The present technology may be generally described as providing systems and methods for transmitting backup objects over a network, and specifically efficiently transmitting large backup objects.
Transmitting an object, such as a file, across a network usually requires the transmission of all blocks of data for the object to a block store, i.e., the application program interface (API) provided to write a new data object expect the entire data object to be transmitted. A unique identifier may be assigned to the object when it is stored on the block store. This unique identifier allows for subsequent retrieval of the object from the block store at a later point in time.
According to some embodiments, the present technology may be directed to method of transmitting an object over the network to a deduplicating storage system that uses Merkle Tree representations for objects stored therein.
According to some embodiments, the present technology may be directed to methods that comprise: (a) locating a Merkle tree of a stored object on a deduplicating block store; (b) comparing an object at a source location to the Merkle tree of the stored object; (c) determining changed blocks for the object at a source location; and (d) transmitting a message across a network to the deduplicating block store, the message including the change blocks and Merkle nodes that correspond to the change blocks.
According to some embodiments, the present technology may be directed to systems that comprise: (a) a processor; (b) logic encoded in one or more tangible media for execution by the processor and when executed operable to perform operations comprising: (i) locating a Merkle tree of a stored object on a deduplicating block store; (ii) comparing an object at a source location to the Merkle tree of the stored object; (iii) determining changed blocks for the object at a source location; and (iv) transmitting a message across a network to the deduplicating block store, the message including the change blocks and Merkle nodes that correspond to the change blocks.
According to some embodiments, the present technology may be directed to methods that comprise: (a) generating a first Merkle tree for an object, the first Merkle tree comprising Merkle nodes that represent blocks of the object; (b) examining an input data stream; and (c) generating a second Merkle tree for the object using the input data stream; (d) comparing the first Merkle tree and the second Merkle tree to one another to determine changed Merkle nodes that do not correspond between the first Merkle tree and the second Merkle tree; and (e) transmitting data blocks that correspond to the changed Merkle nodes from a source location to a deduplicating block store.
According to some embodiments, the present technology may be directed to a non-transitory machine-readable storage medium having embodied thereon a program. In some embodiments the program may be executed by a machine to perform a method that includes: (a) locating a Merkle tree of a stored object on a deduplicating block store; (b) comparing an object at a source location to the Merkle tree of the stored object; (c) determining changed blocks for the object at a source location; and (d) transmitting a message across a network to the deduplicating block store, the message including the change blocks and Merkle nodes that correspond to the change blocks.
Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
Generally speaking, the present technology may provide end-to-end deduplication of data by exporting the Merkle Tree via an application programming interface (“API”) used to store/transfer objects into the storage system. In some instances, deduplication may include the creation of Merkle trees that represent an object. These Merkle trees may be exported as a storage API.
The present technology provides methods of transmitting objects from a source to a destination, where the destination storage system is a deduplicating storage system that uses Merkle Tree representations to describe objects. More specifically, the present technology specifies an API for transferring an object more efficiently by, for example, avoiding transmitting chunks of the object that already exist at the destination storage system. An exemplary API exploits the hierarchical nature of the Merkle Tree to reduce the number of round trip messages required by first determining chunks of the object, which already exists at the destination storage system. The present technology extends a Merkle Tree based deduplicating storage system by performing deduplication of data while transmitting the data to the storage system.
A destination cloud-based block store may internally store data in a deduplicating fashion where unique chunks of objects are stored only once. The API of the destination block store may internally store objects in a deduplicated manner such that only unique chunks of the objects are stored and the object is described using a Merkle Tree. As background, a destination cloud-based block store may be referred to as a De-Duplicating Block Store. In some instances, the deduplicating block store may store unique blocks of data. The block store may provide a simple API to provide the following functionalities: (i) PUT: store a block of data with a uniform hash as the key; (ii) GET: read a block with given the uniform hash; (iii) EXIST: lookup if a block with given that the uniform hash already exists. The block store supports for reference count or garbage collection for reclamation of space by unused blocks. It is noteworthy that this block store itself can be viewed as a key-value store where the key is the uniform hash of the block and the value is the data of the block.
In some instances, Merkle trees may be utilized in conjunction with de-duplicating block stores. In some instances, any given stream of data can be stored into a block store as follows: (i) split the stream on chunks of data, store each chunk of data in the block store with the uniform hash of the block as key and take the uniform hash of an extent (continuous blocks) of the stream store in the block store as a block. The uniform hash of this block now represents the entire extent. Similarly, the uniform hashes of continuous extents may be stored as a block, getting back a new uniform hash that represents part of the stream containing those extents. The Merkle tree is built using the aforementioned steps until is a single uniform hash is generated that represents the entire stream. Thus, the identity of an extent, comprised of one or more data blocks, is the hash of the contents of the deepest branch node in which the entire extent is descended. Such an identity of a whole or branch of a Merkle tree is therefore reproducible given the same extent of data. If the blocks are stored into the blocks store in a bottom to top manner such that no Merkle block is stored before storing all the blocks it refers, such an invariant allows the system to assume that if an EXIST check on Merkel root uniform hash returns true, it can be assumed all its children will also return true for their respective EXIST checks. Representing a data stream using Merkel tree provides support for most normal stream operations like (i) read a stream sequentially or randomly; (ii) update a stream giving a new Merkel root for the stream; (iii) concatenate of streams to give a Merkel root for concatenated stream; and so forth. Note that update of a stream is a copy-on-write operations since it will generate a new uniform hash Merkel root.
With regard to the present technology, the Merkle trees may be utilized in transmitting changed blocks over a network. In some instances, changed blocks of an object may be detected by walking a Merkle tree or a plurality of Merkle trees for an object and determining changed blocks. These changed blocks may be transmitted over the network to a block store as well as corresponding Merkle nodes that represent these changed blocks. Using the changed blocks and Merkle nodes, the changed blocks may be incorporated into the block store. These and other advantages of the present technology will be discussed in greater detail herein.
Generally, the present technology provides for a bandwidth optimized, cloud-based object store. The present technology allows for efficient transfer of object/stream of data from client to the cloud data center in a bandwidth optimized fashion. For example, the present technology reduces the transmission (e.g., transfer) of chunks of data that already exists in the data center. The solution is to deploy above de-duplicating object store both on the client side and in the cloud.
In some instances, methods employing the present technology include a step of storing an object in the client side de-duplicating object store and copying a Merkle tree from the client side block store to a data center side block store. The present technology may determine if the blocks of the stream on the client side already exist in the data center and avoid sending them if the blocks do, in fact, exist. Storing the object in the blockstore using a Merkle tree also provides the additional advantage of checking if a larger extent of the stream containing more than one block already exists in the data center. Again, it can be assumed that if an exist check on Merkle root uniform hash returns true than all its children will also return true for exist checks.
The straight-forward algorithm to copy a Merkle tree from source blockstore to destination blockstore is to start from the uniform hash of the root of the Merkle tree and check if it exists in the destination blockstore. If the uniform hash of the root of the tree exists it can be safely assumed that the entire tree exists. If not, a check should be executed against each of the uniform hashes contained in the root Merkle node to determine if they exist in the destination blockstore. This method continues down the tree recursively following the paths that don't exist until the system reaches leaves that don't exist. Leaves that don't exist may be PUT in the destination blockstore. One may then reconstruct the entire tree in the destination blockstore. Note that a Merkle block cannot be put into the block store before all of its children all the way down to the root data blocks are put into the system (this is the sequentially consistent requirement for Merkle heads). Thus this straight forward algorithm has to first descend to the leaves (note each EXISTS call is a message over the WAN) and then PUT (again call over the WAN) blocks bottom up from leaves up to the root Merkle.
The algorithm walks the tree breadth first and pushes all non-existent nodes at a level onto the stack. At the leaf level all the non-existent data blocks are put into the data store. After that, the stack is popped with each node on the stack put into the datastore. Thus an operation to transfer a new version of an object that differs by a single block will result into 2× (height of the tree) calls over the WAN. A WAN optimized algorithm avoids the second set of PUT calls by building the stack on the data center side and then making a single new API call to PUT all the nodes that are to be transferred, while maintaining the sequentially consistent requirement for Merkle heads. If the stack is built at the destination, then the Merkle blocks can be sent only once during the EXISTS check and pushed into the stack at the same time. The WAN optimized copy of Merkle tree protocol defines PUT, GET, EXISTS messages with equivalent bulk variants, which work only on data blocks. The protocol exports the concept of a “group” allowing for a flush/commit operation/message, which guarantees that all previous PUTS in the group are synced, similarly to a write barrier but limited to the group. For Merkle blocks the protocol defines PUSH and POP messages along with bulk variants. Each Merkle tree copy operation may be performed in the context of a single group.
These and other advantage of the present technology will be described below with reference to the drawings (e.g.,
Referring now to the drawings, and more particularly, to
The cloud may be formed, for example, by a network of servers, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource consumers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depend on the type of business associated with the user.
In some instances the block store 105 may include a deduplicating block store 115 that stores blocks of data for one or more objects, such as a file, a group of files, or an entire disk. Additionally the block store 105 may comprise Merkle trees 120 that include hash-type representations of objects within the deduplicating block store 115. That is, for each object (or group of blocks), a Merkle tree exists that represents the blocks of the object.
According to some embodiments, the deduplicating block store 115 may include immutable object addressable block storage. The deduplicating block store 115 may form an underlying storage foundation that allows for the storing of blocks of objects. The identifiers of the blocks are a unique representation of the block, generated for example by using a uniform hash function. The present technology may also use other cryptographic hash functions that would be known to one of ordinary skill in the art with the present disclosure before them.
The architecture 100 may include a deduplication system, hereinafter referred to as system 125 that generates Merkle trees that represent the objects stored in the deduplicating block store 115. Once the Merkle tree for the object has been created, the Merkle tree may be exposed to a client device 130 via an API. The client device 130 may use the API to determine changed blocks for an object and/or transmit the changed blocks to the deduplicating block store 115. In some instances the client device may include an end user computing system, an appliance, such as a backup appliance, a server, or any other computing device that may include objects such as files, directories, disks, and so forth.
In some instances the API may encapsulate messages and their respective operations, allowing for efficient writing of objects over a network, such as network 135. In some instances, the network 135 may comprise a local area network (“LAN”), a wide area network (“WAN”), or any other private or public network, such as the Internet. In some instances the API may utilize various commands such as PUT, GET, and EXIST. The EXIST command allows the system 125 to determine if a block exists in the deduplicating block store 115, as will be described in greater detail below.
According to some embodiments, the API supports two ‘methods’ of transferring an object using Merkle tree semantics. For example, in some embodiments the API may use a reduced number of messages (round trips) but may require buildup of a stack 140 (which can comprise a state stack) the system 125 side. In other embodiments the API may use relatively more messages (round trips) but the stack 140 may be built on the client device 130. Either of these methods provides improved cloud storage (or within dedicated block stores such as various storage media) of objects due to significant reductions in the amount of data transferred to the deduplicating block store 115.
The system 125 may utilize Merkle tree synchronization to facilitate transmission of blocks to the deduplicating block store 115 via the network 135. In general, the Merkle tree synchronization used by the system 125 may allow for relatively lower latency (e.g., less chatty protocols) and improved pipeline utilization compared to current cloud storage method and systems. Additionally, the system 125 may provide progress indicators that provide information indicative of the transfer of changed blocks over the network 135 to the deduplicating block store 115.
Generally, the system 125 may generate a Merkle tree for an object. The Merkle tree may be passed to the block store 105. The Merkle tree for the object is then exposed to the client device as an API or protocol that can be used to determine changes in an object relative to a backup of the object store in the deduplicating block store 115. In some instances, the backup of the object may include a snapshot of the object.
In accordance with the present disclosure, semantics utilized by the system 125 provide that if an EXIST call on a Merkle block returns ‘true’, then the whole tree relative to any Merkle block as root (e.g., parent Merkle node) is considered to exist. Thus, a block store associated with a Merkle node cannot be put into the deduplicating block store 115 before all of the blocks associated with children Merkle nodes are placed into the deduplicating block store 115. In other words, the system 125 may rely on sequential consistency of Merkle nodes within a Merkle tree when analyzing any Merkle node head within the Merkle tree. The system 125 may facilitate a Merkle tree copy from one datastore to another, in a bottom-to-top manner so as to not break the above semantic requirements.
In some instances, the algorithm utilized by the system 125 walks the Merkle tree breadth first and pushes all missing (e.g., non-existent) nodes at a given level of the Merkle tree onto the stack 140. Again, the stack 140 may exist on the block store 105 or the client device 130.
At the leaf level, all the missing data blocks may be put into the deduplicating block store 115. Subsequently, the stack 140 can be popped with each node on the stack put into the block store 105. It is noteworthy that even if a stack is built, a sync or copy protocol used by the system 125 should begin at a root node and proceed downwardly though the Merkle tree in a top-to-bottom manner, performing EXIST checks on all Merkle nodes in the Merkle tree. If the system 125 determines Merkle nodes that exist, the system 125 may avoid sending these existing subtrees to the block store 105. The term “existing” should be understood to include nodes that are substantially identical (e.g., not a changed or new node).
If the stack 140 is built at the client device 130 the Merkle nodes may be sent twice. The Merkle nodes may be sent once to allow the system 125 to perform top-to-bottom EXIST checks on each Merkle node within a Merkle tree and once for popping the stack 140 for synchronization with the block store 105.
However, if the stack 140 is built at the block store 105 the Merkle blocks may be sent only once during EXIST checks and pushed into the stack 140 at the same time. According to some embodiments the stack 140 serves another purpose in that it catalogs work to be performed to sync a Merkle Tree from the client device 130 to block store 105. The system 125 may enable a “progress indicator” that represents the stack 140.
According to some embodiments, the protocols used by the system 125 may define PUT, GET, and EXIST messages with equivalent bulk variants which work on data blocks. The protocol may be used to export the concept of a “group,” allowing for a flush and/or commit operation (e.g., message) which guarantees that previous PUTS in the group are synced. This functionality is similar to a write barrier but limited to the group. For Merkle blocks the protocol defines PUSH and POP messages along with bulk variants. Each Merkle tree copy operation may be executed in the context of a single group.
Thus, when a non-existent Merkle node is detected, the system 125 may gather block(s) for the Merkle node (or all blocks for child Merkle nodes associated with the non-existent Merkle node) and POP the stack 140.
According to some embodiments, a stratum may be used as the base of the data storage architecture utilized herein. The stratum may consist of a block store, such as deduplicating block store 115 and corresponding Merkle trees. The deduplicating block store 115 may be a content-unaware layer responsible for storing, ref-counting, and/or deduplication. The Merkle Tree data structures described herein may, using the deduplicating block store 115, encapsulate object data as a collection of blocks optimized for both differential and offsite tasks. The block store 105 provides support for transferring a Merkle tree (with all its data blocks) between the client device 130 and the block store 105. A block store on the client device may proactively send data blocks to the block store in order to provide low latency when the system 125 tries to send a block from the client device to the block store.
The stratum block store provides unstructured block storage and may include the following features. The block store may be adapted to store a new block and encrypt the block as needed using context and/or identifiers. The block store may also deduplicate blocks, storing each unique block only once. The block store may also maintain a ref-count or equivalent mechanism to allow rapid reclamation of unused blocks, as well as being configured to retrieve a previously stored block and/or determine if a block exists in the block store given a particular hash (e.g., Merkle node).
Various applications may store Merkle tree identifiers (e.g., root hashes) within a Merkle tree, thus creating a hierarchy building from individual file Merkles to restore point Merkles, representing an atomic backup set.
Again, the use of Merkle trees allows for efficient identification of differences or similarities between multiple Merkle trees (whole or partial). These multiple Merkle trees correspond to Merkle trees generated for an object at different points in time.
The identity property of any Merkle node relative to its child nodes provides an efficient method for identification of blocks which do not already exist on a remote system, such as a cloud block store. The Stratum Merkle functions utilized by the system 125 may export various interfaces to the client device. For example, the system 125 may allow for stream-based write operations where a new Merkle tree is constructed based on an input data stream. In other instances, the system may allow for stream-based read operations where data blocks described by the Merkle are presented sequentially.
In other instances, the system 125 may allow for random-based read operations of block in the block store by using arbitrary offset and size reads. Additionally, the system 125 may generate comparisons that include differences between two or more Merkle trees for an object.
The system 125 may allow for stream-based copy-on-write operations. For example, given an input data stream of offset and extent data and a predecessor Merkle tree, a new Merkle tree may be constructed by the system 125, which is equivalent to the predecessor modified by the change blocks in the input data stream.
In some instances the stratum Merkle tree uses a stratum block store to store its blocks, both data blocks and Merkle blocks (e.g. Merkle nodes). The blocks may be stored into the blocks store from the bottom up so that no Merkle block is stored before storing all the blocks to which it refers. This feature allows the Merkle tree layer and other layers using stratum block store to safely assume that if an EXIST check on a particular Merkle block returns true, all its children nodes will also return true for their EXIST checks. Thus, EXIST checks need not be performed on these child nodes, although in some instances, EXIST checks may nevertheless be performed.
The method may comprise a step 605 of locating a Merkle tree of a previously stored object on a deduplicating block store Merkle. The Merkle tree may comprise a hash table representation of blocks of data for the stored object. The Merkle tree for the object preferably comprises an object identifier that uniquely identifies the stored object within the deduplicating block store.
The method also comprises comparing 610 an object at a source location to the Merkle tree of the stored object. The object at the source location may include changed blocks compared to the stored object. Thus, the method may include a step 615 of determining changed blocks for the object at the source location. The system may correlate the object at the source location with the stored object on the deduplicating block store using the unique identifier assigned to the stored object.
Once changed blocks have been identified, the method may include a step 620 of transmitting a message across a network to the deduplicating block store, the message including the change blocks and Merkle nodes that correspond to the change blocks.
The method may also include 625 synchronizing the transmitted Merkle nodes for the change blocks with Merkle nodes of the Merkle tree of the stored object, as well as a step 630 of updating the deduplicating block store with the change blocks based upon the synchronized Merkle tree nodes.
The components shown in
Mass storage device 730, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by the processor 710. Mass storage device 730 can store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 720.
Portable storage device 740 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computing system 700 of
Input devices 760 provide a portion of a user interface. Input devices 760 may include an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the computing system 700 as shown in
Graphics display 770 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 770 receives textual and graphical information, and processes the information for output to the display device.
Peripheral device(s) 780 may include any type of computer support device to add additional functionality to the computing system. Peripheral device(s) 780 may include a modem or a router.
The components contained in the computing system 700 of
Some of the above-described functions may be composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions may be retrieved and executed by the processor. Some examples of storage media are memory devices, tapes, disks, and the like. The instructions are operational when executed by the processor to direct the processor to operate in accord with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. The terms “computer-readable storage medium” and “computer-readable storage media” as used herein refer to any medium or media that participate in providing instructions to a CPU for execution. Such media can take many forms, including, but not limited to, non-volatile media, volatile media and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as a fixed disk. Volatile media include dynamic memory, such as system RAM. Transmission media include coaxial cables, copper wire and fiber optics, among others, including the wires that comprise one embodiment of a bus. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic medium, a CD-ROM disk, digital video disk (DVD), any other optical medium, any other physical medium with patterns of marks or holes, a RAM, a PROM, an EPROM, an EEPROM, a FLASHEPROM, any other memory chip or data exchange adapter, a carrier wave, or any other medium from which a computer can read.
Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5379412 | Eastridge et al. | Jan 1995 | A |
5574905 | deCarmo | Nov 1996 | A |
5860107 | Patel | Jan 1999 | A |
6122629 | Walker et al. | Sep 2000 | A |
6205527 | Goshey et al. | Mar 2001 | B1 |
6233589 | Balcha et al. | May 2001 | B1 |
6272492 | Kay | Aug 2001 | B1 |
6411985 | Fujita et al. | Jun 2002 | B1 |
6604236 | Draper et al. | Aug 2003 | B1 |
6629110 | Cane et al. | Sep 2003 | B2 |
6651075 | Kusters et al. | Nov 2003 | B1 |
6971018 | Witt et al. | Nov 2005 | B1 |
7024581 | Wang et al. | Apr 2006 | B1 |
7085904 | Mizuno et al. | Aug 2006 | B2 |
7266655 | Escabi, II et al. | Sep 2007 | B1 |
7401192 | Stakutis et al. | Jul 2008 | B2 |
7406488 | Stager et al. | Jul 2008 | B2 |
7546323 | Timmins et al. | Jun 2009 | B1 |
7620765 | Ohr et al. | Nov 2009 | B1 |
7631155 | Bono et al. | Dec 2009 | B1 |
7647338 | Lazier et al. | Jan 2010 | B2 |
7676763 | Rummel | Mar 2010 | B2 |
7730425 | de los Reyes et al. | Jun 2010 | B2 |
7743038 | Goldick | Jun 2010 | B1 |
7752487 | Feeser et al. | Jul 2010 | B1 |
7769731 | O'Brien | Aug 2010 | B2 |
7797582 | Stager et al. | Sep 2010 | B1 |
7809688 | Cisler et al. | Oct 2010 | B2 |
7832008 | Kraemer | Nov 2010 | B1 |
7844850 | Yasuzato | Nov 2010 | B2 |
7873601 | Kushwah | Jan 2011 | B1 |
7930275 | Chen et al. | Apr 2011 | B2 |
7966293 | Owara et al. | Jun 2011 | B1 |
8037345 | Iyer et al. | Oct 2011 | B1 |
8046632 | Miwa et al. | Oct 2011 | B2 |
8060476 | Afonso et al. | Nov 2011 | B1 |
8099391 | Monckton | Jan 2012 | B1 |
8099572 | Arora et al. | Jan 2012 | B1 |
8117163 | Brown et al. | Feb 2012 | B2 |
8200926 | Stringham | Jun 2012 | B1 |
8224935 | Bandopadhyay et al. | Jul 2012 | B1 |
8244914 | Nagarkar | Aug 2012 | B1 |
8245156 | Mouilleseaux et al. | Aug 2012 | B2 |
8260742 | Cognigni et al. | Sep 2012 | B2 |
8279174 | Jee et al. | Oct 2012 | B2 |
8296410 | Myhill et al. | Oct 2012 | B1 |
8321688 | Auradkar et al. | Nov 2012 | B2 |
8332442 | Greene | Dec 2012 | B1 |
8352717 | Campbell et al. | Jan 2013 | B2 |
8381133 | Iwema et al. | Feb 2013 | B2 |
8402087 | O'Shea et al. | Mar 2013 | B2 |
8407190 | Prahlad et al. | Mar 2013 | B2 |
8412680 | Gokhale et al. | Apr 2013 | B1 |
8417674 | Provenzano | Apr 2013 | B2 |
8504785 | Clifford et al. | Aug 2013 | B1 |
8549432 | Warner | Oct 2013 | B2 |
8572337 | Gokhale et al. | Oct 2013 | B1 |
8589350 | Lalonde et al. | Nov 2013 | B1 |
8589913 | Jelvis et al. | Nov 2013 | B2 |
8600947 | Freiheit et al. | Dec 2013 | B1 |
8601389 | Schulz et al. | Dec 2013 | B2 |
8606752 | Beatty et al. | Dec 2013 | B1 |
8639917 | Ben-Shaul et al. | Jan 2014 | B1 |
8676273 | Fujisaki | Mar 2014 | B1 |
8745003 | Patterson | Jun 2014 | B1 |
8886611 | Caputo | Nov 2014 | B2 |
8924360 | Caputo | Dec 2014 | B1 |
8954544 | Edwards | Feb 2015 | B2 |
9104621 | Caputo | Aug 2015 | B1 |
9110964 | Shilane | Aug 2015 | B1 |
9213607 | Lalonde et al. | Dec 2015 | B2 |
9235474 | Petri et al. | Jan 2016 | B1 |
9292153 | Edwards et al. | Mar 2016 | B1 |
9397907 | Edwards et al. | Jul 2016 | B1 |
9559903 | Edwards | Jan 2017 | B2 |
20010034737 | Cane et al. | Oct 2001 | A1 |
20010056503 | Hibbard | Dec 2001 | A1 |
20020169740 | Korn | Nov 2002 | A1 |
20030011638 | Chung | Jan 2003 | A1 |
20030158873 | Sawdon et al. | Aug 2003 | A1 |
20030177293 | Bilak et al. | Sep 2003 | A1 |
20030208492 | Winiger et al. | Nov 2003 | A1 |
20040030852 | Coombs et al. | Feb 2004 | A1 |
20040044707 | Richard | Mar 2004 | A1 |
20040073560 | Edwards | Apr 2004 | A1 |
20040073677 | Honma et al. | Apr 2004 | A1 |
20040093474 | Lin et al. | May 2004 | A1 |
20040098423 | Chigusa et al. | May 2004 | A1 |
20040233924 | Bilak et al. | Nov 2004 | A1 |
20040260973 | Michelman | Dec 2004 | A1 |
20050010835 | Childs et al. | Jan 2005 | A1 |
20050027748 | Kisley | Feb 2005 | A1 |
20050114290 | Borthakur et al. | May 2005 | A1 |
20050154937 | Achiwa | Jul 2005 | A1 |
20050171979 | Stager et al. | Aug 2005 | A1 |
20050223043 | Randal et al. | Oct 2005 | A1 |
20050273654 | Chen et al. | Dec 2005 | A1 |
20050278583 | Lennert et al. | Dec 2005 | A1 |
20050278647 | Leavitt et al. | Dec 2005 | A1 |
20060013462 | Sadikali | Jan 2006 | A1 |
20060047720 | Kulkarni et al. | Mar 2006 | A1 |
20060064416 | Sim-Tang | Mar 2006 | A1 |
20060224636 | Kathuria et al. | Oct 2006 | A1 |
20070033301 | Aloni et al. | Feb 2007 | A1 |
20070038884 | Campbell et al. | Feb 2007 | A1 |
20070061385 | Clark et al. | Mar 2007 | A1 |
20070112895 | Ahrens et al. | May 2007 | A1 |
20070113032 | Kameyama et al. | May 2007 | A1 |
20070176898 | Suh | Aug 2007 | A1 |
20070180207 | Garfinkle | Aug 2007 | A1 |
20070198789 | Clark et al. | Aug 2007 | A1 |
20070204166 | Tome et al. | Aug 2007 | A1 |
20070208918 | Harbin et al. | Sep 2007 | A1 |
20070220029 | Jones et al. | Sep 2007 | A1 |
20070226400 | Tsukazaki | Sep 2007 | A1 |
20070233699 | Taniguchi et al. | Oct 2007 | A1 |
20070250302 | Xu et al. | Oct 2007 | A1 |
20070260842 | Faibish et al. | Nov 2007 | A1 |
20070276916 | McLoughlin et al. | Nov 2007 | A1 |
20070283017 | Anand et al. | Dec 2007 | A1 |
20070283343 | Aridor et al. | Dec 2007 | A1 |
20070288525 | Stakutis et al. | Dec 2007 | A1 |
20070288533 | Srivastava et al. | Dec 2007 | A1 |
20070294321 | Midgley et al. | Dec 2007 | A1 |
20080005468 | Faibish et al. | Jan 2008 | A1 |
20080010422 | Suzuki et al. | Jan 2008 | A1 |
20080027998 | Hara | Jan 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080082310 | Sandorfi et al. | Apr 2008 | A1 |
20080133622 | Brown et al. | Jun 2008 | A1 |
20080141018 | Tanaka et al. | Jun 2008 | A1 |
20080154979 | Saitoh et al. | Jun 2008 | A1 |
20080162590 | Kundu et al. | Jul 2008 | A1 |
20080162607 | Torii et al. | Jul 2008 | A1 |
20080201315 | Lazier et al. | Aug 2008 | A1 |
20080229050 | Tillgren | Sep 2008 | A1 |
20080307345 | Hart et al. | Dec 2008 | A1 |
20080307527 | Kaczmarski et al. | Dec 2008 | A1 |
20090089253 | Huang et al. | Apr 2009 | A1 |
20090094427 | Sano | Apr 2009 | A1 |
20090164527 | Spektor et al. | Jun 2009 | A1 |
20090185500 | Mower et al. | Jul 2009 | A1 |
20090216973 | Nakajima et al. | Aug 2009 | A1 |
20090248755 | Watanabe et al. | Oct 2009 | A1 |
20090309849 | Iwema et al. | Dec 2009 | A1 |
20090319653 | Lorenz et al. | Dec 2009 | A1 |
20090327964 | Mouilleseaux et al. | Dec 2009 | A1 |
20100077165 | Lu et al. | Mar 2010 | A1 |
20100095077 | Lockwood | Apr 2010 | A1 |
20100104105 | Schmidt et al. | Apr 2010 | A1 |
20100107155 | Banerjee et al. | Apr 2010 | A1 |
20100114832 | Lillibridge et al. | May 2010 | A1 |
20100165947 | Taniuchi et al. | Jul 2010 | A1 |
20100179973 | Carruzzo | Jul 2010 | A1 |
20100192103 | Cragun et al. | Jul 2010 | A1 |
20100205152 | Ansari et al. | Aug 2010 | A1 |
20100228999 | Maheshwari et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100262637 | Akagawa et al. | Oct 2010 | A1 |
20100268689 | Gates et al. | Oct 2010 | A1 |
20100318748 | Ko et al. | Dec 2010 | A1 |
20100325377 | Lango et al. | Dec 2010 | A1 |
20100332454 | Prahlad et al. | Dec 2010 | A1 |
20110041004 | Miwa et al. | Feb 2011 | A1 |
20110047405 | Marowsky-Bree et al. | Feb 2011 | A1 |
20110055399 | Tung et al. | Mar 2011 | A1 |
20110055471 | Thatcher et al. | Mar 2011 | A1 |
20110055500 | Sasson et al. | Mar 2011 | A1 |
20110082998 | Boldy et al. | Apr 2011 | A1 |
20110106768 | Khanzode et al. | May 2011 | A1 |
20110154268 | Trent, Jr. et al. | Jun 2011 | A1 |
20110218966 | Barnes et al. | Sep 2011 | A1 |
20110238937 | Murotani et al. | Sep 2011 | A1 |
20110264785 | Newman et al. | Oct 2011 | A1 |
20110265143 | Grube et al. | Oct 2011 | A1 |
20110295811 | Cherkasova et al. | Dec 2011 | A1 |
20110302502 | Hart et al. | Dec 2011 | A1 |
20120013540 | Hogan | Jan 2012 | A1 |
20120065802 | Seeber et al. | Mar 2012 | A1 |
20120084501 | Watanabe et al. | Apr 2012 | A1 |
20120124307 | Ashutosh et al. | May 2012 | A1 |
20120130956 | Caputo | May 2012 | A1 |
20120131235 | Nageshappa et al. | May 2012 | A1 |
20120179655 | Beatty et al. | Jul 2012 | A1 |
20120204060 | Swift et al. | Aug 2012 | A1 |
20120210398 | Triantafillos et al. | Aug 2012 | A1 |
20120215743 | Triantafillos et al. | Aug 2012 | A1 |
20130018946 | Brown et al. | Jan 2013 | A1 |
20130024426 | Flowers et al. | Jan 2013 | A1 |
20130036095 | Titchener et al. | Feb 2013 | A1 |
20130091183 | Edwards et al. | Apr 2013 | A1 |
20130091471 | Gutt et al. | Apr 2013 | A1 |
20130166511 | Ghatty et al. | Jun 2013 | A1 |
20130238562 | Kumarasamy et al. | Sep 2013 | A1 |
20130238752 | Park | Sep 2013 | A1 |
20130318046 | Clifford et al. | Nov 2013 | A1 |
20140006858 | Helfman et al. | Jan 2014 | A1 |
20140032498 | Lalonde et al. | Jan 2014 | A1 |
20140047081 | Edwards | Feb 2014 | A1 |
20140052694 | Dasari et al. | Feb 2014 | A1 |
20140053022 | Forgette et al. | Feb 2014 | A1 |
20140089619 | Khanna et al. | Mar 2014 | A1 |
20140101113 | Zhang et al. | Apr 2014 | A1 |
20140149358 | Aphale et al. | May 2014 | A1 |
20140189680 | Kripalani | Jul 2014 | A1 |
20140201137 | Vibhor et al. | Jul 2014 | A1 |
20140244599 | Zhang et al. | Aug 2014 | A1 |
20140303961 | Leydon et al. | Oct 2014 | A1 |
20150046404 | Caputo | Feb 2015 | A1 |
20150095691 | Edwards | Apr 2015 | A1 |
20160054911 | Edwards et al. | Feb 2016 | A1 |
20160055062 | Petri et al. | Feb 2016 | A1 |
20160105312 | Edwards | Apr 2016 | A1 |
20160110261 | Parab et al. | Apr 2016 | A1 |
20160162349 | Edwards et al. | Jun 2016 | A1 |
20170075719 | Scallan et al. | Mar 2017 | A1 |
20170090786 | Parab et al. | Mar 2017 | A1 |
Entry |
---|
Caputo, “Systems and Methods for Restoring a File”, U.S. Appl. No. 12/895,275, filed Sep. 30, 2010. |
Li et al., “Efficient File Replication,” U.S. Appl. No. 13/671,498, filed Nov. 7, 2012. |
Non-Final Office Action, Jun. 1, 2016, U.S. Appl. No. 15/019,951, filed Feb. 9, 2016. |
Advisory Action, Jun. 8, 2016, U.S. Appl. No. 14/564,082, filed Dec. 8, 2014. |
Non-Final Office Action, Oct. 5, 2016, U.S. Appl. No. 14/970,480, filed Dec. 15, 2015. |
Notice of Allowance, Oct. 18, 2016, U.S. Appl. No. 14/564,082, filed Dec. 8, 2014. |
Final Office Action, Oct. 27, 2016, U.S. Appl. No. 14/977,581, filed Dec. 21, 2015. |
Non-Final Office Action, Jun. 28, 2016, U.S. Appl. No. 13/671,498, filed Nov. 7, 2012. |
Non-Final Office Action, Aug. 10, 2016, U.S. Appl. No. 14/522,527, filed Oct. 23, 2014. |
Non-Final Office Action, Aug. 23, 2016, U.S. Appl. No. 13/633,695, filed Oct. 2, 2012. |
Corrected Notice of Allowability, Dec. 5, 2016, U.S. Appl. No. 14/564,082, filed Dec. 8, 2014. |
Non-Final Office Action, Dec. 9, 2016, U.S. Appl. No. 15/019,951, filed Feb. 9, 2016. |
Final Office Action, Dec. 27, 2016, U.S. Appl. No. 13/671,498, filed Nov. 7, 2012. |
Advisory Action, Feb. 7, 2017, U.S. Appl. No. 14/977,581, filed Dec. 21, 2015. |
Final Office Action, Feb. 9, 2017, U.S. Appl. No. 14/522,527, filed Oct. 23, 2014. |
Advisory Action, Feb. 13, 2017, U.S. Appl. No. 15/019,951, filed Feb. 9, 2016. |
Final Office Action, Mar. 6, 2017, U.S. Appl. No. 13/633,695, filed Oct. 2, 2012. |
Non-Final Office Action, Mar. 22, 2017, U.S. Appl. No. 14/864,850, filed Sep. 24, 2015. |
Advisory Action, Mar. 30, 2017, U.S. Appl. No. 14/977,581, filed Dec. 21, 2015. |
Advisory Action, Apr. 20, 2017, U.S. Appl. No. 13/671,498, filed Nov. 7, 2012. |
Advisory Action, Apr. 25, 2017, U.S. Appl. No. 14/522,527, filed Oct. 23, 2014. |