This disclosure relates generally to sports equipment, and relates more particularly to club heads and related methods.
The launch angle and back spin applied to a golf ball struck by a golf club can impact the flight distance of the golf ball. The orientation of the strike face or strike plate of a golf club can impact the launch angle and back spin applied to a golf ball struck by the golf club. For example, the launch angle can be affected by the loft angle of the striking face or striking plate of the golf club. Further, the back spin can be applied to the golf ball through the gear effect of the strike face or strike plate. In general, increasing the launch angle and/or decreasing the back spin can increase the flight distance of the golf ball.
To facilitate further description of the embodiments, the following drawings are provided in which:
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the invention. Additionally, elements in the drawing figures are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present invention. The same reference numerals in different figures denote the same elements.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, device, or apparatus that comprises a list of elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such process, method, system, article, device, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
The terms “couple,” “coupled,” “couples,” “coupling,” and the like should be broadly understood and refer to connecting two or more elements mechanically and/or otherwise. Two or more mechanical elements may be mechanically coupled together, but not be electrically or otherwise coupled together. Coupling may be for any length of time, e.g., permanent or semi-permanent or only for an instant.
“Mechanical coupling” and the like should be broadly understood and include mechanical coupling of all types.
The absence of the word “removably,” “removable,” and the like near the word “coupled,” and the like does not mean that the coupling, etc. in question is or is not removable.
Some embodiments include a club head. The club head comprises a top end and a bottom end opposite the top end. Further, the club head comprises a front portion comprising a front surface. The front surface is associated with a face plane and a loft plane. Further still, the club head comprises a body portion comprising a crown surface and a sole surface. Meanwhile, the club head comprises a deflection mechanism located at an interface of the front portion and the body portion. The deflection mechanism is configured so that the front surface is able to deflect toward the body portion at one of the top end or the bottom end of the club head and about an other one of the top end or the bottom end of the club head.
Further embodiments include a method. The method comprises providing a club head. The club head comprises a top end and a bottom end opposite the top end. Further, the club head comprises a front portion comprising a front surface. The front surface is associated with a face plane and a loft plane. Further still, the club head comprises a body portion comprising a crown surface and a sole surface. Also, the method comprises providing a deflection mechanism located at an interface of the front portion and the body portion. The deflection mechanism is configured so that the front surface is able to deflect toward the body portion at one of the top end or the bottom end of the club head and about an other one of the top end or the bottom end of the club head.
Other embodiments include a method. The method comprises swinging a club head. The club head comprises a top end and a bottom end opposite the top end. Further, the club head comprises a front portion comprising a front surface. The front surface is associated with a face plane and a loft plane. Further still, the club head comprises a body portion comprising a crown surface and a sole surface. Meanwhile, the method comprises striking a golf ball at the front surface of the club head, where striking the golf ball at the front surface of the club head comprises deflecting the front surface toward the body portion at one of the top end or the bottom end of the club head and about an other one of the top end or the bottom end of the club head.
Still further embodiments include a golf club. The golf club comprises a club head and a club shaft coupled to the club head. The club head comprises a top end and a bottom end opposite the top end, a front portion comprising a front surface, a body portion, and a deflection mechanism located at an interface of the front portion and the body portion. The deflection mechanism can be configured such that striking a golf ball at the front surface of the club head causes the front surface to deflect toward the body portion at one of the top end or the bottom end of the club head and about an other one of the top end or the bottom end of the club head.
Turning to the drawings,
Although club head 100 can comprise any suitable club head, in many examples, club head 100 comprises a wood-type golf club head (e.g., a driver club head, a fairway wood club head, a hybrid club head, etc.). In these or other examples, club head 100 can comprise a metal wood golf club head, but club head 100 also can comprise one or more other suitable materials. In particular, at least part of club head 100 can comprise stainless steel, titanium, titanium alloy, etc. In various embodiments, club head 100 can be hollow. Generally, club head 100 can be part of a golf club.
Club head 100 comprises top end 101, bottom end 102, front end 103, rear end 104, toe end 105, and heel end 106. Further, club head 100 comprises front portion 107, body portion 108, deflection mechanism 112, and interface 113. Club head 100 can comprise hosel 114, hosel transition portion 115, and/or one or more weight ports 217 (
Top end 101 is opposite bottom end 102; front end 103 is opposite rear end 104; and toe end 105 is opposite heel end 106. Rear portion 108 and/or skirt surface 116 can be at least partially opposite front portion 107; and/or crown surface 110 can be at least partially opposite sole surface 111. In many examples, skirt surface 116 can be located between at least part of crown surface 110 and at least part of sole surface 111. In these examples, skirt surface 116 can wrap around rear end 104 of club head 100 from toe end 105 to heel end 106.
Front portion 107 can be coupled and/or integral with body portion 108. Accordingly, front portion 107 can appear to merge with body portion 108 at interface 113, as described below. Further, crown surface 110, sole surface 111, and/or skirt surface 116 can also appear to merge together. Accordingly, one or more of front surface 109, crown surface 110, sole surface 111, and skirt surface 116 can appear to comprise a single surface. In some embodiments, one or more of the transitions between front surface 109, crown surface 110, sole surface 111, and skirt surface 116 can be curved and/or beveled (e.g., smooth), and in other embodiments, can be sharp and/or angled.
Interface 113 can refer to a line or region of transition between front portion 107 and body portion 108. When front portion 107 and body portion 108 are mechanically coupled together, interface 113 can be demarcated by the physical boundaries of front portion 107 and body portion 108 at which the two are mechanically coupled together. However, in many examples, front portion 107 and body portion 108 can comprise an integral body, such as, for example, when front portion 107 and body portion 108 are formed together. In these examples, interface 113 can demarcate a representative line or region at which front portion 107 transitions to body portion 108, and vice versa. In many examples, hosel 114 and/or hosel transition portion 115 can be part of body portion 108 to form part of interface 113.
Deflection mechanism 112 is located at (e.g., partially along) interface 113 of front portion 107 and body portion 108. More specifically, deflection mechanism 112 is located at one of top end 101 (as shown at
Front surface 109 can refer to a strike face and/or strike plate of club head 100, and can be configured to impact a golf ball (not shown). Front surface 109 can comprise one or more scoring lines (e.g., grooves). The scoring line(s) can extend between toe end 105 and heel end 106. When front surface 109 comprises multiple scoring lines, the scoring lines can be parallel to each other.
Hosel 114 and/or hosel transition portion 115 can be located at or proximate to heel end 106, and hosel 114 can extend from club head 100 via hosel transition portion 115. Hosel 114 can be configured to receive a shaft (not shown). In a different embodiment, club head 100 can comprise a bore (not shown) configured to receive the shaft. Further, an opening of the bore can be substantially flush with crown surface 110. When hosel 114 (or the bore) receives the shaft, club head 100 and the shaft can substantially provide a golf club, as described above.
Weight port(s) 217 can alter the physical properties of club head 100, making one or more parameters of club head 100 adjustable (e.g., as desirable). Weight port(s) 217 can be configured to receive one or more weights (e.g., removable weights), though one or more of weight port(s) 217 can be left without a weight. When the weight(s) are removable, the weight(s) can be part of a set of weight(s) comprising different masses. Weight port(s) 217 can alter the physical properties of club head 100 based on the location(s) of weight port(s) 217 at club head 100 and/or the mass of the weight(s) received at weight port(s) 217. In some examples, weight port(s) 217 can be omitted, such as, for example, to lower manufacturing costs and/or complexity of operation of club head 100.
In many examples, weight port(s) 217 can alter the location of the center of gravity of club head 100. For example, the location of the center of gravity of club head 100 can be moved, as desired, toward any of top end 101, bottom end 102, front end 103, rear end 104, toe end 105, and heel end 106. Increasing the amount of mass in a direction of (e.g., toward) top end 101, bottom end 102, front end 103, rear end 104, toe end 105, and heel end 106 can also move the center of gravity in that direction. The location of the center of gravity can affect various performance characteristics of golf club 100, such as, for example, the launch angle and/or force applied to a golf ball upon impact with golf club 100.
Altering the location of the center of gravity of club head 100 can alter the moment of inertia of club head 100 about the center of gravity of club head 100 and/or about a shaft received at hostel 114. The moment of inertia of the center of gravity can affect various performance characteristics of golf club 100, such as, for example, the spin applied to a golf ball upon impact with golf club 100. Accordingly, weight port(s) 217 can also alter the moment of inertia of club head 100 about the center of gravity of club head 100 and/or about a shaft received at hostel 114.
Turning ahead in the drawings,
Turning ahead again in the drawings,
Deflection mechanism 112 comprises one or more deflection features 919. Deflection mechanism 112 can comprise one or more grooves 924. Deflection mechanism 112, deflection feature(s) 919, and/or groove(s) 924 can be located at (e.g. along) interface 113 (
Face plane 918 and loft plane 925 can refer to first and second reference planes of club head 100. Face plane 918 intersects the foremost point or points (e.g., nearest front end 103 (
In many embodiments, deflection mechanism 112, deflection feature(s) 919, and/or groove 924 can be cast together with front portion 107 (
Meanwhile, deflection feature(s) 919 can be arranged according to any suitable geometry permitting front surface 109 to deflect: (a) toward body portion 108 at one of top end 101 or bottom end 102 (i.e., away from the loft plane of club head 100 at top end 101 (
Accordingly, each of deflection feature(s) 919 can comprise a curve or a polygonal chain comprising two or more segments. For example, each of deflection feature(s) 919 can comprise two segments: a step portion and a riser portion (e.g., step portion 920 and riser portion 921, etc.). As a result, in these examples, deflection feature(s) 919 can resemble stairs. In specific examples, deflection feature(s) 919 can comprise deflection feature angle 926, and deflection feature (s) 919 can comprise step portion 920 and riser portion 921. Step portion 920 can comprise step portion first side 927 and step portion second side 928 opposite step portion first side 927. Further, riser portion 921 can comprise riser portion first side 929 and riser portion second side 930 opposite riser portion first side 929. Meanwhile, front surface 109 can comprise upper perimeter portion 931, and crown surface 110 can comprise fore perimeter portion 932. Step portion first side 927 can be adjacent to, transition into, and/or contact (e.g., be coupled with) upper perimeter portion 931; step portion second side 928 can be adjacent to, transition into, and/or contact (e.g., be coupled with) riser portion first side 929; and riser portion second side 930 can be adjacent to, transition into, and/or contact (e.g., be coupled with) fore perimeter portion 932. Points of adjacency, transitions, and/or points of contact between step portion first side 927 and upper perimeter portion 931, step portion second side 928 and riser portion first side 929, and riser portion second side 930 and fore perimeter portion 932 can be beveled or angled, as desired.
When club head 100 is in a resting state (e.g., face plane 918 is approximately co-planar with loft plane 925), the step portion(s) (e.g., step portion 920) of deflection feature(s) 919 can be approximately perpendicular to face plane 918, and/or the riser portion(s) (e.g., riser portion 921) of deflection feature(s) 919 can be approximately parallel to face plane 918. Arranged in this manner, when front surface 109 impacts a golf ball, the step portion(s) (e.g., step portion 920) can operate as load transfer beam(s) undergoing compression (e.g., pure compression), and/or the riser portion(s) (e.g., riser portion 921) can operate as deflection beam(s) undergoing bending (e.g., pure bending). Further, when club head 100 is in the resting state, each pair of step portion and riser portion of deflection feature(s) 919 can form a deflection feature angle (e.g., deflection feature angle 926). The deflection feature angle can be greater than approximately 0 degrees and less than approximately 180 degrees. In further embodiments, the deflection feature angle can be greater than or equal to approximately 80 degrees and less than or equal to approximately 100 degrees. In many examples, the deflection feature angle can be approximately 90 degrees.
Meanwhile, each step portion (e.g., step portion 920) of deflection feature(s) 919 can comprise a step portion length, and each riser portion (e.g., riser portion 921) of deflection feature(s) 919 can comprise a riser portion length. The step portion length can refer to a dimension of the step portion(s) extending approximately between front end 103 (
Further still, each step portion (e.g., step portion 920) of deflection feature(s) 919 can comprise a step portion thickness, and each riser portion (e.g., riser portion 921) of deflection feature(s) 919 can comprise a riser portion thickness. The riser portion thickness can refer to a dimension of the riser portion(s) extending approximately between front end 103 (
In general, when deflection feature(s) 919 comprise multiple deflection features, the deflection feature angles, the step portion lengths, the riser portion lengths, the step portion thicknesses, and/or the riser portion thicknesses can be the same or different between one or more of the multiple deflection features. Further, deflection feature(s) 919 can comprise same or different materials from front portion 107 (
By altering the ratio of upper to lower deflection of front surface 109, deflection mechanism 112 can be configured to dynamically alter a launch angle of a golf ball and/or dynamically alter a back spin of a golf ball as a function of a velocity of club head 100 upon impacting the golf ball. That is, a force applied to front surface 109 by the golf ball can be a function of the velocity of club head 100 upon impacting the golf ball. Accordingly, a deflected launch angle of the golf ball can be higher than a static launch angle of the golf ball, and/or a deflected back spin of the golf ball can be less than a static back spin of the golf ball. The deflected launch angle and deflected back spin can refer to a launch angle and a back spin when deflection mechanism 112 is implemented versus a static launch angle and a static back spin, which can refer to a launch angle and a back spin when deflection mechanism 112 is absent. The extent to which the launch angle increases and/or the back spin decreases can depend on how much force transfers to front surface 109 (i.e., how far deflection mechanism 112 deflects toward body portion 108). Greater force can result in greater increases in launch angle and greater decreases in back spin. In many examples, increasing the launch angle and/or decreasing the back spin on a golf ball can increase the flight distance of the golf ball. The increased launch angle can result from an increased loft angle of front surface 109 as front surface 109 deflects toward body portion 108. Meanwhile, the decreased back spin can result from an increased topspin gearing effect applied to the golf ball by front surface 109 as front surface 109 deflects toward body portion 108. In many examples, launch angle can be increased by greater than approximately 0 degrees and less than or equal to approximately 2 degrees. Further, back spin can be decreased by greater than approximately 0 rotations per minute and less than or equal to approximately 500 rotations per minute.
In some embodiments, the effects of deflection mechanism 112 can be paired with the effects of weight port(s) 217 to more specifically tailor the performance characteristics of club head 100. For example, in some embodiments, implementing weight port(s) 217 with deflection mechanism 112 can permit the launch angle and/or spin of the golf ball to be altered to a greater extent than would be possible with deflection mechanism 112. In further embodiments, weight port(s) 217 can permit fine tuning of the launch angle and/or spin of the golf ball.
In many examples, when deflection mechanism 112 is located at top end 101 (
Meanwhile, by locating deflection mechanism 112 at interface 113 (
Turning ahead again in the drawings,
Turning to the next drawings,
Further,
In many embodiments, any of club head 100 (
Turning to the next drawing,
Method 2000 can comprise activity 2001 of providing a club head. The club head can be similar or identical to club head 100 (
Method 2000 can comprise activity 2002 of providing a deflection mechanism located at an interface of the front portion and the body portion. The deflection mechanism can be similar or identical to deflection mechanism 112 (
Referring to
Further, activity 2001 can comprise activity 2102 of forming one or more grooves. The groove(s) can be similar or identical to groove(s) 924 (
Turning to the next drawing,
Method 2200 can comprise activity 2201 of swinging a club head. The club head can be similar or identical to club head 100 (
Method 2200 can comprise activity 2202 of striking a golf ball at the front surface of the club head, where striking the golf ball at the front surface of the club head further comprises deflecting the front surface toward the body portion at one of the top end or the bottom end of the club head and about an other one of the top end or the bottom end of the club head. In many examples, deflecting the front surface toward the body portion at one of the top end or the bottom end of the club head and about an other one of the top end or the bottom end of the club head can comprise (a) increasing a launch angle of the golf ball from the front surface, and/or (b) decreasing a back spin applied to the golf ball.
Although the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made without departing from the spirit or scope of the invention. Accordingly, the disclosure of embodiments of the invention is intended to be illustrative of the scope of the invention and is not intended to be limiting. It is intended that the scope of the invention shall be limited only to the extent required by the appended claims. For example, to one of ordinary skill in the art, it will be readily apparent that activities 2001 and 2002 of
All elements claimed in any particular claim are essential to the embodiment claimed in that particular claim. Consequently, replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described with regard to specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to occur or become more pronounced, however, are not to be construed as critical, required, or essential features or elements of any or all of the claims, unless such benefits, advantages, solutions, or elements are expressly stated in such claim.
As the rules to golf may change from time to time (e.g., new regulations may be adopted or old rules may be eliminated or modified by golf standard organizations and/or governing bodies such as the United States Golf Association (USGA), the Royal and Ancient Golf Club of St. Andrews (R&A), etc.), golf equipment related to the apparatus, methods, and articles of manufacture described herein may be conforming or non-conforming to the rules of golf at any particular time. Accordingly, golf equipment related to the apparatus, methods, and articles of manufacture described herein may be advertised, offered for sale, and/or sold as conforming or non-conforming golf equipment. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
While the above examples may be described in connection with a wood-type golf club head, the apparatus, methods, and articles of manufacture described herein may be applicable to other types of golf clubs such as an iron-type golf club, a wedge-type golf club, or a putter-type golf club. Alternatively, the apparatus, methods, and articles of manufacture described herein may be applicable other type of sports equipment such as a hockey stick, a tennis racket, a fishing pole, a ski pole, etc.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims; and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This application claims the benefit of U.S. Provisional Application No. 61/703,149, filed Sep. 19, 2012. U.S. Provisional Application No. 61/703,149 is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61703149 | Sep 2012 | US |