The present invention relates to a cloth spreading apparatus used when pieces of cloth such as sheets, towels and so on washed in a cloth washing factory or the like are spread one by one for feeding into an iron roller (also called a roll ironer).
As the conventional cloth spreading apparatus is known, for example, one described in Patent Literature 1, which has been previously disclosed by the present applicant. This cloth spreading apparatus comprises a cloth feeding unit and a spreading unit for spreading the cloth from side to side. The feeding unit has a pair of feeding chucks grasping adjacent corners of the cloth at a descending position (feeding position), and a lifting device moving the pair of feeding chucks up and down. The spreading unit has a pair of spreading chucks receiving the cloth from the feeding chucks at a raised position (delivery position) of the pair of feeding chucks and grasping the adjacent corners of the cloth, and a traversing device traversing the pair of spreading chucks to spread the cloth in a horizontal direction.
An action of spreading the washed cloth with such a cloth spreading apparatus will be described with reference to
Patent Literature 1: JP-A-2016-33271
In the conventional cloth spreading apparatus, however, there is a problem that when the cloth is grasped by the pair of feeding chucks, it is required to conduct complicated operation that one of the adjacent corners of the cloth is grasped with one of the feeding chucks and thereafter the other corner is found while pulling. Especially when pieces of cloth with a large side length such as sheets are fed, great amounts of effort and time are taken in the pulling of the other corner and hence the feeding operation of the cloth is poor.
An object of the present invention is to solve the problem of the above conventional art and provide a cloth spreading apparatus which is excellent in the feeding operation and is capable of lessening burden of the worker and reducing operation time.
The present invention lies in a cloth spreading apparatus comprising a pair of feeding chucks for grasping adjacent corners of a cloth, a moving device for moving the pair of feeding chucks between a feeding position and a delivery position of the cloth to feed the cloth, and a spreading chuck for directly or indirectly receiving the cloth from the pair of feeding chucks and spreading the cloth in a direction of separating the adjacent corners from each other, wherein the moving device has a separate moving trajectory corresponding to each of the feeding chucks and the pair of feeding chucks are constructed so as to be moved independently of each other between the feeding position and the delivery position.
In the cloth spreading apparatus according to the present invention, it is preferable that one feeding chuck in the pair of feeding chucks moves toward the delivery position earlier than the other feeding chuck.
In the cloth spreading apparatus according to the present invention, it is preferable that a distance that the former feeding chuck moves toward the delivery position earlier than the latter feeding chuck can be set arbitrarily.
In the cloth spreading apparatus according to the present invention, it is preferable that a distance that the former feeding chuck moves toward the delivery position earlier than the latter feeding chuck can be set stepwise.
In the cloth spreading apparatus according to the present invention, it is preferable that the pair of feeding chucks move at a synchronous speed to each other toward the delivery position in a state of grasping the cloth with the pair of feeding chucks.
Alternatively, it is preferable in the cloth spreading apparatus according to the present invention that the latter feeding chuck that departed later moves toward the delivery position at a speed faster than that of the former feeding chuck that departed earlier in a state of grasping the cloth with the pair of feeding chucks.
In the cloth spreading apparatus according to the present invention, it is preferable that the former feeding chuck that departed earlier toward the delivery position performs the delivery of the cloth to the spreading chuck earlier than the latter feeding chuck that departed later, and returns to an original feeding position earlier than the latter feeding chuck after the completion of the delivery.
In the cloth spreading apparatus according to the present invention, the pair of feeding chucks can move between the feeding position and the delivery position independently of each other. Thus, when one of the feeding chucks grasps one of the adjacent corners of cloth and is moved toward the delivery position earlier than the other feeding chuck, the other corner of cloth to be grasped by the other feeding chuck appears near the feeding position, and hence the cumbersome operation of finding the other corner while pulling by the worker can be made unnecessary to perform the feeding work easily.
When it is configured that the former feeding chuck in the pair of feeding chucks moves toward the delivery position earlier than the latter feeding chuck, the excellent feeding workability can be obtained more reliably.
When it is configured that the distance (earlier moving distance) that the former feeding chuck moves toward the delivery position earlier than the latter feeding chuck can be set arbitrarily, the apparatus can be easily adapted to cloths having different sizes by changing the earlier moving distance in accordance with the size of the cloth to be fed.
Further, when it is configured that the distance that the former feeding chuck moves toward the delivery position earlier than the latter feeding chuck can be set stepwise, the earlier moving distance can be easily changed in the feeding of cloths having different sizes.
Moreover, when it is configured that the pair of feeding chucks move toward the delivery position at a synchronous speed to each other in a state of grasping the cloth with the pair of feeding chucks, the relative distance between the pair of feeding chucks during the moving can be kept constant to prevent application of an unnecessary tensile force to the cloth.
Also, when it is configured that, in the state where the pair of feeding chucks both grasp the cloth, the latter feeding chuck that departed later moves toward the delivery position at a speed faster than that of the former feeding chuck that departed earlier, it is possible not only to prevent application of an unnecessary tensile force to the moving cloth, but also to shorten a time for delivering the cloth to the spreading unit with the latter feeding chuck to increase the working efficiency.
Furthermore, when it is configured that the former feeding chuck that departed earlier toward the delivery position performs the delivery of the cloth to the spreading chuck previous to the latter feeding chuck that departed later and returns to the original feeding position previous to the latter feeding chuck after the completion of the delivery, a time for returning the former feeding chuck to the original feeding position to attain a state of waiting the next feeding can be shortened to further increase the working efficiency.
An embodiment of the present invention will be described in detail with reference to the drawings below. Here,
The cloth spreading apparatus 10 is an apparatus for hanging a cloth C at a state of shaping and stretching into a quadrangular form and then feeding into a roll ironer or the like as a treating device for the next process. The cloth C handled by the cloth spreading apparatus 10 is a piece after the washing and drying and before the ironing and has a quadrangular form. The quadrangular form includes a square form and a rectangular form. Moreover, the cloth C may include sheets, bedding covers, towels and so on.
As shown in
In this embodiment, four feeding units 12 are arranged side by side in the horizontal direction as shown in
The feeding unit 12 also comprises a moving device 26 that moves the first and second feeding chucks 22a and 22b from the feeding position to the delivery position to draw the cloth C into the apparatus. The moving device 26 has separate moving trajectories (hereinafter also referred to as first and second moving trajectories) p1 and p2 corresponding to the first and second feeding chucks 22a and 22b. Each of the moving trajectories p1 and p2 is defined by a linear trajectory (guide rails; not shown).
In the illustrated example, the moving device 26 comprises a first endless belt 32a wound between a first driving shaft 28a and a first driven shaft 30a along the first moving trajectory p1 and provided with a first chuck base 24a mounted on a circumference thereof, a first motor 34a rotating the first driving shaft 28a, a second endless belt 32b wound between a second driving shaft 28b and a second driven shaft 30b along the second moving trajectory p2 and provided with a second chuck base 24b mounted on a circumference thereof, and a second motor 34b rotating the second driving shaft 28b. As the first and second motors 34a and 34b can be used a servomotor or a stepping motor capable of controlling the speed and position of the first and second feeding chucks 22a and 22b. According to this configuration, the first and second feeding chucks 22a and 22b can be reciprocated (lifted) independently of each other between the feeding position and the delivery position along the first and second moving trajectories p1 and p2 by separately rotating the first and second driving shafts 28a and 28b in normal and reverse directions. Alternatively, a loop track may be used as mentioned later to move (raise) the first and second feeding chucks 22a and 22b to the delivery position, and then move (lower) the first and second feeding chucks 22a and 22b to the feeding position by rotating the first and second driving shafts 28a and 28b in the normal direction to turn the first and second feeding chucks 22a and 22b.
A moving device 26 in another example (not shown) comprises a single motor capable of controlling speed and position instead of the first and second motors 34a and 34b, a first clutch for transmitting or interrupting rotation between the motor and the first driving shaft 28a under control, and a second clutch for transmitting or interrupting rotation between the motor and the second driving shaft 28b under control. Even in such a configuration, it is possible to move the first and second feeding chucks 22a and 22b independently of each other by controlling the timing of engaging the first and second clutches.
A moving device 26 in further another example (not shown) comprises the first and second electric linear actuators or first and second air cylinders (e.g., rod-less cylinders) for moving the first and second feeding chucks 22a and 22b independently of each other along the first and second moving trajectories p1 and p2.
As shown in
As shown in
As shown in
The suction unit 16 is provided at a front lower part of the apparatus 10 with a suction introduction passage 54 for taking a lower part of the cloth C held by the spreading unit 14 by suction. A lower end of the suction introduction passage 54 is connected to a suction fan 58 through a lower duct 56. A vertical duct 60 extending in the up-down direction is formed in the back face of the suction introduction passage 54. A flow path switching plate 62 is provided between the lower duct 56, the vertical duct 60 and the suction fan 58. The flow path switching plate 62 is constructed so as to selectively communicate an opening of the lower duct 56 or an opening of the vertical duct 60 to the suction fan 58.
The forwarding unit 18 is disposed between the spreading unit 14, and the transfer unit 20 and receives the cloth C from the spreading unit 14 and delivers the cloth C to the transfer unit 20. The forwarding unit 18 includes a vacuum box 64 for holding the upper edge of the cloth C by suction under the action of negative pressure, and an air cylinder, a servomotor or the like as an advance/retract means 65 for advancing and retracting the vacuum box 64 in the front-rear direction.
The transfer unit 20 comprises a primary belt conveyor 66 for receiving the cloth C in a spreading state from the spreading unit 14 through the forwarding unit 18 and a secondary belt conveyor 68 disposed on the rear thereof. The primary belt conveyor 66 has a large number of small holes on its conveying surface. On the back side of the conveying surface of the primary belt conveyor 66 is disposed a vacuum box 70 connected to the suction fan 58 through the vertical duct 60. The opening of the vertical duct 60 is opened by the flow path switching plate 62 to render the vacuum box 70 into a negative pressure, whereby the cloth C is delivered backward by the primary belt conveyor 66 while suctioning. The secondary belt conveyor 68 can deliver the cloth C into the processing device for the next process such as a roll ironer.
The cloth spreading apparatus 10 further comprises a control device 72 for controlling the operation of the moving device 26 and the traversing device 48. The control device 72 is a computer comprised of a CPU, a memory and so on. It is possible to synchronously move the feeding chucks 22a and 22b and the spreading chucks 42a and 42b by controlling the operation of the moving device 26 and the traversing device 48 through the control device 72. This will be described in detail later.
In order to spread the cloth C by using the cloth spreading apparatus 10, as shown in
Next, when the worker presses a switch button (not shown), as shown in
When the corner Ca of the adjacent corners Ca and Cb of the cloth C is raised earlier by the first feeding chuck 22a, the other corner Cb of the cloth C is left in the vicinity of the feeding position, so that the corner Cb can be easily held with the second feeding chuck 22b that is on standby at the feeding position by the worker.
The earlier moving distance L can be arbitrarily preset so as not to exceed the distance between the adjacent corners Ca and Cb of the cloth C (the length of one side of the cloth C). In particular, when feeding plural cloths C having different sizes, it is preferable that a plurality of earlier moving distances L are set stepwise in accordance with the sizes of the cloths C.
Next, referring back to
As shown in
Subsequently, the first motor 34a is rotated by the control device 72 in the reverse direction to move (descend) the first feeding chuck 22a to the original feeding position as shown in
Next, as shown in
The subsequent actions will be described with reference to
When the flow path switching plate 62 is switched again to close the opening of the suction introduction passage 54, an airflow inside the suction introduction passage 54 is stopped to create a state where the cloth C can be easily pulled up. In this state, a vacuum box 64 in the forwarding unit 18 is advanced into contact with the cloth C, while the chuck portions of the spreading chucks 42a and 42b are opened and at the same time air is blown, for example, from the front side, whereby the upper end portion of the cloth C is sucked onto the vacuum box 64 in the forwarding unit 18.
Next, an upper portion of the cloth C is pulled onto the primary belt conveyor 66 of the transfer unit 20 while retracting the vacuum box 64. Then, the upper portion of the cloth C is attracted to the conveying surface of the primary belt conveyor 66 by suction force from a vacuum box 70 communicating with a suction fan 58, whereby the cloth C is moved from the forwarding unit 18 to the primary belt conveyor 66.
Subsequently, the cloth C is transferred from the primary belt conveyor 66 to the secondary belt conveyor 68 and discharged to the processing device for the next process.
As mentioned above, according to the cloth spreading apparatus 10 of this embodiment, the first and second feeding chucks 22a and 22b can be moved between the feeding position and the delivery position independently of each other. The first feeding chuck 22a is moved toward the delivery position earlier than the second feeding chuck 22b while grasping one corner Ca of the adjacent corners Ca and Cb of the cloth C, whereby the corner Cb of the cloth C to be grasped by the second feeding chuck 22b can appear near the feeding position. Thus, the troublesome work for finding the corner Cb by pulling can be eliminated from the worker to obtain excellent feeding efficiency.
According to the cloth spreading apparatus 10 of this embodiment, it is configured that the distance L (earlier moving distance) that the first feeding chuck 22a is moved toward the delivery position earlier than the second feeding chuck 22b can be arbitrarily set, so that it is possible to easily feed cloth C of different sizes by changing the earlier moving distance L according to the size of the cloth C to be fed.
According to the cloth spreading apparatus 10 of this embodiment, it is configured that the earlier moving distances L can be set stepwise in plural values, so that the earlier moving distance L can be easily changed when feeding different size cloths C.
According to the cloth spreading apparatus 10 of this embodiment, it is configured that the first and second feeding chucks 22a and 22b move toward the delivery position at a synchronous speed from each other in a state of grasping the cloth C with both of the first and second feeding chucks 22a and 22b, whereby the relative distance between the first and second feeding chucks 22a and 22b during the moving can be maintained constantly to prevent application of an unnecessary tensile force to the cloth C during the moving.
Alternatively, it is configured that the second feeding chuck 22b move toward the delivery position at a speed faster than the earlier first feeding chuck 22a in a state of grasping the cloth C with both of the first feeding chuck 22a and second feeding chuck 22b, whereby it is made possible not only to prevent application of an unnecessary tensile force to the cloth C during the moving, but also to shorten the time of delivering the cloth C to the spreading unit 14 by the second feeding chuck 22b to increase the work efficiency.
According to the cloth spreading apparatus 10 of this embodiment, it is configured that the first feeding chuck 22a that departed earlier toward the delivery position performs the delivery of the cloth C to the first spreading chuck 42a earlier than the second feeding chuck 22b and returns to the original feeding position earlier than the second feeding chuck 22b after the completion of the delivery. Thus, it is possible to shorten the time of returning the first feeding chuck 22a to the original feeding position to render into a waiting state for feeding the next cloth C, which can increase the work efficiency.
The present invention is described based on the illustrated example, but the invention is not limited to this example and can be properly modified within the scope described in the claims. For example, in the cloth spreading apparatus 10 shown in
In the illustrated cloth spreading apparatus 10, the first and second feeding chucks 22a and 22b are constructed to directly deliver the cloth C to the spreading chucks 42a and 42b. A waiting chuck (not shown) may be separately provided between the first and second feeding chucks 22a and 22b and the spreading chucks 42a and 42b, and the cloth C may be indirectly delivered to the spreading chucks 42a and 42b through the waiting chuck. In the latter case, even when the spreading work is conducted by the spreading chucks 42a and 42b and hence the cloth C cannot be received from the first and second feeding chucks 22a and 22b, the waiting chuck can receive the cloth C to be fed, which can increase the work efficiency.
Also, the separate moving trajectories of the moving device in the present invention include not only a linear trajectory that an outward path and a homeward path are located on the same trajectory, but also an elliptical loop trajectory (cyclic trajectory) that an outward path and a homeward path are located on different trajectories. For example, the first and second feeding chucks 22a and 22b may be caused to orbit along an elliptical loop track (guide rail) in a direction from the feeding position toward the delivery position instead of reciprocating between the feeding position and the delivery position along a linear track, whereby the feeding chucks 22a and 22b may be moved from the feeding position to the delivery position and from the delivery position to the feeding position.
According to the cloth spreading apparatus of the present invention, the burden on workers and working hours can be reduced by eliminating the troublesome work of pulling the cloth in the holding of the cloth by the feeding chucks.
Number | Date | Country | Kind |
---|---|---|---|
2017-015723 | Jan 2017 | JP | national |
2018-003637 | Jan 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/002756 | 1/29/2018 | WO | 00 |