Laundry processes for clothing often employ the use of a drying device to remove residue water from clothing articles. To reduce energy requirements, wet clothing articles may be placed on a drying rack outside in order for water to evaporate naturally via sunlight and fresh air. However, the efficiency of such drying racks may vary significantly based on factors outside the user's control, such as high humidity. Thus, there is a need for improvement to existing drying devices.
The following is a brief summary of subject matter that is described in greater detail herein. This summary is not intended to be limiting as to the scope of the claims.
Described herein are various technologies relating to clothes drying devices which provide increased efficiency and/or drying processing speeds. An example system may include a clothing drying device with a shape that resembles an umbrella. Such a device may include a rack capable of supporting a plurality of clothing articles thereon in place of the canopy associated with a typical umbrella. The rack may extend around a vertical support member such as a pole or tube that is operative to support the rack (and the clothing articles attached thereto) above the ground.
In an example embodiment, the rack may be operative to move between a lower compacted closed position (in which the rack is generally folded around the support member) to an upper expanded open position (in which the rack extends farther radially outwardly from the support member compared to its lower compacted closed position). However, it is to be understood that alternative example embodiments may include a drying device in which the rack remains in the described upper expanded open position, and is not operative to fold into a lower compacted closed position.
In these described example embodiments, the support member may include a lower portion that is operative to be mounted in rigid connection with the ground or in a relatively heavy base. Also the support member may include an upper portion that extends upwardly from the lower portion and to which the rack of the umbrella is mounted when in the open position. In example embodiments, the support member includes a motor therein that is operative to cause the upper portion of the support member to rotate the rack relative to the lower portion of the support member. Electrical power for the motor may be provided via a solar panel mounted to the upper portion of the support member above the rack.
On windless days or days with low velocity winds or intermittent winds, the motor is operative to rotate the rack at a speed of several rotations per minute. This rotational speed causes air currents to continuously move across the surfaces of the clothing articles, which in turn causes a relative higher rate of evaporation of water from the clothing articles compared to the cloths being dried on the device without rotation.
Other aspects will be appreciated upon reading and understanding the attached figures and description.
Various technologies pertaining to drying devices will now be described with reference to the drawings, where like reference numerals represent like elements throughout. In addition, several functional block and schematic diagrams of example devices are illustrated and described herein for purposes of explanation; however, it is to be understood that functionality that is described as being carried out by certain system components, members, and devices may be performed by multiple components, members, and devices. Similarly, for instance, a component/member/device may be configured to perform functionality that is described as being carried out by multiple components/members/devices.
With reference to
As illustrated from a top view perspective in
Referring back to
In an example embodiment, the rack 104 is operative to rotate with respect to the foundation 110. To enable rotation of the rack, the support member 102 of the device may include an upper portion 114 and a lower portion 116 that are operative to rotate with respect to each other. For example, as will be explained in more detail below, the lower portion 116 may include a shaft that extends upwardly into a bore of the upper portion 114 of the support member 102. In this embodiment, the rack 104 is in operative connection with the upper portion 114 of the support member. Also in this described embodiment, the lower portion 116 may be in operative connection with the foundation 110, either directly, or via an extension member 118 such an elongated tube or pipe 118.
As illustrated in
In this described embodiment, the arm members 108 are pivotally connected to the collar member 122. Also, strut members 112 are pivotally connected to the head member 120. In addition, each strut member is pivotally connected to a respective one of the plurality of arm members. Thus, when the collar member is in the first lower position 124 (shown in
As discussed previously, an example embodiment of the described clothes drying device 100 is operative to enable its rack 104 to rotate (i.e., spin) with respect to the foundation 110 to which it is mounted.
The upper portion 114 may correspond to a tube that includes an inner cavity 404. The inner cavity 404 may include mounted therein one or more bearings 406 such as a journal bearing and/or one or more sets of ball bearings. The shaft 402 may extend upwardly through the bearings 406.
In addition, the inner cavity 404 may include a motor 408 mounted therein that is in operative connection with the shaft 402. Further, in this described example, the clothes drying device 100 may include a solar panel 410 that is mounted to the upper portion 114 of the support member 102. Such a solar panel may be comprised of one or more photovoltaic solar cells capable of generating an electrical current responsive to light radiation from sunlight or other sources. The motor 408 may be operative responsive to electrical power generated by the solar panel 410 to cause the rack 104, the solar panel 410, and the upper portion 114 of the support member to rotate with respect to the shaft 402 of the lower portion 116 of the support member.
In example embodiments, the motor may correspond to a DC motor having a spindle 416 that extends therefrom. The shaft and spindle may be cooperatively adapted to engage with each other such that rotation of the spindle 416 of the motor causes the shaft 402 to rotate. In an example embodiment, the motor may be adapted via one or more gears to be operative to rotate the shaft at several rpms responsive to the electrical power produced by the solar panel from sunlight.
In this described embodiment, the lower portion 116 of the support member may include an upwardly facing surface 412 from which the shaft 402 extends in an axial direction therefrom. The upwardly facing surface may have an outer diameter that is larger than the diameter of the shaft. In addition, a lower end of the upper portion 114 of the support member may include a downwardly facing surface 414. Such a downwardly facing surface 414 may include a centrally located opening (e.g., a bore) through which the shaft extends therethrough into the interior area 404 of the upper portion 114 of the support member. In this described embodiment, the upwardly facing surface 412 may be spaced apart from the downwardly facing surface 414. However, in further embodiments the upwardly facing surface 412 may be in sliding contact with the downwardly facing surface 414 when the upper portion 114 of the support member rotates with respect to the lower portion 116 of the support member.
Referring now to
In this example embodiment, the previously described downwardly facing surface 414 may correspond to a lower edge of the motor connection tube 502 and/or a lower edge of the upper portion 114 of the support member. Also, in this example embodiment, the motor connection tube 502 may include two spaced apart ball bearing sets 504, 506 therein. A bearing limit tube 508 may be mounted between the ball bearing sets 504, 506 to maintain the ball bearing sets in spaced apart relation. The shaft 402 extends through the ball bearing sets 504, 506 and the bearing limit tube 508.
As shown in
As discussed previously, the spindle 416 of the motor 408 is operative to engage with the shaft 402. To facilitate this engagement, as shown in
As shown in
In addition, example embodiments of the described clothes drying device may include a switch 708 mounted to the upper portion 114 of the support member. Such a switch may be operative to selectively open and close an electrical circuit that provides electrical power generated by the solar panel to the motor.
In example embodiments, the solar panel 410 may have a single solar cell or a sufficient number of solar cells to produce electrical power that is sufficient to cause the motor 408 to rotate the rack between 2-5 rpms responsive to direct sunlight. For example, in an embodiment, the solar panel 410 may include one or more multicrystalline silicon solar cells capable of outputting 12 volts DC. For example, such a solar panel may be configured in a rectangle with an upper surface with dimensions of 40.5 cm×12 cm and with three solar cells arranged therein. Also, the motor 408 may correspond to a 12 Volt 5 Watt DC gear motor capable of rotating a spindle at 5 RPM.
However, it should be appreciated that alternative embodiments may use other sizes and types of solar cells and motors. For example alternative embodiments may use monocrystalline silicon solar cells or solar cells comprised of other materials. Also, alternative embodiments may use larger or smaller motors with different rotational speed capabilities and power requirements.
In addition, in alternative embodiments, the power supply control system 706 of the solar panel may include a battery which is operative to store electrical power transmitted between the solar panel and motor. However, other embodiments may not include a control circuit and/or a battery.
Referring back to
In addition, it should be appreciated that the location of the junction between the upper portion 114 and lower portion 116 of the support member may be higher than shown in
With reference now to
As illustrated in
Continuing at step 806, the methodology may include a step of rigidly mounting the support member to at least one of the ground and a stand device. The methodology may also include a step 808 of moving the rack from a compacted closed position with the clothes lines and arm members adjacent the support member to an expanded open position in which the arm members extend outwardly from the support member in radial directions and the clothes lines extend in spaced apart relation in operatively supported connection with the arm members.
Continuing at step 810, the methodology may include operating a switch to close a circuit that provides electrical power generated by a solar panel to the motor. After engagement of the switch, the methodology may include a step 812 in which the motor causes the rack and upper portion of the support member to rotate (with respect to the lower portion of the support member) responsive to electrical power generated by the solar panel.
In general, the methodology 800 corresponds to the initial setup of an example clothes drying device by a user. Once the device has been set up, a user may mount clothing articles to the clothes lines using clothes pins or other fasteners. The described switch may be operated to start and stop the rotation of the rack in order to remove and/or add articles of clothing to the clothes lines.
In addition, it should be appreciated that the one or more of the described principles and features described herein related to rotating a rack using a motor powered via a solar panel, may be applied to alternative embodiments of a clothing drying device. For example, the described embodiments of the clothes drying device may include the support arm, and strut members made out of metal such as aluminum and/or steel. However, alternative embodiments may be comprised out of bamboo or other type of wood. In addition, in the described embodiment, the motor is mounted inside the upper portion of the support member. However, in alternative embodiments, the motor may be installed in the lower portion of the support member. Also as described previously, the solar panel may be mounted to the apex of the support member. However, in alternative embodiments, the solar panel (or multiple solar panels) may be mounted in other or additional locations, such as on the arm members.
It is noted that several examples have been provided for purposes of explanation. These examples are not to be construed as limiting the hereto-appended claims. Additionally, it may be recognized that the examples provided herein may be permutated while still falling under the scope of the claims.
This application claims benefit under 35 U.S.C. §119(e) of Provisional Application No. 61/378,630 filed Aug. 31, 2010, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61378630 | Aug 2010 | US |