FIG. 27a shows a side view of the device containing a clot engagement portion 930 and a proximal shaft 931. FIG. 27b shows a plan view of the device while FIG. 27d shows an isometric view of the same device. FIG. 27c shows the cross sectional view A-A as detailed in FIG. 27a. The device may be formed from a flat sheet and heat-set in a series of wave shapes while maintaining a flat cross section. In another embodiment the device may have a curved or profiled cross section or be formed by flattening a cut tube or using an oval or elliptical cross sectional shape tube when viewed along the vessel axis. As with all the embodiments shown, this device can incorporate a fragment protection feature, for example such as that illustrated in FIGS. 23a and 23b.


In one embodiment the amplitude of the wave pattern in the freely expanded state is between 0.5 and 3.0 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. In a preferred embodiment the amplitude of the wave pattern in the freely expanded state is between 0.5 and 2.0 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. In a most preferred embodiment the amplitude of the wave pattern in the freely expanded state is between 0.5 and 1.5 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. The pitch of the wave pattern in the freely expanded state is preferably between 1.0 and 4.0 times the diameter of the vessel in which the occlusive clot to be retrieved is situated. The pitch of the wave pattern in the freely expanded state is preferably between 0.5 and 2.0 times the amplitude of the wave pattern. In a preferred embodiment for use in a human middle cerebral artery the amplitude of the wave pattern is between 2.0 mm and 6.0 mm and the pitch of the wave pattern is between 3.0 mm and 8.0 mm.


Another embodiment of the device is shown in FIGS. 28a-28c. An isometric view of the device is shown in FIG. 28a, while FIG. 28b shows a side view and FIG. 28c shows a plan view of the same device. The device 952 consists of a clot engagement section 950 connected to an elongated shaft 951. Section 950 may be formed by laser cutting a cell pattern into a flat sheet and heat setting into a partial or full wave pattern to engage with the clot to provide good dislodgement grip but minimal gross clot compression. Such a device may comprise any of the cell patterns disclosed elsewhere herein, and may be used to retrieve clot as described in relation to FIGS. 26a-d. The wave-like shape of the device varies the contact pressure between the clot and the device along the length of the device, creating peaks 953 in which the device exerts a relatively high compressive force on the clot and troughs 954 in which the device exerts little or no compressive force on the clot. The troughs 954 between the peaks 953 serve as a reception space into which the clot can freely flow as it compressed at peaks 953. The regions of higher compression allow the struts of the device to embed within the clot, creating a mechanical grip at both a microscopic (strut) and macroscopic (device wave pattern) level. The device can also elongate when placed under tension such as during the dislodgement of a clot from the vasculature. This minimizes the linear compression of the clot and may elongate the clot during dislodgement reducing the friction between the clot and the vessel wall and hence the dislodgement force required by the device to remove the clot.



FIG. 29a shows an example of a different flat device pattern that may be formed into a longitudinal or lateral wave-like shape. The cut pattern may be optimized to align particular cell features such as crowns or cross struts with the peaks and troughs of the wave pattern to maximize clot embedding and grip. For example the row of cells 973 may be aligned with the wavelength so that the crowns 974 are positioned at the peak or trough (maximum or minimum wave amplitude) of the device wave. Similarly cross struts 975 may be positioned to be at the peak or trough of the wave, or at the centerline mid wave height. The outer edge of the device 971 may be curved to minimize vessel contact pressure.


The device illustrated in FIG. 29a may have a flat, curved or profiled cross section when viewed along the vessel axis, for example FIG. 29b shows a cross sectional view (B-B) of this embodiment. This cross sectional view illustrates a curved profile which can be heat set into the device prior to or as part of the forming process to produce the wave pattern. The cross sectional shape of the device may be a combination of flat and curved sections as shown in FIG. 29b, where the device is flat in the mid-section 980 combined with a curve section each side 981 and an additional straight section 982.



FIGS. 30a-30f show a method of use of another device 1006 of this invention, where the device adopts a generally spiral or helical configuration in the freely expanded state similar to that shown in FIG. 12. This device can be formed by laser cutting the required strut pattern from a tube or by cutting a flat sheet and then wrapping the flat part around a mandrel prior to heat-setting. FIGS. 30a-30f shows a method of use of a device of this invention. FIG. 30a shows a representation of an artery 1001 with a bifurcation and an occlusive clot 1002 positioned at the bifurcation. A microcatheter 1003 is inserted in the artery 1001 and is advanced across the obstructive clot 1002 using conventionally known techniques. The clot retrieval device 1006 can then be advanced through the microcatheter 1003 to the target location. The microcatheter is retracted while the position of device 1006 is maintained to deploy the clot retrieval device across the clot so that the fragment protection section of the device 1011 is preferably positioned distal of the clot 1002.


The device 1006 consists of a clot engagement portion 1010 connected to an elongated proximal shaft portion and a distal fragment protection section 1011. The clot engagement portion of the device 1010 expands into a helical configuration allowing the clot to partially or fully be enveloped by the device. This allows the device to grip and dislodge the clot while minimizing the overall compression of the clot body, making the clot easier to remove. On initial dislodgement the clot may be partially outside or proximal to the device and may migrate towards the center of the device during retraction to the guide catheter or sheath. The guide catheter 1005 and intermediate catheter 1004 are shown in FIGS. 30b-30f. In the method of use shown in FIG. 30d, the intermediate catheter 1004 is forwarded to the face of the clot 1002 and local aspiration applied prior to retrieval of the device and clot into the guide catheter 1005. This device can also be used with flow occlusion, aspiration and other standard techniques typically used during the clot retrieval process. FIGS. 30e-30f illustrate how the fragment protection portion of the device 1011 can capture fragments 1012 of the occlusive clot 1002 which can break off or be liberated during dislodgement and retrieval into the guide catheter or sheath 1005.



FIG. 31 shows another embodiment 1030 of the device where a proximal portion of the device is configured in a generally spiral or helical shape 1031 (similar to device 1006 of FIG. 30) and is connected to a radial or tubular portion 1033. The helical portion may be connected to a proximal shaft 1034 or additional portions of the device. The distal tubular portion contains a fragment protection section 1035 and is connected to a distal atraumatic radiopaque tip 1032. The helical section 1031 shown is a schematic representation and would typically consist of a laser cut cell pattern. The helical portion of the device 1031 is intended to provide improved performance for the dislodgement of fibrin rich sticky clots while the tubular section 1030 provides good clot retention during retraction to the guide catheter or sheath. As with all embodiments shown, the device may be rinsed and gently cleaned before reloading in the insertion tool. The device may be reintroduced into the microcatheter to be redeployed in additional segments of occlusive clot, if required.



FIG. 32a shows an isometric view of another clot retrieval device of the invention comprising a clot engaging portion 1050 attached proximally to an elongate shaft 1051 and distally to an optional distal tip 1055. Clot engaging portion 1050 comprises a pair of side rails formed from cell elements 1052 to which are connected a plurality of clot engaging strut elements 1053 and 1054. Strut element 1053 and 1054 protrude from opposite sides of the plane defined by the side rails, as shown in end view FIG. 32b. This design is intended to operate in a similar principle to the previously disclosed wave-like devices, in that it is intended to provide local regions of high embedding force into the clot at cross struts 1053 and 1054, and adjacent regions of little or no embedding or radial force. The high embedding force at the cross struts creates a mechanical interference between clot and device, enabling the device to grip the clot securely, but because this embedding and resultant compression of the clot is applied over a very discrete and limited area there is minimal impact on the properties of the gross body of the clot. This is a very important advantage because the inventors have discovered that compression of the clot can cause the clot to become firmer and can increase its coefficient of friction, both of which can make it more difficult to retrieve.



FIG. 33a shows an isometric view of another clot retrieval device of the invention comprising a clot engaging portion 1080 attached proximally to an elongate shaft 1081 and distally to an optional distal basket 1082. Clot engaging portion 1080 comprises a plurality of adjacent segments 1083 and 1084 which are aligned at approximately right angles to each other. Each segment 1083 or 1084 may be generally flat in shape, but the resultant overall structure 1080 has a three dimensional structure as can be seen in the end view shown in FIG. 33b. These alternating segments create a similar pattern of regions of high compression and regions of low compression in the clot to the previously shown wave-like designs, with similar advantages in terms of clot grip and retrieval with minimal force.


It will be apparent from the foregoing description that while particular embodiments of the present invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. For example, while the embodiments described herein refer to particular features, the invention includes embodiments having different combinations of features. The invention also includes embodiments that do not include all of the specific features described.


The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail.

Claims
  • 1. A clot retrieval device for removing an occlusive clot from a blood vessel, comprising: a clot engagement section having a constrained delivery configuration and an expanded deployed configuration, wherein in the expanded deployed configuration, the clot engagement section has a cross-sectional shape along a longitudinal axis of the device of a sinusoidal wave-like form, and comprises: a plurality of peak sections formed by a plurality of cells and configured to vary contact pressure between the clot and the device along a length of the device; anda plurality of troughs formed by a plurality of cells and located between respective peak sections, the plurality of troughs comprising a clot reception space;wherein each peak is configured to exert a relatively high compressive force on the clot whereas each trough is configured to exert little or no compressive force on the clot, andwherein in the expanded deployed configuration, the peak sections are laterally spaced-apart and when being withdrawn into a catheter, are configured to pinch the occlusive clot from the blood vessel between the peak sections in the clot engaging section.
  • 2. The device of claim 1, wherein the clot engaging section further comprises a pair of side rails formed from cells to which a plurality of clot engaging strut elements are connected, the cells protruding from opposite sides of a plane defined by the side rails.
  • 3. The device of claim 1, wherein a wave pattern of the wave-like form has an amplitude of from 2.0 mm to 6.0 mm.
  • 4. The device of claim 1, wherein a wave pattern of the wave-like form has a pitch of from 3.0 mm to 8.0 mm.
  • 5. The device of claim 1, wherein in the expanded deployed configuration, the clot engagement section comprises the sinusoidal wave-like form of generally s-shape.
  • 6. The device of claim 1, wherein the clot engagement section comprises a plurality of segments, adjacent segments being aligned at approximately 90° to each other.
  • 7. The device of claim 1, the clot engagement section comprises a mesh of closed cells.
  • 8. The device of claim 7, wherein the closed cells are diamond shaped.
  • 9. The device of claim 1, wherein the device is substantially non-tubular.
  • 10. The device of claim 1, wherein the clot engagement section comprises a plurality of patterns, including a first pattern comprising a wavelength and an amplitude and a second pattern comprising a wavelength and an amplitude larger than those of the first pattern.
  • 11. The device of claim 1, comprising an activator for modifying a wave shape of the device.
  • 12. The device of claim 11, wherein the activator comprises at least one push wire and/or at least one pull wire.
  • 13. The device of claim 1, wherein, in the constrained configuration, the clot engagement section is substantially flat.
  • 14. The device of claim 1, wherein the engagement section comprises two surfaces which face in generally opposite directions and one or both surfaces is engageable with the clot in the expanded deployed configuration.
  • 15. A clot retrieval device for removing an occlusive clot from a blood vessel, comprising: a shaft;a clot engagement section connected to a distal end of the shaft and having a constrained delivery configuration and an expanded deployed configuration, wherein in the expanded deployed configuration the clot engagement section has a cross-sectional shape along a longitudinal axis of the device of a sinusoidal wave-like form, and comprises: a plurality of peak sections formed by a plurality of cells and configured to vary contact pressure between the clot and the device along a length of the device; anda plurality of troughs formed by a plurality of cells and located between respective peak sections, the plurality of troughs comprising a clot reception space; anda proximal section movable relative to the clot engagement section,wherein each peak is configured to exert a relatively high compressive force on the clot whereas each trough is configured to exert little or no compressive force on the clot, andwherein in the expanded deployed configuration, the peak sections are laterally spaced-apart and when being withdrawn into the shaft, are configured to pinch the occlusive clot from the blood vessel between the peak sections in the clot engaging section.
  • 16. The device of claim 15, wherein the proximal section comprises a collar and proximal struts extending from the collar slidably movable relative to the shaft.
  • 17. The device of claim 15, wherein at least some of the struts of the proximal section extend in a distal direction for at least partial capture of clot between the clot engaging section and the proximal struts on proximal movement of the collar relative to the proximal shaft.
  • 18. A method from removing an occlusive clot from a blood vessel, comprising: delivering a clot retrieval device to the occlusive clot in the blood vessel, the device comprising a clot engagement section having a constrained delivery configuration and an expanded deployed configuration, wherein in the expanded deployed configuration, the clot engagement section has a cross-sectional shape along a longitudinal axis of the device of a sinusoidal wave-like form, and comprises: a plurality of peak sections formed by a plurality of cells and configured to vary contact pressure between the clot and the device along a length of the device; anda plurality of troughs formed by a plurality of cells and located between respective peak sections, the plurality of troughs comprising a clot reception space;wherein each peak is configured to exert a relatively high compressive force on the clot whereas each trough is configured to exert little or no compressive force on the clot;deploying the device to the expanded deployed configuration thereby causing the troughs of the device to embed with the clot;exerting a relatively high compressive force, by the peaks, on the clot while exerting little or no compressive force, by the troughs, on the clot; andretrieving at least a portion of the device and the captured clot into a retrieval catheter,wherein in the expanded deployed configuration, the peak sections are laterally spaced-apart and when being withdrawn into the retrieval catheter, are configured to pinch the occlusive clot from the blood vessel between the peak sections in the clot engaging section.
  • 19. The method of claim 18 further comprising: creating a mechanical grip between peaks of the device and the clot at regions of higher compression of the peaks.
  • 20. The method of claim 18, further comprising minimizing linear compression of the clot during and/or elongating the clot during dislodgement by reducing the friction between the clot and the vessel wall by pinching the clot between peaks of the device.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. application Ser. No. 14/952,202, filed Nov. 25, 2015, and claims the benefit of U.S. Provisional Application No. 62/084,960, filed Nov. 26, 2014, each of which are incorporated herein by reference in their entirety.

US Referenced Citations (926)
Number Name Date Kind
2828147 Peiffer Mar 1958 A
3361460 Gerhart Jan 1968 A
4455717 Gray Jun 1984 A
4611594 Grayhack et al. Sep 1986 A
4612931 Dormia Sep 1986 A
4643184 Mobin-Uddin Feb 1987 A
4727873 Mobin-Uddin Mar 1988 A
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5084065 Weldon et al. Jan 1992 A
5092839 Kipperman Mar 1992 A
5100423 Fearnot Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5108419 Reger et al. Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5163951 Pinchuk et al. Nov 1992 A
5171233 Amplatz Dec 1992 A
5171259 Inoue Dec 1992 A
5217441 Shichman Jun 1993 A
5234437 Sepetka Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5330482 Gibbs et al. Jul 1994 A
5383887 Nadal Jan 1995 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5449372 Schmaltz Sep 1995 A
5499985 Hein et al. Mar 1996 A
5538512 Zenzon et al. Jul 1996 A
5538515 Kafry et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5609627 Goicoechea et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant Jun 1997 A
5639278 Dereume et al. Jun 1997 A
5645558 Horton Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5658296 Bates Aug 1997 A
5665117 Rhodes Sep 1997 A
5695519 Summer et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark Feb 1998 A
5769871 Mers Kelly Jun 1998 A
5769884 Solovay Jun 1998 A
5779686 Sato et al. Jul 1998 A
5779716 Cano Jul 1998 A
5800519 Sandock Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827304 Hart Oct 1998 A
5853422 Huebsch et al. Dec 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5897567 Ressemann Apr 1999 A
5904698 Thomas et al. May 1999 A
5911702 Romley et al. Jun 1999 A
5911725 Boury Jun 1999 A
5919126 Armini Jul 1999 A
5931509 Bartholomew Aug 1999 A
5935139 Bates Aug 1999 A
5947995 Samuels Sep 1999 A
6063113 Kavteladze May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates Aug 2000 A
6099559 Nolting Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6129739 Khosravi Oct 2000 A
6143022 Shull et al. Nov 2000 A
6146404 Kim Nov 2000 A
6156064 Chouinard Dec 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi Jan 2001 B1
6203561 Ramee Mar 2001 B1
6214026 Lepak Apr 2001 B1
6221006 Dubrul Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6231597 Deem et al. May 2001 B1
6238412 Dubrul May 2001 B1
6245012 Kleshinski Jun 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6290710 Cryer et al. Sep 2001 B1
6312444 Barbut Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348056 Bates Feb 2002 B1
6350271 Kurz Feb 2002 B1
6355057 DeMarais et al. Mar 2002 B1
6361545 Macoviak Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6375668 Gifford et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick May 2002 B1
6391037 Greenhalgh May 2002 B1
6402771 Palmer Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6428558 Jones et al. Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel Aug 2002 B2
6458139 Palmer Oct 2002 B1
6485497 Wensel Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Michael Nov 2002 B2
6488701 Nolting et al. Dec 2002 B1
6511492 Rosenbluth Jan 2003 B1
6530935 Wensel Mar 2003 B2
6530939 Hopkins Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575996 Denison et al. Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6592616 Stack Jul 2003 B1
6598265 Lee Jul 2003 B2
6602265 Dubrul et al. Aug 2003 B2
6602271 Adams Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi Sep 2003 B1
6632241 Hancock et al. Oct 2003 B1
6638245 Miller Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6685722 Rosenbluth Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6695858 Dubrul et al. Feb 2004 B1
6702782 Miller Mar 2004 B2
6702834 Boylan et al. Mar 2004 B1
6709465 Mitchell et al. Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6726703 Broome et al. Apr 2004 B2
6730104 Sepetka May 2004 B1
6783528 Vincent-Prestigiacomo Aug 2004 B2
6783538 McGuckin, Jr. et al. Aug 2004 B2
6824545 Sepetka Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6939361 Kleshinski Sep 2005 B1
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen Feb 2006 B2
7004956 Palmer Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto May 2006 B2
7048758 Boyle May 2006 B2
7052500 Bashiri et al. May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose Jun 2006 B2
7083633 Morrill et al. Aug 2006 B2
7083822 Brightbill Aug 2006 B2
7094249 Broome et al. Aug 2006 B1
7097653 Freudenthal et al. Aug 2006 B2
7101380 Khachin et al. Sep 2006 B2
7172614 Boyle et al. Feb 2007 B2
7175655 Malaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7185922 Takayanagi et al. Mar 2007 B2
7220271 Clubb May 2007 B2
7226464 Gamer et al. Jun 2007 B2
7229472 Depalma et al. Jun 2007 B2
7241304 Boyle et al. Jul 2007 B2
7288112 Denardo et al. Oct 2007 B2
7300458 Henkes et al. Nov 2007 B2
7306618 Demond Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7316692 Huffmaster Jan 2008 B2
7323001 Clubb Jan 2008 B2
7331976 McGuckin, Jr. et al. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Borillo et al. Jul 2008 B2
7410491 Hopkins Aug 2008 B2
7425215 Boyle et al. Sep 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale et al. Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka May 2009 B2
7556636 Mazzocchi Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7594926 Linder Sep 2009 B2
7604649 McGuckin, Jr. et al. Oct 2009 B2
7604650 Bergheim Oct 2009 B2
7609649 Bhandari et al. Oct 2009 B1
7618434 Santra Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi Mar 2010 B2
7678123 Chanduszko Mar 2010 B2
7691121 Rosenbluth Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder May 2010 B2
7717929 Fallman May 2010 B2
7736385 Agnew Jun 2010 B2
7749246 McGuckin, Jr. et al. Jul 2010 B2
7758606 Streeter et al. Jul 2010 B2
7758611 Kato Jul 2010 B2
7766934 Pal Aug 2010 B2
7771452 Pal Aug 2010 B2
7780694 Palmer Aug 2010 B2
7780700 Frazier et al. Aug 2010 B2
7811305 Balgobin et al. Oct 2010 B2
7815659 Conlon et al. Oct 2010 B2
7819893 Brady et al. Oct 2010 B2
7828815 Mazzocchi Nov 2010 B2
7828816 Mazzocchi et al. Nov 2010 B2
7833240 Okushi et al. Nov 2010 B2
7842053 Chanduszko et al. Nov 2010 B2
7846176 Mazzocchi Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7883516 Huang et al. Feb 2011 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
3002822 Glocker et al. Aug 2011 A1
7998165 Huffmaster Aug 2011 B2
3021379 Thompson et al. Sep 2011 A1
3021380 Thompson et al. Sep 2011 A1
8043326 Hancock et al. Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8057507 Horan et al. Nov 2011 B2
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8118856 Schreck et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137376 Clubb et al. Mar 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8262689 Schneiderman et al. Sep 2012 B2
8282668 McGuckin, Jr. et al. Oct 2012 B2
8287538 Brenzel et al. Oct 2012 B2
8298257 Sepetka et al. Oct 2012 B2
RE43882 Hopkins et al. Dec 2012 E
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8357180 Feller, III et al. Jan 2013 B2
8357893 Xu Jan 2013 B2
8361095 Osborne Jan 2013 B2
8361110 Chanduszko Jan 2013 B2
8366663 Fiorella et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8414482 Belson Apr 2013 B2
8414543 McGuckin, Jr. et al. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8512352 Martin Aug 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8545526 Martin et al. Oct 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8574915 Zhang et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osborne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8690907 Janardhan Apr 2014 B1
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8777919 Kimura et al. Jul 2014 B2
8777976 Brady et al. Jul 2014 B2
8777979 Shrivastava et al. Jul 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Grandfield et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8852205 Brady et al. Oct 2014 B2
8870941 Evans et al. Oct 2014 B2
8900265 Ulm, III Dec 2014 B1
8920358 Levine et al. Dec 2014 B2
8939991 Krolick et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945160 Krolik et al. Feb 2015 B2
8945169 Pal Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8956399 Cam et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9011481 Aggerholm et al. Apr 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield et al. Jul 2015 B2
9095342 Becking et al. Aug 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9155552 Ulm, III Oct 2015 B2
9161758 Figulla et al. Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9173688 Dosta Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9221132 Bowman Dec 2015 B2
9232992 Heidner et al. Jan 2016 B2
9254371 Martin et al. Feb 2016 B2
9301769 Brady et al. Apr 2016 B2
9332999 Ray et al. May 2016 B2
9402707 Brady et al. Aug 2016 B2
9445829 Brady et al. Sep 2016 B2
9456834 Folk Oct 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579104 Beckham et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642639 Brady et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655898 Palepu et al. May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9758606 Lambert et al. Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801651 Harrah et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833304 Horan et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
9901434 Hoffman Feb 2018 B2
9918720 Marchand et al. Mar 2018 B2
9939361 Gajji et al. Apr 2018 B2
10016206 Yang Jul 2018 B1
10070878 Ma Sep 2018 B2
10098651 Marchand et al. Oct 2018 B2
10201360 Vale et al. Feb 2019 B2
10231751 Sos Mar 2019 B2
10292723 Brady et al. May 2019 B2
10299811 Brady et al. May 2019 B2
10363054 Vale et al. Jul 2019 B2
10376274 Farin et al. Aug 2019 B2
10390850 Vale et al. Aug 2019 B2
10524811 Marchand et al. Jan 2020 B2
10531942 Eggers Jan 2020 B2
10617435 Vale et al. Apr 2020 B2
10722257 Skillrud et al. Jul 2020 B2
11517340 Casey Dec 2022 B2
20010001315 Bates May 2001 A1
20010016755 Addis Aug 2001 A1
20010037141 Yee et al. Nov 2001 A1
20010037171 Sato Nov 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010049554 Ruiz et al. Dec 2001 A1
20010051810 Dubrul Dec 2001 A1
20020004667 Adams et al. Jan 2002 A1
20020016609 Wensel Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi Feb 2002 A1
20020042627 Brady et al. Apr 2002 A1
20020049468 Streeter Apr 2002 A1
20020052620 Barbut May 2002 A1
20020058911 Gilson et al. May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka Jun 2002 A1
20020082558 Samson Jun 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka Sep 2002 A1
20020128680 Pavolvic Sep 2002 A1
20020138094 Borillo Sep 2002 A1
20020143349 Ill et al. Oct 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020188276 Evans Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193824 Boylan et al. Dec 2002 A1
20020198588 Armstrong et al. Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest Jan 2003 A1
20030004540 Linder et al. Jan 2003 A1
20030004542 Wensel Jan 2003 A1
20030009146 Muni Jan 2003 A1
20030009191 Wensel Jan 2003 A1
20030038447 Cantele Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030050663 Khachin Mar 2003 A1
20030064151 Klinedinst Apr 2003 A1
20030108224 Ike Jun 2003 A1
20030114879 Euteneuer et al. Jun 2003 A1
20030125798 Martin Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144688 Brady et al. Jul 2003 A1
20030153158 Ho et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung Aug 2003 A1
20030163064 Vrba Aug 2003 A1
20030163158 White Aug 2003 A1
20030171769 Barbut Sep 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030195537 Dubrul Oct 2003 A1
20030195554 Shen Oct 2003 A1
20030199917 Knudson Oct 2003 A1
20030204202 Palmer Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212430 Bose Nov 2003 A1
20030236533 Wilson Dec 2003 A1
20040064179 Linder et al. Apr 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka Apr 2004 A1
20040079429 Miller Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040088001 Bosma et al. May 2004 A1
20040093065 Yachia et al. May 2004 A1
20040098050 Foerster et al. May 2004 A1
20040133231 Maitland Jul 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138692 Phung Jul 2004 A1
20040153117 Clubb et al. Aug 2004 A1
20040153118 Clubb Aug 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040215318 Kwitkin Oct 2004 A1
20040220663 Rivelli Nov 2004 A1
20050033248 Machida et al. Feb 2005 A1
20050033348 Sepetka Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050049669 Jones Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050058837 Farnworth et al. Mar 2005 A1
20050059995 Sepetka Mar 2005 A1
20050085849 Sepetka Apr 2005 A1
20050090779 Osypka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050125024 Sepetka Jun 2005 A1
20050149997 Wolozin et al. Jul 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050173135 Almen Aug 2005 A1
20050192627 Whisenant et al. Sep 2005 A1
20050215942 Abrahamson et al. Sep 2005 A1
20050216030 Sepetka Sep 2005 A1
20050216050 Sepetka Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20050251206 Maahs et al. Nov 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050267491 Kellett et al. Dec 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20050288686 Sepetka Dec 2005 A1
20060008332 Greenberg et al. Jan 2006 A1
20060009798 Callister et al. Jan 2006 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060020285 Niermann Jan 2006 A1
20060020286 Niermann Jan 2006 A1
20060030877 Martinez et al. Feb 2006 A1
20060041228 Vo et al. Feb 2006 A1
20060058836 Bose Mar 2006 A1
20060058837 Bose Mar 2006 A1
20060058838 Bose Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060074477 Berthiaume et al. Apr 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060195137 Sepetka Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060235501 Igaki Oct 2006 A1
20060241677 Johnson et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20060287701 Pal Dec 2006 A1
20060293706 Shimon Dec 2006 A1
20070010857 Sugimoto et al. Jan 2007 A1
20070032879 Levine et al. Feb 2007 A1
20070088382 Bei et al. Apr 2007 A1
20070088383 Pal et al. Apr 2007 A1
20070100348 Cauthen, III et al. May 2007 A1
20070118173 Magnuson et al. May 2007 A1
20070149997 Muller Jun 2007 A1
20070156170 Hancock Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070179527 Eskuri et al. Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella Sep 2007 A1
20070208371 French Sep 2007 A1
20070225749 Martin Sep 2007 A1
20070233175 Zaver et al. Oct 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20070288054 Tanaka et al. Dec 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080077227 Ouellette et al. Mar 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney Apr 2008 A1
20080097386 Osypka Apr 2008 A1
20080109031 Sepetka May 2008 A1
20080109032 Sepetka May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080125798 Osborne May 2008 A1
20080177296 Sepetka Jul 2008 A1
20080178890 Townsend et al. Jul 2008 A1
20080183197 Sepetka Jul 2008 A1
20080183198 Sepetka Jul 2008 A1
20080183205 Sepetka Jul 2008 A1
20080188876 Sepetka Aug 2008 A1
20080188885 Sepetka Aug 2008 A1
20080188887 Batiste Aug 2008 A1
20080200946 Braun Aug 2008 A1
20080200947 Kusleika et al. Aug 2008 A1
20080215077 Sepetka Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080228209 Demello et al. Sep 2008 A1
20080234706 Sepetka Sep 2008 A1
20080243170 Jenson et al. Oct 2008 A1
20080255596 Jenson Oct 2008 A1
20080262410 Jenson et al. Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080269871 Eli Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080281350 Sepetka et al. Nov 2008 A1
20080312681 Ansel Dec 2008 A1
20090005858 Young et al. Jan 2009 A1
20090024157 Anukhin Jan 2009 A1
20090030443 Buser et al. Jan 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090069828 Martin Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090088793 Bagaoisan et al. Apr 2009 A1
20090088795 Cahill Apr 2009 A1
20090105722 Fulkerson Apr 2009 A1
20090105737 Fulkerson Apr 2009 A1
20090105747 Chanduszko et al. Apr 2009 A1
20090149881 Vale et al. Jun 2009 A1
20090163851 Holloway et al. Jun 2009 A1
20090177206 Lozier et al. Jul 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090281610 Parker Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299393 Martin Dec 2009 A1
20090299403 Chanduszko et al. Dec 2009 A1
20090306702 Miloslavski Dec 2009 A1
20090326636 Hashimoto et al. Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100076482 Shu et al. Mar 2010 A1
20100087850 Razack Apr 2010 A1
20100087908 Hilaire Apr 2010 A1
20100114017 Lenker May 2010 A1
20100125326 Kalstad May 2010 A1
20100125327 Agnew May 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100268264 Bonnette et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100274277 Eaton Oct 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100324649 Mattsson et al. Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield et al. Jan 2011 A1
20110009950 Grandfield et al. Jan 2011 A1
20110015718 Schreck Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110040319 Fulton, III Feb 2011 A1
20110054287 Schultz Mar 2011 A1
20110054514 Arcand Mar 2011 A1
20110054516 Keegan Mar 2011 A1
20110060212 Slee et al. Mar 2011 A1
20110060359 Hannes Mar 2011 A1
20110054504 Wolf et al. May 2011 A1
20110106137 Shimon May 2011 A1
20110125181 Brady et al. May 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110184456 Grandfield et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110208233 McGuckin, Jr. et al. Aug 2011 A1
20110213297 Aklog et al. Sep 2011 A1
20110213393 Aklog et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110224707 Miloslavaski et al. Sep 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 Dipalma et al. Mar 2012 A1
20120065660 Ferrera et al. Mar 2012 A1
20120083823 Shrivastava et al. Apr 2012 A1
20120083868 Shrivastava et al. Apr 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120116440 Leynov et al. May 2012 A1
20120123466 Porter et al. May 2012 A1
20120022572 Braun et al. Jun 2012 A1
20120143230 Sepetka et al. Jun 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120143317 Cam et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120209312 Aggerholm et al. Aug 2012 A1
20120215250 Brandfield et al. Aug 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20120316600 Ferrera et al. Dec 2012 A1
20120330350 Jones et al. Dec 2012 A1
20130030460 Marks Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh et al. Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss et al. May 2013 A1
20130131614 Hassan et al. May 2013 A1
20130144311 Fung et al. Jun 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130271788 Utsunomiya Oct 2013 A1
20130277079 Tsuzuki et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130325051 Martin et al. Dec 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140005712 Martin Jan 2014 A1
20140005713 Bowman Jan 2014 A1
20140046359 Bowman et al. Feb 2014 A1
20140088678 Wainwright et al. Mar 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140134654 Rudel et al. May 2014 A1
20140135812 Divino et al. May 2014 A1
20140142598 Fulton, III May 2014 A1
20140163367 Eskuri Jun 2014 A1
20140180122 Stigall et al. Jun 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140180397 Gerberding et al. Jun 2014 A1
20140183077 Rosendall et al. Jul 2014 A1
20140194911 Johnson et al. Jul 2014 A1
20140194919 Losordo et al. Jul 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140243881 Lees et al. Aug 2014 A1
20140257362 Eidenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140303667 Cox et al. Oct 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140372779 Wong et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150032144 Holloway Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150150672 Ma Jun 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150224133 Ohri et al. Aug 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150272716 Pinchuk et al. Oct 2015 A1
20150297252 Miloslavski et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm, III Nov 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150366650 Zi et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022269 Ganske Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160045298 Thinnes, Jr. et al. Feb 2016 A1
20160066921 Seifert et al. Mar 2016 A1
20160100928 Lees et al. Apr 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160143653 Vale et al. May 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160317168 Brady et al. Sep 2016 A1
20160303381 Pierce et al. Oct 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020542 Martin et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170056061 Ogle et al. Mar 2017 A1
20170071614 Vale et al. Mar 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170086863 Brady et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Grandfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170112515 Brady et al. Apr 2017 A1
20170112647 Sachar et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170119409 Ma May 2017 A1
20170143465 Ulm, III May 2017 A1
20170147765 Mehta May 2017 A1
20170150979 Ulm Jun 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180140315 Bowman et al. May 2018 A1
20180206865 Martin et al. Jul 2018 A1
20180207399 Chou et al. Jul 2018 A1
20180263650 Iwanami et al. Sep 2018 A1
20180325537 Shamay et al. Nov 2018 A1
20180326024 Prochazka et al. Nov 2018 A1
20180344338 Brady et al. Dec 2018 A1
20190000492 Casey et al. Jan 2019 A1
20190015061 Liebeskind Jan 2019 A1
20190167284 Friedman et al. Jun 2019 A1
20190239907 Brady et al. Aug 2019 A1
20190292273 Hanotin et al. Sep 2019 A1
20190374239 Martin et al. Dec 2019 A1
20190380723 Grandfield et al. Dec 2019 A1
20190388097 Girdhar et al. Dec 2019 A1
20200000483 Brady et al. Jan 2020 A1
20200009150 Chamorro Sanchez Jan 2020 A1
20200085444 Vale et al. Mar 2020 A1
20200100804 Casey et al. Apr 2020 A1
20200297364 Choe et al. Sep 2020 A1
20200390459 Casey et al. Dec 2020 A1
20210007757 Casey et al. Jan 2021 A1
20210228223 Casey et al. Jul 2021 A1
Foreign Referenced Citations (109)
Number Date Country
2557083 Jun 2003 CN
101172051 May 2008 CN
102307613 Jan 2012 CN
102596098 Jul 2012 CN
103764049 Apr 2014 CN
104042304 Sep 2014 CN
105208950 Dec 2015 CN
105662532 Jun 2016 CN
205359559 Jul 2016 CN
107530090 Jan 2018 CN
208582467 Mar 2019 CN
202009001951 Apr 2010 DE
102009056450 Jun 2011 DE
102010010849 Sep 2011 DE
102010014778 Oct 2011 DE
102010024085 Dec 2011 DE
102011014586 Sep 2012 DE
1153581 Nov 2001 EP
2301450 Nov 2011 EP
2438891 Apr 2012 EP
2628455 Aug 2013 EP
3156004 Apr 2017 EP
3593742 Jan 2020 EP
3669802 Jun 2020 EP
3858291 Aug 2021 EP
2427554 Jan 2007 GB
2494820 Mar 2013 GB
0919438 Jan 1997 JP
2014511223 May 2014 JP
2014525796 Oct 2014 JP
2015-505250 Feb 2015 JP
2016-513505 May 2016 JP
2019-526365 Sep 2019 JP
9424926 Nov 1994 WO
9727808 Aug 1997 WO
9738631 Oct 1997 WO
9920335 Apr 1999 WO
9960933 Dec 1999 WO
9956801 Apr 2000 WO
0121077 Mar 2001 WO
0202162 Jan 2002 WO
0211627 Feb 2002 WO
0243616 Jun 2002 WO
02070061 Sep 2002 WO
02094111 Nov 2002 WO
03002006 Jan 2003 WO
03030751 Apr 2003 WO
03051448 Jun 2003 WO
2004028571 Apr 2004 WO
2004056275 Jul 2004 WO
2005000130 Jan 2005 WO
2005027779 Mar 2005 WO
2006021407 Mar 2006 WO
2006031410 Mar 2006 WO
2006107641 Oct 2006 WO
2006135823 Dec 2006 WO
2007054307 May 2007 WO
2007068424 Jun 2007 WO
2008034615 Mar 2008 WO
2008051431 May 2008 WO
2008131116 Oct 2008 WO
2008135823 Nov 2008 WO
2009031338 Mar 2009 WO
2009076482 Jun 2009 WO
2009086482 Jul 2009 WO
2009105710 Aug 2009 WO
2010010545 Jan 2010 WO
2010046897 Apr 2010 WO
2010075565 Jul 2010 WO
2010102307 Sep 2010 WO
2010146581 Dec 2010 WO
2011013556 Feb 2011 WO
2011066961 Jun 2011 WO
2011082319 Jul 2011 WO
2011095352 Aug 2011 WO
2011106426 Sep 2011 WO
2011110316 Sep 2011 WO
2011135556 Nov 2011 WO
2012052982 Apr 2012 WO
2012064726 May 2012 WO
2012081020 Jun 2012 WO
2012120490 Sep 2012 WO
2012110619 Oct 2012 WO
2012156924 Nov 2012 WO
2013016435 Jan 2013 WO
2013072777 May 2013 WO
WO-2013071173 May 2013 WO
2013105099 Jul 2013 WO
2013109756 Jul 2013 WO
2013187927 Dec 2013 WO
2014047650 Mar 2014 WO
2014081892 May 2014 WO
2014139845 Sep 2014 WO
2014169266 Oct 2014 WO
2014178198 Nov 2014 WO
2015061365 Apr 2015 WO
2015103547 Jul 2015 WO
2015134625 Sep 2015 WO
2015179324 Nov 2015 WO
2015189354 Dec 2015 WO
2016010995 Jan 2016 WO
2016089451 Jun 2016 WO
2017089424 Jun 2017 WO
WO 2017090472 Jun 2017 WO
WO 2017090473 Jun 2017 WO
WO 2017103686 Jun 2017 WO
WO 2017161204 Sep 2017 WO
WO 2020039082 Feb 2020 WO
WO 2021113302 Jun 2021 WO
Non-Patent Literature Citations (3)
Entry
US 6,348,062 B1, 02/2002, Hopkins (withdrawn)
Search Report issued in corresponding Chinese Patent Application No. 201680080064.4 dated Jun. 9, 2020 (English translation only).
US6,348,062, 07/2003, Hopkins et al. (withdrawn)
Related Publications (1)
Number Date Country
20190298397 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
62084960 Nov 2014 US
Continuations (1)
Number Date Country
Parent 14952202 Nov 2015 US
Child 16446749 US