CLUBHEADS FOR IRON-TYPE GOLF CLUBS

Information

  • Patent Application
  • 20220111268
  • Publication Number
    20220111268
  • Date Filed
    December 21, 2021
    2 years ago
  • Date Published
    April 14, 2022
    2 years ago
Abstract
Clubheads for iron-type golf clubs include a damper positioned within a lower cavity and a weight coupled to the damper and positioned within the lower cavity, wherein the weight is spaced apart from the club head body, or “floating.” The floating weight can be fully supported by the damper and while not contacting any surface of the club head body. Such a floating weight and damper can beneficially affect mass properties of the clubhead, such as Zup, CG, and MOI, without unduly stiffening lower portions of the clubhead, thereby allowing the clubhead to have improved mass properties while maintaining desirable ball-striking properties, such as COR and CT, and also providing damping to improve sound and feel. Some clubheads can also include a dual undercut topline to reduce mass. Some clubheads can also include several raised flats on the rear of the face for improved face thickness measurements.
Description
FIELD

The present disclosure relates to golf club heads. More specifically, the present disclosure relates to golf club heads for iron type golf clubs.


BACKGROUND

Iron-type golf club heads often include large cavities in their rear surfaces (i.e., “cavity-back”). Typically, the position and overall size and shape of a cavity are selected to remove mass from that portion of the club head and/or to adjust the center of gravity or other properties of the club head. Manufacturers of cavity-back golf clubs often place a badge or another insert in the cavity for decorative purposes and/or for indicating the manufacturer name, logo, trademark, or the like. The badge or insert may be used to achieve a performance benefit, such as for sound and vibration damping.


Alternatively or additionally, manufacturers of cavity-back golf clubs often place acoustic or vibration dampers in the cavity to provide sound and vibration damping. The badge, damper, and/or other insert may contribute to a “feel” of the golf club. Although the “feel” of the golf club results from a combination of various factors (e.g., club head weight, weight distribution, aerodynamics of the club head, weight and flexibility of the shaft, etc.), it has been found that a significant factor that affects the perceived “feel” of a golf club to a user is the sound and vibrations produced when the golf club head strikes a ball. For example, if a club head makes a strange or unpleasant sound at impact, or a sound that is too loud, such sounds can translate to an unpleasant “feel” in the golfer's mind. Likewise, if the club head has a high frequency vibration at impact, such vibrations can also translate to an unpleasant ‘feel’ in the golfer's mind.


However, stiff badges, dampers, weights, and/or other inserts adversely impact the performance of other characteristics of the club head, such as by reducing the coefficient of restitution (COR) and characteristic time (CT) of the club head, as well as by adding weight to the golf club head and by increasing the height of the center of gravity (CG) of the club face.


SUMMARY

A clubhead for an iron-type golf club is provided. The clubhead includes an iron-type body having a heel portion, a toe portion, a top-line portion, a rear portion, and a face portion. A sole portion extends rearwardly from a lower end of the face portion to a lower portion of the rear portion. A cavity is defined by a region of the body rearward of the face portion, forward of the rear portion, above the sole portion, and below the top-line portion. The face portion includes an ideal striking location that defines the origin of a coordinate system in which an x-axis is tangential to the face portion at the ideal striking location and is parallel to a ground plane when the body is in a normal address position, a y-axis extends perpendicular to the x-axis and is also parallel to the ground plane, and a z-axis extends perpendicular to the ground plane. A positive x-axis extends toward the heel portion from the origin, a positive y-axis extends rearwardly from the origin, and a positive z-axis extends upwardly from the origin. The face portion defines a striking face plane that intersects the ground plane along a face projection line and the body includes a central region which extends along the x-axis from a location greater than about −25 mm to a location less than about 25 mm. The face portion has a minimum face thickness no less than 1.0 mm and a maximum face thickness of no more than 3.5 mm in the central region. The sole portion contained within the central region includes a thinned forward sole region located adjacent to the face portion and within a distance of 17 mm measured horizontally in the direction of the y-axis from the face projection line, and a thickened rearward sole region located behind the thinned forward sole region, with the thinned forward sole region defining a sole wall having a minimum forward sole thickness of no more than 3.0 mm and less than the maximum face thickness. The top-line portion contained within the central region includes a thinned undercut region located adjacent to the face portion and within a distance of 17 mm measured horizontally in the direction of the y-axis from the face projection line. The thinned undercut region defines a top-line wall having a minimum undercut thickness of no more than 3.0 mm and less than the maximum face thickness. A damper is positioned within the cavity and extends from the heel portion to the toe portion. A front surface of the damper includes one or more relief portions, and the front surface of the damper contacts a rear surface of the face portion between the one or more relief portions.


Another clubhead for an iron-type golf club is provided. The clubhead includes a body having a heel portion, a toe portion, a top-line portion, a rear portion, a face portion, and a sole portion extending rearwardly from a lower end of the face portion to a lower portion of the rear portion. A sole bar can define a rearward portion of the sole portion, and a cavity is defined by a region of the body rearward of the face portion, forward of the rear portion, above the sole portion, and below the top-line portion. A lower undercut region is defined within the cavity rearward of the face portion, forward of the sole bar, and above the sole portion, and a lower ledge extends above the sole bar to further define the lower undercut region. An upper undercut region is defined within the cavity rearward of the face portion, forward of an upper ledge and below the topline portion, and the upper ledge extends below the topline portion. A shim is received at least in part by the upper ledge and the lower ledge, with the shim being configured to close an opening in the cavity and to enclose an internal cavity volume between 5 cc and 20 cc.


Some exemplary clubheads for iron-type golf clubs include a damper positioned within a lower cavity and a weight coupled to the damper and positioned within the lower cavity, wherein the weight is spaced apart from the club head body, or “floating.” The weight can be fully supported by the damper and while not contacting any surface of the club head body. A portion of the weight can be suspended in the lower cavity below the damper and above the sole. Such a floating weight damper can beneficially affect the mass properties of the clubhead, such as Zup, CG, and MOI, without unduly stiffening the lower portion of the clubhead, thereby allowing the clubhead to have improved mass properties while maintaining desirable performance parameters, such as COR and CT, and also providing desired damping to improve sound and feel. The clubheads can also include a dual undercut topline to reduce mass.


In some exemplary clubheads for iron-type golf clubs, the face portion comprises a plurality of small, raised flats on a rear surface of the face portion. These flats can protrude from surrounding portions of the rear surface of the face portion and have a flat surface that is parallel to a front striking surface of the face portion. The flats can be positioned at locations across the face where it desired to measure the thickness of the face after manufacturing to check for manufacturing accuracy. The flats give an inspector a flat, even target to contact with a measuring device, avoiding inaccuracies caused by sloped or uneven surfaces on the rear of the face.


The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.



FIG. 1 is a front elevation view of a golf club head, according to one or more examples of the present disclosure;



FIG. 2 is a side elevation view of the golf club head of FIG. 1, according to one or more examples of the present disclosure;



FIG. 3 is a cross-sectional side elevation view of the golf club head of FIG. 1, taken along the line 3-3 of FIG. 1, according to one or more examples of the present disclosure;



FIG. 4 is a perspective view of the golf club head of FIG. 1, from a bottom of the golf club head, according to one or more examples of the present disclosure;



FIG. 5 is a bottom plan view of the golf club head of FIG. 1, according to one or more examples of the present disclosure;



FIG. 6 is a back elevation view of the golf club head of FIG. 1, according to one or more examples of the present disclosure;



FIG. 7 is a perspective view of the golf club head of FIG. 1, from a rear-toe of the golf club head, according to one or more examples of the present disclosure;



FIG. 8 is a perspective view of the golf club head of FIG. 1, from a rear-heel of the golf club head, according to one or more examples of the present disclosure;



FIG. 9 is a perspective view of the golf club head of FIG. 1, from a bottom-rear of the golf club head, according to one or more examples of the present disclosure;



FIG. 10 is a front elevation view of a golf club head damper, according to one or more examples of the present disclosure;



FIG. 11 is a back perspective view of a golf club head badge and the damper of FIG. 10, according to one or more examples of the present disclosure;



FIG. 12 is a bottom perspective view of the golf club head badge and damper of FIG. 11, according to one or more examples of the present disclosure;



FIG. 13 is a back perspective view of a golf club head, according to one or more examples of the present disclosure;



FIG. 14 is a cross-sectional side view of a golf club head, according to one or more examples of the present disclosure;



FIG. 15 is a cross-sectional back view of a golf club head, according to one or more examples of the present disclosure;



FIG. 16 is a cross-sectional side view of a golf club head, according to one or more examples of the present disclosure;



FIG. 17 is a cross-sectional back view of a golf club head, according to one or more examples of the present disclosure;



FIG. 18 is a cross-sectional back view of a golf club head, according to one or more examples of the present disclosure;



FIG. 19 is a perspective view of a golf club head, from a rear of the golf club head, according to one or more examples of the present disclosure;



FIG. 20 is a rear cross-sectional view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 21 is a front elevation view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 22 is a back perspective view of a golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 23 is a perspective view of a golf club head, from a rear of the golf club head, according to one or more examples of the present disclosure;



FIG. 24 is a rear perspective view of the golf club head of FIG. 23 without a shim or badge installed, according to one or more examples of the present disclosure;



FIG. 25 is a top perspective view of a golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 26 is a bottom perspective view of a golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 27 is a side cross-sectional view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 28 is a side cross-sectional view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 29A is a side cross-sectional view of the upper region of FIG. 27, according to one or more examples of the present disclosure;



FIG. 29B is a side cross-sectional view of a lower region of FIG. 27, according to one or more examples of the present disclosure;



FIG. 30 is a perspective view of the damper from the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 31 is a rear elevation view of the shim from the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 32 is a rear perspective view of the shim from the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 33 is a front elevation view of the shim from the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 34 is a front perspective view of the shim from the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 35 is a heelward perspective view of the shim from the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 36 is a toeward perspective view of the shim from the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 37 is a front perspective view of the shim from the golf club head 500 of FIG. 23, according to one or more examples of the present disclosure;



FIG. 38 is a lower perspective view of the shim from the golf club head of FIG. 23, according to one or more examples of the present disclosure;



FIG. 39 a side cross-sectional view of a golf club head according to one or more examples of the present disclosure;



FIG. 40 is an exploded view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 41 is a side cross-sectional view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 42 is a side cross-sectional view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 43 is a top cross-sectional view of the golf club head of FIG. 19, according to one or more examples of the present disclosure;



FIG. 44 is an exploded view of a golf club head according to one or more examples of the present disclosure;



FIG. 45 includes graphical representations of a golf club head undergoing first through fourth mode frequency vibration and associated characteristics of the golf club head, according to one or more examples of the present disclosure;



FIG. 46 includes graphical representations of a golf club head undergoing first through fourth mode frequency vibration and associated characteristics of the golf club head, according to one or more examples of the present disclosure;



FIG. 47 is a rear perspective view of the golf club head of FIG. 23 with a shim or badge installed, according to one or more examples of the present disclosure;



FIG. 48 is a toe-side elevation view of the golf club head of FIG. 23, according to one or more examples of the present disclosure;



FIG. 49 is a front elevation view of the golf club head of FIG. 23, according to one or more examples of the present disclosure;



FIG. 50 is a rear perspective view of the golf club head of FIG. 23 without a shim or badge installed, according to one or more examples of the present disclosure;



FIG. 51 is a toe-side elevation view of the golf club head of FIG. 23 without a shim or badge installed, according to one or more examples of the present disclosure;



FIG. 52 is a perspective view of the golf club head of FIG. 23, according to one or more examples of the present disclosure;



FIG. 53 is a front perspective view of the shim or badge from the golf club head 500 of FIG. 23, according to one or more examples of the present disclosure;



FIG. 54 is a rear, heel-side perspective view of a golf club head, without a shim or badge installed, according to one or more examples of the present disclosure;



FIG. 55 is a rear, toe-side perspective view of a golf club head, without a shim or badge installed, according to one or more examples of the present disclosure;



FIG. 56 is a rear, toe-side perspective view of a golf club head, with a shim or badge installed, according to one or more examples of the present disclosure; and



FIG. 57 is heel-side cross-sectional view of the golf club head of FIG. 19, according to one or more examples of the present disclosure.



FIG. 58 is a front elevation view of a golf club head in accordance with the embodiments of the current disclosure;



FIG. 59 is an illustration of the central region of a golf club head in accordance with the embodiments of the current disclosure;



FIG. 60 is another illustration of the central region of a golf club head in accordance with the embodiments of the current disclosure;



FIG. 61 is another illustration of the central region of a golf club head in accordance with the embodiments of the current disclosure;



FIG. 62 is a front elevation view of a golf club head in accordance with the embodiments of the current disclosure; and



FIG. 63 is a front elevation view of a golf club head in accordance with the embodiments of the current disclosure.



FIG. 64 is a perspective view of rear and bottom aspects of another exemplary clubhead.



FIG. 65 is a bottom view of the clubhead of FIG. 64.



FIG. 66 is a cross-sectional view of a topline portion of the clubhead of FIG. 64.



FIG. 67 is a front view of the clubhead of FIG. 64.



FIG. 68 is a top view of the clubhead of FIG. 64.



FIG. 69 is a bottom view of the clubhead of FIG. 64



FIG. 70 is a rear view of the clubhead of FIG. 64.



FIG. 71 is a cross-sectional view showing a rear side of a front portion of the clubhead.



FIG. 72 is a toe side view of the clubhead of FIG. 64.



FIG. 73 is a cross-section view illustrating inner aspects of the clubhead of FIG. 64.



FIG. 74 is a perspective view of toe and rear aspects of another exemplary club head.



FIGS. 75-77 are cross-sectional views showing inner aspects of the clubhead of FIG. 74.



FIG. 78 is a perspective view of the clubhead of FIG. 74 showing topline undercuts.



FIG. 79 is a cross-section view of an upper portion of the clubhead viewed from below.



FIG. 80 shows a weight of the clubhead of FIG. 74.



FIGS. 81-82 are cross-sectional views showing inner aspects of the clubhead of FIG. 74.



FIG. 83 is a front view of the damper and weight of the clubhead of FIG. 74.



FIG. 84 is a heel side view of the damper and weight of FIG. 83.



FIG. 85 is a front view of another exemplary damper and weight.



FIG. 86 is a heel side view of the damper and weight of FIG. 85.



FIG. 87 is a cross-sectional view showing a rear face surface of an exemplary clubhead.



FIG. 88 illustrates face thickness measurement features of the clubhead of FIG. 87.



FIG. 89 is a cross-sectional view showing inner aspects of the clubhead of FIG. 74.





DETAILED DESCRIPTION

One or more of the present embodiments provide for a damper spanning substantially the full length of the striking face from heel-to-toe of a golf club head. In embodiments where a solid full-length damper would negatively impact performance of the golf club head, one or more cutouts and/or other relief is provided in the damper to reduce the surface area of the damper that contacts the rear surface of the striking face. By reducing the surface area that the damper contacts the rear surface of the striking face, the full length improves the sound and feel of the golf club head at impact and only minimally reduces performance of the golf club head. For example, by providing one or more cutouts and/or other relief, the damper spans most of the striking face from heel-to-toe while maintaining face flexibility, thus a characteristic time (CT) and a coefficient of restitution (COR) of the striking face may be maintained.


Club Head Structure

The following describes exemplary embodiments of golf club heads in the context of an iron-type golf club, but the principles, methods and designs described may be applicable in whole or in part to utility golf clubs (also known as hybrid golf clubs), metal-wood-type golf clubs, driver-type golf clubs, putter-type golf clubs, and other golf clubs.



FIG. 1 illustrates one embodiment of an iron-type golf club head 100 including a body 113 having a heel portion 102, a toe portion 104, a sole portion 108, a topline portion 106, and a hosel 114. The golf club head 100 is shown in FIG. 1 in a normal address position with the sole portion 108 resting upon a ground plane 111, which is assumed to be perfectly flat. As used herein, “normal address position” means the position of the golf club head 100 when a vector normal to a geometric center of a strike face 110 of the golf club head 100 lies substantially in a first vertical plane (i.e., a plane perpendicular to the ground plane 111), a centerline axis 115 of the hosel 114 lies substantially in a second vertical plane, and the first vertical plane and the second vertical plane substantially perpendicularly intersect. The geometric center of the strike face 110 is determined using the procedures described in the USGA “Procedure for Measuring the Flexibility of a Golf Club head,” Revision 2.0, Mar. 25, 2005. The strike face 110 is the front surface of a strike plate 109 of the golf club head 100. The strike face 110 has a rear surface 131, opposite the strike face 110 (see, e.g., FIG. 3). In some embodiments, the strike plate has a thickness that is less than 2.0 mm, such as between 1.0 mm and 1.75 mm. Additionally or alternatively, the strike plate may have an average thickness less than or equal to 2 mm, such as an average thickness between 1.0 mm and 2.0 mm, such as an average thickness between 1.25 mm and 1.75 mm. In some embodiments, the strike plate has a thickness that varies. In some embodiments, the strike plate has a thinned region coinciding and surrounding the center of the face such that the center face region of the strike plate is the thinnest region of the strike plate. In other embodiments, the strike plate has a thickened region coinciding and surrounding the center of the face such that the center face region of the strike plate is the thickest region of the strike plate.


As shown in FIG. 1, a lower tangent point 290 on the outer surface of the golf club head 100, of a line 295 forming a 45° angle relative to the ground plane 111, defines a demarcation boundary between the sole portion 108 and the toe portion 104. Similarly, an upper tangent point 292 on the outer surface of the golf club head 100 of a line 293 forming a 45° angle relative to the ground plane 111 defines a demarcation boundary between the topline portion 106 and the toe portion 104. In other words, the portion of the golf club head 100 that is above and to the left (as viewed in FIG. 1) of the lower tangent point 290 and below and to the left (as viewed in FIG. 1) of the upper tangent point 292 is the toe portion 104.


The strike face 110 includes grooves 112 designed to impact and affect spin characteristics of a golf ball struck by the golf club head 100. In some embodiments, the toe portion 104 may be defined to be any portion of the golf club head 100 that is toeward of the grooves 112. In some embodiments, the body 113 and the strike plate 109 of the golf club head 100 can be a single unitary cast piece, while in other embodiments, the strike plate 109 can be formed separately and be adhesively or mechanically attached to the body 113 of the golf club head 100.



FIGS. 1 and 2 show an ideal strike location 101 on the strike face 110 and respective coordinate system with the ideal strike location 101 at the origin. As used herein, the ideal strike location 101 is located on the strike face 110 and coincides with the location of the CG 127 of the golf club head 100 along an x-axis 105 and is offset from a leading edge 179 of the golf club head 100 (defined as the midpoint of a radius connecting the sole portion 108 and the strike face 110) by a distance d, which is 16.5 mm in some implementations, along the strike face 110, as shown in FIG. 2. The x-axis 105, a y-axis 107, and a z-axis 103 intersect at the ideal strike location 101, which defines the origin of the orthogonal axes. With the golf club head 100 in the normal address position, the x-axis 105 is parallel to the ground plane 111 and is oriented perpendicular to a normal plane extending from the strike face 110 at the ideal strike location 101. The y-axis 107 is also parallel to the ground plane 11 and is perpendicular to the x-axis 105. The z-axis 103 is oriented perpendicular to the ground plane 11, and thus is perpendicular to the x-axis 105 and the y-axis 107. In addition, a z-up axis 171 can be defined as an axis perpendicular to the ground plane 111 and having an origin at the ground plane 111.


In certain embodiments, a desirable CG-y location is between about 0.25 mm to about 20 mm along the y-axis 107 toward the rear portion of the club head. Additionally, according to some embodiments, a desirable CG-z location is between about 12 mm to about 25 mm along the z-up axis 171.


The golf club head 100 may be of solid construction (also referred to as “blades” and/or “musclebacks”), hollow, cavity back, or other construction. However, in the illustrated embodiments, the golf club head 100 is depicted as having a cavity-back construction because the golf club head 100 includes an open cavity 161 behind the strike plate 109 (see, e.g., FIG. 3). FIG. 3 shows a cross-sectional side view, along the cross-section lines 3-3 of FIG. 1, of the golf club head 100.


In the embodiment shown in FIGS. 1-3, the grooves 112 are located on the strike face 110 such that they are centered along the X-axis 105 about the ideal strike location 101 (such that the ideal strike location 101 is located within the strike face 110 on an imaginary line that is both perpendicular to and that passes through the midpoint of the longest score-line groove 112). In other embodiments (not shown in the drawings), the grooves 112 may be shifted along the X-axis 105 to the toe side or the heel side relative to the ideal striking location 101, the grooves 112 may be aligned along an axis that is not parallel to the ground plane 111, the grooves 112 may have discontinuities along their lengths, or the strike face 110 may not have grooves 112. Still other shapes, alignments, and/or orientations of grooves 112 on the strike face 110 are also possible.


In reference to FIG. 1, the golf club head 100 has a sole length LB (i.e., length of the sole) and a club head height HCH (i.e., height of the golf club head 100). The sole length LB is defined as the distance between two points 116, 117 projected onto the ground plane 111. The heel side point 116 is defined as the intersection of a projection of the hosel axis 115 onto the ground plane 111. The toe side point 117 is defined as the intersection point of the vertical projection of the lower tangent point (described above) onto the ground plane 111. Accordingly, the distance between the heel side point 116 and the toe side point 117 is the sole length LB of the golf club head 100. The club head height HCH is defined as the distance between the ground plane 111 and the uppermost point of the club head in a direction parallel to the z-up axis 171.


Referring to FIG. 2, the golf club head 100 includes a club head front-to-back depth DCH defined as the distance between two points 118, 119 projected onto the ground plane 111. A forward end point 118 is defined as the intersection of the projection of the leading edge 143 onto the ground plane 111 in a direction parallel to the z-up axis 171. A rearward end point 119 is defined as the intersection of the projection of the rearward-most point of the club head onto the ground plane 111 in a direction parallel to the z-up axis 171. Accordingly, the distance between the forward end point 118 and rearward end point 119 of the golf club head 100 is the depth DCH of the golf club head 100.


Referring to FIGS. 3 and 6-9, the body 113 of the golf club head 100 further includes a sole bar 135 that defines a rearward portion of the sole portion 108 of the body 113. The sole bar 135 has a relatively large thickness in relation to the strike plate 109 and other portions of the golf club head 100. Accordingly, the sole bar 135 accounts for a significant portion of the mass of the golf club head 100 and effectively shifts the CG of the golf club head 100 relatively lower and rearward. As particularly shown in FIG. 3, the sole portion 108 of the body 113 includes a forward portion 189 with a thickness less than that of the sole bar 135. The forward portion 189 is located between the sole bar 135 and the strike face 110. As described more fully below, the body 113 includes a channel 150 formed in the sole portion 108 between the sole bar 135 and the strike face 110 to effectively separate the sole bar 135 from the strike face 110. The channel 150 is located closer to the forward end point 118 than the rearward end point 119.


In certain embodiments of the golf club head 100, such as those where the strike plate 109 is separately formed and attached to the body 113, the strike plate 109 can be formed of forged maraging steel, maraging stainless steel, or precipitation-hardened (PH) stainless steel. In general, maraging steels have high strength, toughness, and malleability. Being low in carbon, maraging steels derive their strength from precipitation of inter-metallic substances other than carbon. The principle alloying element is nickel (e.g., 15% to nearly 30%). Other alloying elements producing inter-metallic precipitates in these steels include cobalt, molybdenum, and titanium. In one embodiment, the maraging steel contains 18% nickel. Maraging stainless steels have less nickel than maraging steels but include significant chromium to inhibit rust. The chromium augments hardenability despite the reduced nickel content, which ensures the steel can transform to martensite when appropriately heat-treated. In another embodiment, a maraging stainless steel C455 is utilized as the strike plate 109. In other embodiments, the strike plate 109 is a precipitation hardened stainless steel such as 17-4, 15-5, or 17-7. After forming the strike plate 109 and the body 113 of the golf club head 100, the contact surfaces of the strike plate 109 and the body 113 can be finish-machined to ensure a good interface contact surface is provided prior to welding. In some embodiments, the contact surfaces are planar for ease of finish machining and engagement.


The strike plate 109 can be forged by hot press forging using any of the described materials in a progressive series of dies. After forging, the strike plate 109 is subjected to heat-treatment. For example, 17-4 PH stainless steel forgings are heat treated by 1040° C. for 90 minutes and then solution quenched. In another example, C455 or C450 stainless steel forgings are solution heat-treated at 830° C. for 90 minutes and then quenched.


In some embodiments, the body 113 of the golf club head 100 is made from 17-4 steel. However another material such as carbon steel (e.g., 1020, 1030, 8620, or 1040 carbon steel), chrome-molybdenum steel (e.g., 4140 Cr—Mo steel), Ni—Cr—Mo steel (e.g., 8620 Ni—Cr—Mo steel), austenitic stainless steel (e.g., 304, N50, or N60 stainless steel (e.g., 410 stainless steel) can be used.


In addition to those noted above, some examples of metals and metal alloys that can be used to form the components of the parts described include, without limitation: titanium alloys (e.g., 3-2.5, 6-4, SP700, 15-3-3-3, 10-2-3, or other alpha/near alpha, alpha-beta, and beta/near beta titanium alloys), aluminum/aluminum alloys (e.g., 3000 series alloys, 5000 series alloys, 6000 series alloys, such as 6061-T6, and 7000 series alloys, such as 7075), magnesium alloys, copper alloys, and nickel alloys.


In still other embodiments, the body 113 and/or the strike plate 109 of the golf club head 100 are made from fiber-reinforced polymeric composite materials and are not required to be homogeneous. Examples of composite materials and golf club components comprising composite materials are described in U.S. Patent Application Publication No. 2011/0275451, published Nov. 10, 2011, which is incorporated herein by reference in its entirety.


The body 113 of the golf club head 100 can include various features such as weighting elements, cartridges, and/or inserts or applied bodies as used for CG placement, vibration control or damping, or acoustic control or damping. For example, U.S. Pat. No. 6,811,496, incorporated herein by reference in its entirety, discloses the attachment of mass altering pins or cartridge weighting elements.


In some embodiments, the golf club head 100 includes a flexible boundary structure (“FBS”) at one or more locations on the golf club head 100. Generally, the FBS feature is any structure that enhances the capability of an adjacent or related portion of the golf club head 100 to flex or deflect and to thereby provide a desired improvement in the performance of the golf club head 100. The FBS feature may include, in several embodiments, at least one slot, at least one channel, at least one gap, at least one thinned or weakened region, and/or at least one of any of various other structures. For example, in several embodiments, the FBS feature of the golf club head 100 is located proximate the strike face 109 of the golf club head 100 in order to enhance the deflection of the strike face 109 upon impact with a golf ball during a golf swing. The enhanced deflection of the strike face 109 may result, for example, in an increase or in a desired decrease in the coefficient of restitution (“COR”) of the golf club head 100. When the FBS feature directly affects the COR of the golf club head 100, the FBS may also be termed a COR feature. In other embodiments, the increased perimeter flexibility of the strike face 109 may cause the strike face 109 to deflect in a different location and/or different manner in comparison to the deflection that occurs upon striking a golf ball in the absence of the channel, slot, or other flexible boundary structure.


In the illustrated embodiment of the golf club head 100, the FBS feature is a channel 150 that is located on the sole portion 108 of the golf club head 100. As indicated above, the FBS feature may comprise a slot, a channel, a gap, a thinned or weakened region, or other structure. For clarity, however, the descriptions herein will be limited to embodiments containing a channel, such as the channel 150, with it being understood that other FBS features may be used to achieve the benefits described herein.


Referring to FIG. 3, the channel 150 is formed into the sole portion 108 and extends generally parallel to and spaced rearwardly from the strike face 110. Moreover, the channel 150 is defined by a forward wall 152, a rearward wall 154, and an upper wall 156. The rearward wall 154 is a forward portion of the sole bar 135. The channel 150 includes an opening 158 defined on the sole portion 108 of the golf club head 100. The forward wall 152 further defines, in part, a first hinge region 160 located at the transition from the forward portion of the sole 108 to the forward wall 152, and a second hinge region 162 located at a transition from an upper region of the forward wall 152 to the sole bar 135. The first hinge region 160 and the second hinge region 162 are portions of the golf club head 100 that contribute to the increased deflection of the strike face 110 of the golf club head 100 due to the presence of the channel 150. In particular, the shape, size, and orientation of the first hinge region 160 and the second hinge region 162 are designed to allow these regions of the golf club head 100 to flex under the load of a golf ball impact. The flexing of the first hinge region 160 and second hinge region 162, in turn, creates additional deflection of the strike face 110.


The hosel 114 of the golf club head 100 can have any of various configurations, such as shown and described in U.S. Pat. No. 9,731,176. For example, the hosel 114 may be configured to reduce the mass of the hosel 114 and/or facilitate adjustability between a shaft and the golf club head 100. For example, the hosel 114 may include a notch 177 that facilitates flex between the hosel 114 and the body 113 of the golf club head 100.


The topline portion 106 of the golf club head 100 can have any of various configurations, such as shown and described in U.S. Pat. No. 9,731,176. For example, the topline portion 106 of the golf club head 100 may include weight reducing features to achieve a lighter weight topline. According to one embodiment shown in FIG. 9, the weight reducing features of the topline portion 106 of the golf club head 100 include a variable thickness of the top wall 169 defining the topline portion 106. More specifically, in a direction lengthwise along the topline portion 106, the thickness of the top wall 169 alternates between thicker and thinner so as to define pockets 190 between ribs 192 or pads. The pockets 190 are those portions of the top wall 169 having a thickness less than that of the portions of the top wall 169 defining the ribs 192. The pockets 190 help to reduce mass in the topline portion 106, while the ribs 192 promote strength and rigidity of the topline portion 106 and provide a location where a bridge bar 140 can be fixed to the topline portion 106 as is explained in more detail below. As shown in FIG. 9, the alternating wall thickness of the top wall 169 can extend into the toe wall forming the toe portion 104. In the illustrated embodiment, the top wall 169 includes two pockets 190 and three ribs 192. However, in other embodiments, the top wall 169 can include more or less that two pockets 190 and three ribs 192.


Referring to FIGS. 6-9, the back portion 128 of the golf club head 100 includes a bridge bar 140 that extends uprightly from the sole bar 135 to the topline portion 106. As defined herein, uprightly can be vertically or at some angle greater than zero relative to horizontal. The bridge bar 140 structurally interconnects the sole bar 135 directly with the topline portion 106 without being interconnected directly with the strike plate 109. In other words, the bridge bar 140 is directly coupled to a top surface 157 of the sole bar 135, at a top end 144 of the bridge bar 140, and a bottom surface 159 of the topline portion 106, at a bottom end 142 of the bridge bar 140. However, the bridge bar 140 is not directly coupled to the strike plate 109. In fact, an unoccupied gap or space is present between the bridge bar 140 and the rear surface 131 of the strike plate 109. The bridge bar 140 can be made of the same above-identified materials as the body 113 of the golf club head 100. Alternatively, the bridge bar 140 can be made of a material that is different than that of the rest of the body 113. However, the material of the bridge bar 140 is substantially rigid so that the portions of the golf club head 100 coupled to the bridge bar 140 are rigidly coupled. The bridge bar 140 is non-movably or rigidly fixed to the sole bar 135 and the topline portion 106. In one embodiment, the bridge bar 140 is co-formed (e.g., via a casting technique) with the topline portion 106 and the sole bar 135 so as to form a one-piece, unitary, seamless, and monolithic, construction with the topline portion 106 and the sole bar 135. However, according to another embodiment, the bridge bar 140 is formed separately from the topline portion 106 and the sole bar 135 and attached to the topline portion 106 and the bridge bar 140 using any of various attachment techniques, such as welding, bonding, fastening, and the like. In some implementations, when attached to or formed with the topline portion 106 and the sole bar 135, the bridge bar 140 is not under compression or tension.


The bridge bar 140 spans the cavity 161, and more specifically, spans an opening 163 to the cavity 161 of the golf club head 100. The opening 163 is at the back portion 128 of the golf club head 100 and has a length LO extending between the toe portion 104 and the heel portion 102. The bridge bar 140 also has a length LBB and a width WBB transverse to the length LBB. The length LBB of the bridge bar 140 is the maximum distance between the bottom end 142 of the bridge bar 140 and the top end 144 of the bridge bar 140. The length LBB of the bridge bar 140 is less than the length LO. The width WBB of the bridge bar 140 is the minimum distance from a given point on one elongated side of the bridge bar 140 to the opposite elongated side of the bridge bar 140 in a direction substantially parallel with the x-axis 105 (e.g., heel-to-toe direction). The width WBB of the bridge bar 140 is less than the length LO of the opening 163. In one implementation, the width WBB of the bridge bar 140 is less than 20% of the length Lo. According to another implementation, the width WBB of the bridge bar 140 is less than 10% or 5% of the length LO. The width WBB of the bridge bar 140 can be greater at the bottom end 142 than at the top end 144 to promote a lower Z-up. Alternatively, the width WBB of the bridge bar 140 can be greater at the top end 144 than at the bottom end 142 to promote a higher Z-up. In yet other implementations, the width WBB of the bridge bar 140 is constant from the top end 144 to the bottom end 142. In some implementations, the length LBB of the bridge bar 140 is 2-times, 3-times, or 4-times the width WBB of the bridge bar 140.


Referring to FIG. 6, an areal mass of the rear portion 128 of the golf club head 100 between the topline portion 106, the sole portion 108, the toe portion 104, and the heel portion 102 is between 0.0005 g/mm2 and 0.00925 g/mm2, such as, for example, about 0.0037 g/mm2. Generally, the areal mass of the rear portion 128 is the mass per unit area of the area defined by the opening 163 to the cavity 161. In some implementations, the area of the opening 163 is about 1,600 mm2.


In some embodiments, the golf club head may include a topline portion weight reduction zone that includes weight reducing features that yield a mass per unit length within the topline portion weight reduction zone of between about 0.09 g/mm to about 0.40 g/mm, such as between about 0.09 g/mm to about 0.35 g/mm, such as between about 0.09 g/mm to about 0.30 g/mm, such as between about 0.09 g/mm to about 0.25 g/mm, such as between about 0.09 g/mm to about 0.20 g/mm, or such as between about 0.09 g/mm to about 0.17 g/mm. In some embodiments, the topline portion weight reduction zone yields a mass per unit length within the weight reduction zone less than about 0.25 g/mm, such as less than about 0.20 g/mm, such as less than about 0.17 g/mm, such as less than about 0.15 g/mm, or such as less than about 0.10 g/mm. The golf club head has a topline portion made from a metallic material having a density between about 7,700 kg/m3 and about 8,100 kg/m3, e.g. steel. If a different density material is selected for the topline construction that could either increase or decrease the mass per unit length values. The weight reducing features may be applied over a topline length of at least 10 mm, such as at least 20 mm, such as at least 30 mm, such as at least 40 mm, such as at least 45 mm, such as at least 50 mm, such as at least 55 mm, or such as at least 60 mm.


Additional and different golf club head features may be included in one or more embodiments. For example, additional golf club head features are described in U.S. Pat. Nos. 10,406,410, 10,155,143, 9,731,176, 9,597,562, 9,044,653, 8,932,150, 8,535,177, and 8,088,025, which are incorporated by reference herein in their entireties. Additional and different golf club head features are also described in U.S. Patent Application Publication No. 2018/0117425, published May 3, 2018, which is incorporated by reference herein in its entirety. Additional and different golf club head features are also described in U.S. Patent Publication No. 2019/0381370, published Dec. 19, 2019, which is incorporated by reference herein in its entirety.


Coefficient of Restitution and Characteristic Time

As used herein, the terms “coefficient of restitution,” “COR,” “relative coefficient of restitution,” “relative COR,” “characteristic time,” and “CT” are defined according to the following. The coefficient of restitution (COR) of an iron club head is measured according to procedures described by the USGA Rules of Golf as specified in the “Interim Procedure for Measuring the Coefficient of Restitution of an Iron Club head Relative to a Baseline Plate,” Revision 1.2, Nov. 30, 2005 (hereinafter “the USGA COR Procedure”). Specifically, a COR value for a baseline calibration plate is first determined, then a COR value for an iron club head is determined using golf balls from the same dozen(s) used in the baseline plate calibration. The measured calibration plate COR value is then subtracted from the measured iron club head COR to obtain the “relative COR” of the iron club head.


To illustrate by way of an example: following the USGA COR Procedure, a given set of golf balls may produce a measured COR value for a baseline calibration plate of 0.845. Using the same set of golf balls, an iron club head may produce a measured COR value of 0.825. In this example, the relative COR for the iron club head is 0.825−0.845=−0.020. This iron club head has a COR that is 0.020 lower than the COR of the baseline calibration plate, or a relative COR of −0.020.


The characteristic time (CT) is the contact time between a metal mass attached to a pendulum that strikes the face center of the golf club head at a low speed under conditions prescribed by the USGA club conformance standards.


Damper and Badge Structures

As manufacturers of iron-type golf club heads design cavity-back club heads for a high moment of inertia (MOI), low center of gravity (CG), and other characteristics, acoustic and vibration dampers may be provided to counteract unpleasant sounds and vibration frequencies produced by features of the club heads, such as resulting from thin toplines, thin striking faces, and other club head characteristics. Heel-to-toe badges and/or dampers may be provided such that unpleasant sounds and vibration frequencies are dampened, while maintaining acceptable COR and CT values for the striking face. Heel-to-toe badges and/or dampers may also be provided with relief cutouts (also referred to as channels and grooves, such as to provide projection or ribs on the damper) to maintain COR and CT values of the striking face, improve COR and CT values for off-center strikes, and to provide for a larger “sweet-spot” on the striking face.



FIG. 10 illustrates one embodiment of a damper 280 of an iron-type golf club head. The damper 280 includes one or more relief cutouts 281a-281g on front surface 284 that reduce the surface area of the damper 280 that contacts a rear surface of the striking face. Any number of relief cutouts may be provided. The damper 280 includes one or more projections 282a-282h on front surface 284 that contact the rear surface of the striking face. Any number of projections may be provided. The number of projections may correspond with the number of relief cutouts. For example, as depicted in FIG. 10, damper 280 has one more projection than relief cutout, such that the damper 280 contacts the rear surface of the striking face on both sides of each relief cutout. In another embodiment, the damper 280 may have fewer projections than relief cutouts. In yet another embodiment, the damper 280 may have an equal number of projections and relief cutouts. The relief cutouts of FIG. 10 are shown in a front face of the damper and extending from a top surface to a bottom surface, however they need not extend all the way to the top surface or the bottom surface, and may be horizontally oriented or angled, as opposed to vertically oriented, as seen in FIG. 10. Using relief cutout 281d of FIG. 10 as an example, it has a relief cutout height, which in this embodiment extends vertically all the way from the damper bottom surface to the damper top surface, as well as a relief cutout width in the heel-toe direction, along the x-axis 105 of FIG. 1. The relief cutout width of relief cutout 281d of FIG. 10 is constant, however it may vary, including an embodiment where it is wider at the top surface, and embodiment where it is wider at the bottom surface, and an embodiment where it is widest at a location between the top and bottom surface. Further, the relief cutout width may vary between adjunct relief cutouts. For example, relief cutout 281d is wider than relief cutout 2813, which is wider than relief cutout 281f. The same may be true for relief cutouts as they move toward the toe portion. Similarly, each relief cutout has a relief cutout depth, which as illustrated in FIG. 10 is constant from the top damper surface to the bottom damper surface, however the relief cutout depth may vary within a single relief cutout, or from one relief cutout to another. Thus, in one embodiment the relief cutout depth of 281d may be greater, or less, than the relief cutout depth of 281e, 281c, 281f, and/or 281b. Ultimately, whether associated with height, width, or depth, the volume of the relief cutouts may vary. In one embodiment a first relief cutout volume of a first relief cutout is at least 5% greater than a second relief cutout volume of a second relief cutout, and at least 7.5% greater, 10% greater, and 12.5% greater in further embodiments; and these relationships apply equally to a three or more relief cutouts. These same percentages and relationships also apply to the heights, widths, and/or depths. In one embodiment the relief cutout located nearest the geometric center of the face has the largest relief cutout volume, and the volume of adjacent relief cutouts decreases as they get closer to the toe portion and/or the heel portion. In an embodiment the relief cutout height is greater than the relief cutout width for at least one of the plurality of relief cutouts, while in further embodiments the relief cutout height is 10%, 20%, 30%, and/or 40% greater than the relief cutout width. While in a further series of embodiments the relief cutout height no more than 15 times, 12.5 times, 10 times, 7.5 times, 5 times, and/or 3.5 times greater than the relief cutout width. These same relationships regarding height and width apply equally to the projections. In one embodiment the relief cutout depth is at least 20% of a minimum thickness of the striking face, and at least 30%, 40%, and 50% in further embodiments. Another series of embodiments caps this relationship such that the relief cutout depth is no more than 200% of a maximum thickness of the striking face, and no more than 175%, 150%, 125%, and 100% in further embodiments. In still a further embodiment the relief cutout height is no more than the Zup value, and no more than 90%, 80%, 70%, and/or 60% of the Zup value in additional embodiments. Further, all the disclosure and relationships associated with the relief cutouts of FIG. 10 formed in the front face of the damper apply equally to the embodiments having relief cutouts formed in the rear face of the damper and selectively separating portions of it from the sole bar.


In one or more embodiments, the width and shape of each of the relief cutouts 281a-281g and each of the projections 282a-282h may differ in order to provide different damping characteristics of the damper 280 (e.g., sound and feel) and different performance characteristics at different locations across the striking face (e.g., CT and COR). For example, wide relief cutouts may be provided in the damper 280 near the ideal strike location (e.g., location 101 in FIG. 1) to retain more COR while still benefitting sound and feel across the striking face. In another example, narrow relief cutouts may be provided in the damper 280 at the ideal strike location to provide for better sound and feel at the expense of reduced performance characteristics. In yet another example, uniform cutouts may be provided in the damper 280 to provide for a balance between sound and feel with performance characteristics. The shape of the relief cutouts 281a-281g and/or the projections 282a-282h, whether in the front or rear face of the damper, may include one of, or combinations of, rectangle, square, round, elliptical, triangles, polygons, including, but not limited to, concave polygons, constructible polygons, convex polygons, cyclic polygons, decagons, digons, dodecagons, enneagons, equiangular polygons, equilateral polygons, henagons, hendecagons, heptagons, hexagons, Lemoine hexagons, Tucker hexagons, icosagons, octagons, pentagons, regular polygons, stars, and star polygons; triangles, including, but not limited to, acute triangles, anticomplementary triangles, equilateral triangles, excentral triangles, tritangent triangles, isosceles triangles, medial triangles, auxiliary triangles, obtuse triangles, rational triangles, right triangles, scalene triangles, Reuleaux triangles; parallelograms, including, but not limited to, equilateral parallelograms: rhombuses, rhomboids, and Wittenbauer's parallelograms; Penrose tiles; rectangles; rhombus; squares; trapezium; quadrilaterals, including, but not limited to, cyclic quadrilaterals, tetrachords, chordal tetragons, and Brahmagupta's trapezium; equilic quadrilateral kites; rational quadrilaterals; strombus; tangential quadrilaterals; tangential tetragons; trapezoids; polydrafters; annulus; arbelos; circles; circular sectors; circular segments; crescents; lunes; ovals; Reuleaux polygons; rotors; spheres; semicircles; triquetras; Archimedean spirals; astroids; paracycles; cubocycloids; deltoids; ellipses; smoothed octagons; super ellipses; and tomahawks; polyhedra; prisms; pyramids; and sections thereof, just to name a few.


In one or more embodiments, the relief cutout widths may provide for zones of contact by the projections of the damper. For example, in a damper with wider projections near the ideal strike location of the striking face, the damper will provide for better damping near the ideal strike location and will maintain a greater percentage of COR and CT near the heel and toe locations of the striking face. By maintaining a greater percentage of COR and CT near the heel and toe locations of the striking face, a perceived “sweet spot” of the striking face can be enlarged, providing for more consistent COR and CT across the striking face, resulting in consistent ball speeds resulting from impact across the striking face.


To provide for adequate sound and vibration damping, and to meet other club head specifications, the amount of surface area that the damper contacts the striking face determines the level of damping provided by the damper and impacts the performance specifications of the club head. For example, the damper need not be compressed to provide for damping. For example, the damper may move with the striking face, while still providing for sound and vibration damping. However, in some embodiments, the damper is compressed by the striking face. For example, a striking face may flex up to about 1.5 mm. In embodiments where the damper 280 is compressed, the damper may be compressed up to about 0.3 mm, up to about 0.6 mm, up to about 1.0 mm, up to about 1.5 mm, or up to another distance.


The damper 280 can be described by a projection ratio of the surface area of the projections contacting the striking face to a surface area of a projected area of the entire damper 280 (i.e., a combined surface area of the projections and the relief cutouts). In one embodiment the projection ratio is at least 0.15, while in further embodiments it is at least 0.25, 0.35, 0.45, and 0.55. Another series of embodiments caps this relationship such that the projection ratio is no more than 0.90, and in further embodiments no more than 0.80, 0.70, 0.60, and 0.50. In some embodiments, the projected surface area of the entire damper 280 is more than about 2 times the surface area of the projections, such as about 2.3 times (i.e., 542 mm2/235 mm2), about 2.2 times (i.e., 712 mm2/325 mm2), or about 1.8 times (i.e., 722 mm2/396 mm2). Thus, in one embodiment the surface area of the projections contacting the striking face is at least 200 mm2, while in further embodiments it is at least 300 mm2, 350 mm2, and 400 mm2. A further series of embodiments caps the surface area of the projections contacting the striking face to no more than 800 mm2, while in further embodiments it is no more than 700 mm2, 600 mm2, 500 mm2, and 400 mm2. For example, a numerically higher projection ratio (e.g., above 0.50) may provide for increased vibration and sound damping at the expense of performance characteristics. Likewise, a numerically lower projection ratio (e.g., below 0.25) may provide for increased performance characteristics at the expense of vibration and sound damping.


As depicted in FIG. 10, the damper 280 may include alternating projections 282a-282h and relief cutouts 281a-281g. The alternating projections 282a-282h and relief cutouts 281a-281g reduces the surface area of the projected surface of the damper 280 from contacting a rear surface of the striking face. By providing the relief cutouts 281a-281g in the damper 280, flexibility of the striking face can be maintained when compared to a solid damper (i.e., a damper without relief). In one embodiment, when compared to a solid damper that reduces COR of a striking face by about 5 points, a damper with relief cutouts may reduce COR of the striking face by only about 2.5 points. In another embodiment, when compared to a solid damper, a damper with relief cutouts may reduce COR of the striking face by 4 points less than the solid damper.


The damper 280 may be provided in any shape suitable to fit within the cavity and provide for vibration and sound damping. In one or more embodiments, the damper 280 may be provided with a tapered profile that reaches a peak height adjacent to a toeside of the damper, or between the geometric center of the striking face and the toe portion; while in another embodiment a minimum damper height is located between the geometric center of the striking face and the heel portion. For example, the damper 280 may have a length of 75 mm measured from the heel portion to the toe portion, a toeside height of at least 16 mm, and heelside height of at least 10 mm. In another example, the toeside height is no less than twice the heelside height. Other measurements may be provided, such as a length of greater than 40 mm measured from the heel portion to the toe portion, greater than 50 mm measured from the heel portion to the toe portion, greater than 60 mm measured from the heel portion to the toe portion, greater than 70 mm measured from the heel portion to the toe portion, or another length. In another embodiment the difference between the peak damper height and the minimum damper height is at least 20% of Zup, and in further embodiments at least 25%, 30%, and 40%. A further series of embodiments caps the relationship so that the difference between the peak damper height and the minimum damper height is no more than 90% of Zup, and in further embodiments no more than 80%, 70%, and 60%.


In one or more embodiments, the golf club head may include striking face of a golf club head may include localized stiffened regions, variable thickness regions, or inverted cone technology (ICT) regions located on the striking face at a location that surrounds or that is adjacent to the ideal striking location of the striking face. In these embodiments, additional features may be provided by the damper 280 to accommodate for the localized stiffened regions, variable thickness regions, or ICT regions. For example, the damper 280 may include a cutout 283 provided to receive and/or contact a portion of the striking face corresponding to a localized stiffened region, a variable thickness region, or an ICT region. As such, the cutout 283 is provided to match a shape of the region, such as a circular region, an elliptical region, or another shape of the region. In one example, the cutout 283 receives, but does not contact, at least a portion of the of a rear surface of the localized stiffened region, variable thickness region, or ICT region. In another example, the cutout 283 receives and is in contact with at least a portion of the rear surface of the localized stiffened region, variable thickness region, or ICT region. In this example, the damper contacts less than about 50% of the rear surface area, less than about 40%, or another portion of the rear surface area.


In one or more embodiments, the damper 280 is provided in lieu of localized stiffened regions, variable thickness regions, or ICT regions located on the striking face. For example, the damper 280 may be provided with characteristics that stiffen a localized region of the striking face more than surrounding regions of the striking face, such as to increase the durability of the club head striking face, to increase the area of the striking face that produces high CT and/or COR, or a combination of these reasons. To stiffen a localized region of the striking face, relief cutouts may be provided adjacent to the localized region, resulting in a stiffened local region and one or more flexible adjacent regions. Additional and different relief cutouts may be provided to effectuate localized stiffened regions of the striking face using the damper 280.


In one or more embodiments, additional relief cutouts may be provided on any surface of the damper 280, such as a top surface 285, an intermediate surface 286, a rear surface 287, or another surface, such as depicted in FIG. 11. For example, the additional relief cutouts may be provided for weight savings, water drainage from the cavity, ease of damper installation, aesthetic characteristics, and to provide other performance benefits.


In one or more embodiments, relief cutouts on the front surface 284 and/or the intermediate surface 286 of the damper 280 provide for a volume and mass savings compared to a damper without relief cutouts. In one example, a damper without relief cutouts is 7589 mm3 with a mass of 9.9 g. Providing relief cutouts on the front surface 284 reduces the volume of the damper to 7278 mm3 and reduces the mass to 9.5 g, providing a 4.1% mass savings. Providing relief cutouts on the front surface 284 and the intermediate surface 286 reduces the volume of the damper to 6628 mm3 and reduces the mass to 8.6 g, providing a 12.7% mass savings. In another example, another damper without relief cutouts is 5976 mm3 with a mass of 7.8 g. Providing relief cutouts on the front surface 284 reduces the volume of the damper to 5608 mm3 and reduces the mass to 7.3 g, providing a 6.1% mass savings. Providing relief cutouts on the front surface 284 and the intermediate surface 286 reduces the volume of the damper to 4847 mm3 and reduces the mass to 6.3 g, providing a 18.7% mass savings. Thus, in one embodiment the total volume of relief cutouts in the front face of the damper is at least 150 mm3, and in further embodiments at least 200 mm3, 250 mm3, and 300 mm3. A further series of embodiments caps this relationship such that the total volume of relief cutouts in the front face of the damper is no more than 600 mm3, and in further embodiments no more than 550 mm3, 500 mm3, 450 mm3, and 400 mm3. Likewise, in one embodiment the total volume of relief cutouts in the rear face of the damper is at least 150 mm3, and in further embodiments at least 200 mm3, 250 mm3, and 300 mm3. A further series of embodiments caps this relationship such that the total volume of relief cutouts in the rear face of the damper is no more than 600 mm3, and in further embodiments no more than 550 mm3, 500 mm3, 450 mm3, and 400 mm3. It should be noted that the rear face of the damper referred to corresponds to the intermediate rear surface 286 shown in FIG. 12 and is the portion of the damper within the lower undercut region and intended to contact a surface of the rear sole bar that is facing the striking surface.



FIGS. 11-12 illustrate additional views of one embodiment of a damper 280 of an iron-type golf club head. The damper 280 includes a top surface 285, an intermediate rear surface 286, and a rear surface 287. Additional and different surfaces may be provided.


In one or more embodiments, relief cutouts are provided in the top surface 285 of the damper 280. For example, one or more relief cutouts 281a-281g on front surface 284 (depicted in FIG. 10) may extend to the top surface 285. The relief cutouts provided in the top surface 285 may allow for water trapped in front of the damper 280 to drain from the cavity. The relief cutouts provided in the top surface 285 may also provide for aesthetic benefits, such as allowing the damper to be more pleasing to the golfer and to blend into the feature lines of the golf club head. The relief cutouts provided in the top surface 285 may also provide for weight savings and may add to the flexibility of the damper for ease of installation into the cavity. Any number of relief cutouts may be provided in the top surface 285.


In one or more embodiments, relief cutouts are also provided in the intermediate rear surface 286 of the damper 280. The relief cutouts provided in the intermediate rear surface 286 may also provide for weight savings and may add to the flexibility of the damper for ease of installation into the cavity. Any number of relief cutouts may be provided in the intermediate rear surface 285. Projections may also be provided in the intermediate rear surface 286 for contact with a rear portion and/or a sole bar of the club head. In an example, uniform projections and uniform relief cutouts are provided in the intermediate rear surface 286. In this example, the intermediate rear surface 286 includes the same number of projections as the front surface 284. In another example, the intermediate rear surface 286 includes more projections than the front surface 284. In another example, the intermediate rear surface 286 includes fewer projections than the front surface 284.



FIG. 11 also illustrates one embodiment of a badge 288 of an iron-type golf club head. The badge 288 may be positioned above the damper 280 within the cavity of the club head. For example, the badge 288 may be adhesively secured or otherwise mechanically attached or connected to the rear surface of the striking face. The badge 288 may be provided in any shape. For example, the badge 288 may be provided in a tapered shape, with a peak height adjacent to the toeside of the badge. The badge 288 may provide additional vibration and sound damping, as well as serve aesthetic purposes within the cavity. In one or more embodiments, the damper 280 extends a greater distance from heel to toe than the badge 288.


In some embodiments, the damper 280 is provided with a pattern or other relief on the front surface 284 that reduces the surface area of the damper 280 that contacts a rear surface of the striking face. Any type of relief may be provided that reduces the surface area of the front surface of the damper that contacts the rear surface of the striking face. For example, the damper 280 may be provided with a honeycomb pattern, a cross-cut pattern, a nubbin pattern, pattern, another pattern, or a pattern inversion. The pattern and/or other relief may be symmetrical across the front surface of the damper, or the pattern may vary across the front surface. The pattern and/or other relief provides that less than 100% of the front surface of the damper contact the rear surface of the striking face, and less than 90%, 80%, 70%, and 60% in further embodiments. Another series of embodiments sets a floor on this relationship such that at least 15% of the front surface of the damper contacts the rear surface of the striking face, and at least 25%, 35%, 45%, and 55% in further embodiments.


Additional and different golf club badge and/or damper features may be included in one or more embodiments. For example, additional golf club badge and/or damper features are described in U.S. Pat. Nos. 10,427,018, 9,937,395, and 8,920,261, which are incorporated by reference herein in their entireties.


Damper Materials

A variety of materials and manufacturing processes may be used in providing the damper 280. In one or more embodiments, the damper 280 is a combination of Santoprene and Hybrar. For example, using different ratios of Santoprene to Hybrar, the durometer of the damper 280 may be manipulated to provide for different damping characteristics, such as interference, dampening, and stiffening properties. In one embodiment, a ratio of about 85% Santoprene to about 15% Hybrar is used. In another embodiment, a ratio of at least about 80% Santoprene to about 10% Hybrar is used. Other ratios may be used.


Examples of materials that may be suitable for use as a damper structure include, without limitation: viscoelastic elastomers; vinyl copolymers with or without inorganic fillers; polyvinyl acetate with or without mineral fillers such as barium sulfate; acrylics; polyesters; polyurethanes; polyethers; polyamides; polybutadienes; polystyrenes; polyisoprenes; polyethylenes; polyolefins; styrene/isoprene block copolymers; hydrogenated styrenic thermoplastic elastomers; metallized polyesters; metallized acrylics; epoxies; epoxy and graphite composites; natural and synthetic rubbers; piezoelectric ceramics; thermoset and thermoplastic rubbers; foamed polymers; ionomers; low-density fiber glass; bitumen; silicone; and mixtures thereof. The metallized polyesters and acrylics can comprise aluminum as the metal. Commercially available materials include resilient polymeric materials such as Scotchweld™ (e.g., DP-105™) and Scotchdamp™ from 3M, Sorbothane™ from Sorbothane, Inc., DYAD™ and GP™ from Soundcoat Company Inc., Dynamat™ from Dynamat Control of North America, Inc., NoViFlex™ Sylomer™ from Pole Star Maritime Group, LLC, Isoplast™ from The Dow Chemical Company, Legetolex™ from Piqua Technologies, Inc., and Hybrar™ from the Kuraray Co., Ltd.


In some embodiments, the filler material may have a modulus of elasticity ranging from about 0.001 GPa to about 25 GPa, and a durometer ranging from about 5 to about 95 on a Shore D scale. In other examples, gels or liquids can be used, and softer materials which are better characterized on a Shore A or other scale can be used. The Shore D hardness on a polymer is measured in accordance with the ASTM (American Society for Testing and Materials) test D2240.


In some embodiments, the damper material may have a density of at least 0.50 g/cc, and at least 0.70, 0.90, 1.1, and 1.3 g/cc in additional embodiments. In a further series of embodiments the damper material density is no more than 2.00 g/cc, and no more than 1.90, 1.80, 1.70, and 1.60 g/cc in additional embodiments. The damper material may have a hardness of about 10 to about 70 shore A hardness. In certain embodiments, a shore A hardness of about 40 or less is preferred. In certain embodiments, a shore D hardness of up to about 40 or less is preferred.


In some embodiments, the damper material may have a density between about 0.16 g/cc and about 0.19 g/cc or between about 0.03 g/cc and about 0.19 g/cc. In certain embodiments, the density of the damper material is in the range of about 0.03 g/cc to about 0.2 g/cc, or about 0.04-0.10 g/cc. The density of the damper material may impact the COR, durability, strength, and damping characteristics of the club head. In general, a lower density material will have less of an impact on the COR of a club head. The damper material may have a hardness range of about 15-85 Shore 00 hardness or about 80 Shore 00 hardness or less.


In one or more embodiments, the damper 280 may be provided with different durometers across a length of the damper 280. For example, the damper 280 may be co-molded using different materials with different durometers, masses, densities, colors, and/or other material properties. In one embodiment, the damper 280 may be provided with a softer durometer adjacent to the ideal striking location of the striking face than adjacent to the heel and toe portions. In another embodiment, the damper 280 may be provided with a harder durometer adjacent to the ideal striking location of the striking face than adjacent to the heel and toe portions. In these examples, the different material properties used to co-mold the damper 280 may provide for better performance and appearance. In one such embodiment the damper 280 is formed of at least 2 materials where the density of the heavier material is at least 10% greater than the density of the lighter material, and at least 20%, 30%, and 50% in additional embodiments. While in further embodiments the damper 280 is formed of at least 2 materials where the density of the heavier material is no more than 500% greater than the density of the lighter material, and no more than 450%, 400%, 350%, 300%, and 250% in additional embodiments. Likewise with respect to hardness, in one such embodiment the damper 280 is formed of at least 2 materials where the hardness on a Shore A scale of the harder material is at least 10% greater than the Shore A hardness of the softer material, and at least 20%, 30%, and 50% in additional embodiments. While in further embodiments the Shore A hardness of the harder material is no more than 500% greater than the Shore A hardness of the softer material, and no more than 450%, 400%, 350%, 300%, and 250% in additional embodiments.


Additional and different damper materials and manufacturing processes can be used in one or more embodiments. For example, additional damper materials and manufacturing processes are described in U.S. Pat. Nos. 10,427,018, 9,937,395, 9,044,653, 8,920,261, and 8,088,025, which are incorporated by reference herein in their entireties. For example, the damper 280 may be manufactured at least in part of rubber, silicone, elastomer, another relatively low modulus material, metal, another material, or any combination thereof.


Club Head and Damper Interaction


FIG. 13 illustrates one embodiment of the damper 280 positioned within the cavity 161 of a golf club head 100. For example, the damper 280 is inserted from a toeside of the club head 100 into the cavity 161. Likewise, a badge 288 (not depicted) may also be inserted from the toeside of the golf club head and affixed within the cavity 161. In one or more embodiments, the damper 280 is positioned low in the cavity 161 below an upper edge of the rear portion 128 (i.e., below the cavity opening line). For example, the damper 280 is positioned about 1 mm below an upper edge of the upper edge of the rear portion 128. The damper may also be positioned below the badge 288.


As discussed above, in one or more embodiments, the damper 280 may include relief cutouts on one or more surfaces of the damper 280 which allow water to drain out of the cavity 161 from below and around the damper 280. For example, if the club head 100 is submerged in a water bucket, such as for cleaning, the relief cutouts allow water to drain from the cavity 161. In testing embodiments of the damper 280, a club head 100 without the relief cutouts retained 1.2 g of water. In contrast, a club head 100 with the relief cutouts retained only 0.3 g of water.



FIG. 14 illustrates a cross-section view of one embodiment of the damper 280 positioned within the cavity 161 of a golf club head 100. The front surface 284 of the damper 280 contacts a rear surface of the striking face 109. The intermediate surface 286 and the rear surface 287 of the damper 280 each contact the rear portion 128 and/or the sole bar 135. As depicted in FIG. 14, the damper 280 contacts the striking face 109, the rear portion 128 and/or the sole bar 135 at varying heights within the cavity 161. Further, channel 150 may be rearward intermediate surface 286.


In one or more embodiments, a badge 288 may also be positioned within the cavity 161. As depicted in FIG. 14, the badge 288 is positioned above the damper 280 and separated from the damper 280. For example, the damper 280 and the badge 288 may be separated by about 1 mm or another distance. In another embodiment, the badge 288 is positioned above of and in contact with the damper 280. In this embodiment, the badge 288 may lock the damper in place within the cavity 161. The badge 288 may be an ABS plastic or another material, secured within the cavity to the rear surface of the striking face 109 by an adhesive or tape. In one example, the badge is secured by tape with a thickness of about 1.1 mm, providing additional vibration and sound damping of the striking face 109. In some embodiments, the damper 280 extends rearward of the badge 288.



FIG. 15 illustrates another cross-section view of one embodiment of the damper 280 positioned within the cavity 161 of a golf club head 100. The heel portion 102 of the club head 100 includes a negative heel tab 196 for receiving the heel tab 293 of the damper 280. The toe portion 104 of the club head 100 includes a negative toe tab 195 for receiving the toe tab 294 of the damper 280. During installation, the damper 280 may be inserted into the cavity 161 and locked into place using the toe tab 294 and the heel tab 293. The club head 100 may also include a center tab 191 for further securing the damper 280 within the cavity 161.


As depicted in FIG. 15, a portion of the negative toe tab 195 overlaps a portion of the damper 280 when the damper 280 is positioned within the cavity 161. Likewise, a portion of the negative heel tab 196 overlaps a portion of the damper 280 when the damper 280 is positioned within the cavity 161. In one or more embodiments, the top edge of each of the negative toe tab 195, the center tab 191, and the negative heel tab 196 are substantially colinear.


In one or more embodiments, the damper 280 may be positioned in contact with a “donut” (not depicted in FIG. 15) of the striking face 109. For example, the damper 280 may be positioned in contact with a lower portion of the “donut,” such as below the peak of the “donut.” In some embodiments, the “donut” further secures the damper within the cavity 161.


In one or more embodiments, the damper 280 may be positioned in the cavity 161 and secured with an interference fit between the damper 280 and the body 113. For example, the damper 280 may be under compression when it is positioned win the cavity 161, such as at least 0.2 mm of compression, 0.4 mm of compression, 0.6 mm of compression, or another length of compression. In an embodiment, the front surface 284 of the damper 280 is compressed by at least 0.2 mm by the striking face 109 and the rear surface 287 is compressed by at least 0.2 mm by the rear portion 128. In another embodiment, the damper 280 is preloaded by about 0.6 mm by the damper 280 contacting the body 113.



FIG. 16 illustrates a cross-section view of another embodiment of the damper 280 positioned within the cavity 161 of a golf club head 100. The front surface 284 of the damper 280 contacts a rear surface of the striking face 109. The intermediate surface 286 and the rear surface 287 of the damper 280 each contact the rear portion 128 and/or the sole bar 135. As depicted in FIG. 16, the damper 280 contacts the striking face 109, the rear portion 128 and/or the sole bar 135 at varying heights within the cavity 161. Further, channel 150 may be rearward intermediate surface 286.



FIG. 17 illustrates another cross-section view of one embodiment of the damper 280 positioned within the cavity 161 of a golf club head 100. The heel portion 102 of the club head 100 includes a negative heel tab 196 for receiving the heel tab 293 of the damper 280. The toe portion 104 of the club head 100 includes a negative toe tab 195 for receiving the toe tab 294 of the damper 280. During installation, the damper 280 may be inserted into the cavity 161 and locked into place using the toe tab 294 and the heel tab 293. The club head 100 may also include a center tab 191 for further securing the damper 280 within the cavity 161.


As depicted in FIG. 17, a portion of the negative toe tab 195 overlaps a portion of the damper 280 when the damper 280 is positioned within the cavity 161. Likewise, a portion of the negative heel tab 196 overlaps a portion of the damper 280 when the damper 280 is positioned within the cavity 161. In one or more embodiments, the top edge of each of the negative toe tab 195, the center tab 191, and the negative heel tab 196 are not substantially colinear.


Localized Stiffened Regions and Inverted Cone Technology

In one or more embodiments, the striking face of a golf club head may include localized stiffened regions, variable thickness regions, or inverted cone technology (ICT) regions located on the striking face at a location that surrounds or that is adjacent to the ideal striking location of the striking face. The aforementioned regions may also be referred to as a “donut” or a “thickened central region.” The regions may be circular, elliptical, or another shape. For example, the localized stiffened region may include an area of the striking face that has increased stiffness due to being relatively thicker than a surrounding region, due to being constructed of a material having a higher Young's Modulus (E) value than a surrounding region, and/or a combination of these factors. Localized stiffened regions may be included on a striking face for one or more reasons, such as to increase the durability of the club head striking face, to increase the area of the striking face that produces high CT and/or COR, or a combination of these reasons.


Examples of localized stiffened regions, variable thickness configurations, and inverted cone technology regions are described in U.S. Pat. Nos. 6,800,038, 6,824,475, 6,904,663, 6,997,820, and 9,597,562, which are incorporated by reference herein in their entireties. For example, ICT regions may include symmetrical “donut” shaped areas of increased thickness that are located within the unsupported face region. In some embodiments, the ICT regions are centered on the ideal striking location of the striking face. In other embodiments, the ICT regions are centered heelward of the ideal striking location of the striking face, such as to stiffen the heel side of the striking face and to add flexibility to the toe side of the striking face, such as to reduce lateral dispersion (e.g., a draw bias) produced by the golf club head.


In some embodiments, the ICT region(s) include(s) an outer span and an inner span that are substantially concentric about a center of the ICT regions. For example, the outer span may have a diameter of between about 15 mm and about 25 mm, or at least about 20 mm. In other embodiments, the outer span may have a diameter greater than about 25 mm, such as about 25-35 mm, about 35-45 mm, or more than about 45 mm. The inner span of the ICT region may represent the thickest portion of the unsupported face region. In certain embodiments, the inner diameter may be between about 5 mm and about 15 mm, or at least about 10 mm.


In other embodiments, the localized stiffened region comprises a stiffened region (e.g., a localized region having increased thickness in relation to its surrounding regions) having a shape and size other than those described above for the inverted cone regions. The shape may be geometric (e.g., triangular, square, trapezoidal, etc.) or irregular. For these embodiments, a center of gravity of the localized stiffened region (CGLSR) may be determined by defining a boundary for the localized stiffened region and calculating or otherwise determining the center of gravity of the defined region. An area, volume, and other measurements of the localized stiffened region are also suitable for measurement upon defining the appropriate boundary.


Club Head Measurements


FIG. 18 illustrates club head measurements that may apply to one or more embodiments, including club head 100, club head 300, or another club head. In one or more embodiments the golf club head 300, as shown in FIG. 18, the internal cavity 361 is partially or entirely filled with a filler material and/or a damper, such as a non-metal filler material of a thermoplastic material, a thermoset material, or another material. In other embodiments, the internal cavity 361 is not filled with a filler material and remains an unfilled or partially filled hollow cavity within the club head. In other embodiments, such as the club head 100, as shown in FIG. 1, the cavity 161 is not closed by a back wall and remains unfilled or partially filled with a filler material and/or a damper. In some embodiments, the golf club head 300 may include a face insert 310 that wraps from the face into the crown, topline, rear portion, and/or sole, such as in a face to crown to rear transition region 321 and/or a face to sole transition region 322.


Referring back to FIG. 18, club head 300 includes a sole bar 335. A maximum sole bar height Hsolebar, measured as the distance perpendicular from the ground plane (GP) to a top edge of the sole bar 335 when the golf club head is in proper address position on the ground plane, may be between 7.5 and 8 mm, between 6 mm and 9 mm, between 8 mm and 10 mm, between 9 and 12 mm, between 11 mm and 15 mm, or another distance.



FIG. 18 also shows the thicknesses of various portions of the golf club head 300. The golf club head 300 has a topline thickness Ttopline, a minimum face thickness Tfacemin, a maximum face thickness Tfacemax, a sole wrap thickness Tsolewrap, a sole thickness Tsole, and a rear thickness Trear. The topline thickness Ttopline is the minimum thickness of the wall of the body defining the top portion of the body of the golf club head. The minimum face thickness Tfacemin is the minimum thickness of the wall or plate of the body defining the face portion of the body of the golf club head. The maximum face thickness Tfacemax is the maximum thickness of the wall or plate of the body defining the face portion of the body of the golf club head. The sole wrap thickness Tsolewrap is the minimum thickness of the wall of the body defining the transition between the face portion and the sole portion of the body of the golf club head. The sole thickness Tsole is the minimum thickness of the wall of the body defining the sole portion of the body of the golf club head. The rear thickness Trear is the minimum thickness of the wall of the body defining the rear portion of the body or the rear panel of the golf club head.


In one or more embodiments, the topline thickness Ttopline is between 1 mm and 3 mm, inclusive (e.g., between 1.4 mm and 1.8 mm, inclusive), the minimum face thickness Tfacemin is between 2.1 mm and 2.4 mm, inclusive, the maximum face thickness Tfacemax (typically at center face or an ideal strike location 301) is between 3.1 mm and 4.0 mm, inclusive, the sole wrap thickness Tsolewrap is between 1.2 and 3.3 mm, inclusive (e.g., between 1.5 mm and 2.8 mm, inclusive), the sole thickness Tsole is between 1.2 mm and 3.3 mm, inclusive (e.g., between 1.7 mm and 2.75 mm, inclusive), and/or the rear thickness Trear is between 1 mm and 3 mm, inclusive (e.g., between 1.2 mm and 1.8 mm, inclusive). In certain embodiments, a ratio of the sole wrap thickness Tsolewrap to the maximum face thickness Tfacemax is between 0.40 and 0.75, inclusive, a ratio of the sole wrap thickness Tsolewrap to the maximum face thickness Tfacemax is between 0.4 and 0.75, inclusive (e.g., between 0.44 and 0.64, inclusive, or between 0.49 and 0.62, inclusive), a ratio of the topline thickness Ttopline to the maximum face thickness Tfacemax is between 0.4 and 1.0, inclusive (e.g., between 0.44 and 0.64, inclusive, or between 0.49 and 0.62, inclusive), and/or a ratio of the sole wrap thickness Tsolewrap to the maximum sole bar height Hsolebar is between 0.05 and 0.21, inclusive (e.g., between 0.07 and 0.15, inclusive). In certain embodiments, a ratio of a minimum thickness in the face to sole transition region 322 to Tfacemax is between 0.40 and 0.75, inclusive (e.g., between 0.44 and 0.64, preferably between 0.49 and 0.62), and a ratio of the minimum face thickness Tfacemin to the face to crown to rear transition region 321 (excluding the weld bead) is between 0.40 and 1.0, inclusive (e.g. between 0.44 and 0.64, preferably between 0.49 and 0.62).


In one or more embodiments, the face portion may be welded to the body (e.g., a cast body), defining the cavity behind the face portion and forward of the rear portion, such as by welding a strike plate welded to a face opening on the body. In some embodiments, the face portion is manufactured with a forging process and the body is manufactured with a casting process. The welded face portion may include an undercut portion that wraps underneath the cavity and forms part of the sole portion. The undercut portion of the topline portion may include a minimum topline thickness, such as 1 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, less than 1.5 mm, or another thickness. In an embodiment, the minimum topline thickness is between 1.4 mm and 1.8 mm, 1.3 mm and 1.9 mm, 1 mm and 2.5 mm, or another thickness. The welded face portion may include an undercut portion that wraps above the cavity and forms part of the topline portion. The undercut portion of the sole portion may include a minimum sole thickness, such as 1.25 mm, 1.4 mm, 1.55 mm, less than 1.6 mm, or another thickness. In an embodiment, the minimum sole thickness is between 1.6 mm and 2 mm, 1.5 mm and 2.2 mm, 1 mm and 3 mm, or another thickness. In some embodiments, the face portion is integrally cast or forged with the body. In some embodiments, the body and the face portion form a one-piece, unitary, monolithic construction.


The golf club head may be described with respect to a coordinate system defined with respect to an ideal striking location. The ideal striking location defines the origin of a coordinate system in which an x-axis is tangential to the face portion at the ideal striking location and is parallel to a ground plane when the body is in a normal address position, a y-axis extends perpendicular to the x-axis and is also parallel to the ground plane, and a z-axis extends perpendicular to the ground plane, wherein a positive x-axis extends toward the heel portion from the origin, a positive y-axis extends rearwardly from the origin, and a positive z-axis extends upwardly from the origin.


The golf club head may also be described with respect to a central region of the golf club head. For example, the body may be described with respect to a central region defined by a location on the x-axis, such as −25 mm<x<25 mm, −20 mm<x<20 mm, −15 mm<x<15 mm, −30 mm<x<30 mm, or another location. In some embodiments, the aforementioned measurements and other features may be described with respect to the central region, such as maximum face thickness Tfacemax of 3.5 mm within the central region of the face. In some embodiments, the damper may be described with respect to the central region, such as having a length from the heel portion to the toe portion of between 80% to 150% of the length of the central region, between 30% to 200% of the length of the central region, or between other percentages. In one example, defining a central region at −25 mm<x<25 mm has a length of 50 mm. In this example, providing a damper having a length of 75 mm from the heel portion to the toe portion results in the damper being 150% of the length of the central region.


The golf club head may also be described with respect to other characteristics of the golf club head, such as a face length measured from the par line to the toe portion ending at approximately the Z-up location of the club head. In another example, the golf club head may be described with respect to the score lines of the face, such as from a heelward score line location to a toeward score line location. In yet another example, the golf club head may be described by a blade length measured from a point on the surface of the club head on the toe side that is furthest from the ideal striking location on the x-axis to a point a point on the surface of the club head on the heel side that is furthest from the ideal striking location on the x-axis.


Additional Club Head Structure


FIG. 19 illustrates one embodiment of an iron-type golf club head 100 including a body 113 having a heel portion 102, a toe portion 104, a sole portion 108, a topline portion 106, a rear portion 128, and a hosel 114. The golf club head 100 is manufactured with a cavity 161 (not depicted in FIG. 19), and a shim or badge 188 is adhered, bonded, or welded to the body 100 to produce a cap-back iron, giving the appearance of a hollow-body iron. In this way, the golf club 100 can be manufactured with the performance benefits of a game improvement iron, while providing the appearance of a blade, player's iron, and/or a hollow-body iron.


For example, a cap-back iron can capitalize on the performance benefits of a low CG, cavity-back iron, and the sound and feel benefits of a hollow-body iron. For example, by using a lightweight and rigid shim or badge 188 to close a cavity opening 163 in the cavity 161, the golf club head can provide increased stiffness in the topline portion 106, while maintaining a low CG. Various shim or badge 188 arrangements and materials can be used, and a filler material and/or damper 180 can be included within the cavity 161 to improve sound and feel, while minimizing loss in COR.


In some embodiments, the club head 100 is manufactured using as a unitary cast body 113. In these embodiments, the heel portion 102, toe portion 104, sole portion 108, topline portion 106, rear portion 128, face portion 110 (not depicted in FIG. 19 and including striking face 109), and hosel 114 are cast as a single body 113. A separately formed shim 188 is then received at least in part by the body 113, such as by the topline portion 106 and the rear portion 128. In some embodiments, the club head 100 includes an upper ledge 193 (not depicted in FIG. 19) and a lower ledge 194 (not depicted in FIG. 19) configured to receive the shim 188. In some embodiments, at least a portion of the rear surface of the striking face 109 can be machined or chemical etched before installing the shim 188, such as to finish the surface to increase durability and/or to machine variable face thicknesses across the striking face 109. For example, in embodiments where the striking face 109 is cast from Ti as part of a unitary cast body 113, the rear surface of the striking face can be machined or chemical etched to remove the potentially brittle alpha case layer from the striking face.


The shim 188 is separately formed from and affixed to the unitary cast body 113. For example, the shim 188 can be bonded to exterior of club head (i.e., not bladder molded or co-molded) as a separately formed piece.


The shim 188 is configured to close a cavity opening 163 in the cavity 161 and to form, enclose, or otherwise define an internal cavity. The volume of the internal cavity can be between about 1 cc and about 50 cc, and preferably between 5 cc to 20 cc. In some embodiments, the volume of the internal cavity is between about 5 cc and about 30 cc, or between about 8 cc and about 25 cc. For the purposes of measuring the internal cavity volume herein, the shim 188 is assumed to be removed and an imaginary continuous wall or substantially back wall is utilized to calculate the internal cavity volume.


The club head 100 can have an external water-displaced clubhead volume between about 15 cc and about 150 cc, preferably between 30 cc and 75 cc, preferably between 35 cc and 65 cc, more preferably between about 40 cc and about 55 cc. A water-displaced volume is the volume of water displaced when placing the fully manufactured club head 100 into a water bath and measuring the volume of water displaced by the club head 100 within 30 seconds. The water-displaced volume differs from the material volume of the club head 100, as the water-displaced volume can be larger than the material volume, such as due to including the enclosed internal cavity and/or other hollow features of the club head. In some embodiments, the external water-displaced clubhead volume can be between about 30 cc and about 115 cc, between about 30 cc and about 70 cc, between about 30 cc and about 55 cc, between about 45 cc and about 100 cc, between about 55 cc and about 95 cc, or between about 70 cc and about 95 cc.


A ratio of the internal cavity volume to external water displaced clubhead volume can be between about 0.05 and about 0.5, between 0.1 and 0.4, preferably between 0.14 and 0.385. In some embodiments, the ratio of the internal cavity volume to external water displaced clubhead volume can between 0.20 and 0.35, or between 0.23 and 0.30.


In some embodiments, the club head 100 is manufactured by casting or forging a body 113 without the face portion 110 and/or striking face 109. In these embodiments, the face portion 110 and/or striking face 109 can be welded or otherwise attached to the body 113. In some embodiments, at least part of the face portion 110 and/or striking face 109 wraps one or more of the heel portion 102, toe portion 104, sole portion 108, and/or topline portion 106. For example, the body 113 can be cast from a steel alloy (e.g., carbon steel with a modulus of elasticity of about 200 GPa) and the face portion 110 and/or striking face 109 can be cast or forged from higher strength steel alloy (e.g., stainless steel 17-4 with a modulus of elasticity of about 210 GPa or 4140 with a modulus of elasticity of about 205 GPa), from a titanium alloy (e.g., with a modulus of elasticity between 110 GPa and 120 GPa), or manufactured from another material. Examples of golf club head constructions are disclosed in U.S. Pat. No. 10,543,409, filed Dec. 29, 2016, issued Jan. 28, 2020, and U.S. Pat. No. 10,625,126, filed Sep. 15, 2017, issued Apr. 21, 2020, which are incorporated herein by reference in their entirety.


In some embodiments, the club head 100 is manufactured with an unfinished, raw surface material. In some embodiments, the club head 100 has a finished surface material, such as with a satin finish, a physical vapor deposition (PVD) coating, a quench polish quench (QPQ) coating, or another finish. In some embodiments, a color can be embedded into the club head 100 material before casting, forging, or another process. In these embodiments, the embedded color gives the club head 100 an appearance of having a finish applied, while allowing the color to last longer than a coating or another finish applied during manufacturing.


The club head 100 can have a Zup between about 10 mm and about 20 mm, more preferably less than 19 mm, more preferably less than 18 mm, more preferably less than 17 mm, more preferably less than 16 mm. As used herein, “Zup” means the CG z-axis location determined according to this above ground coordinate system. Zup generally refers to the height of the CG above the ground plane as measured along the z-axis. In some embodiments, the club head 100 has a CG location (without the shim) between about 17 mm and about 18 mm above the ground plane, or between about 15 mm and about 18 mm above the ground plane.


The club head 100 can have a moment of inertia (MOI) about the CGz (also referred to as “Izz”) of between about 180 kg-mm2 and about 290 kg-mm2, preferably between 205 kg-mm2 and 255 kg-mm2, a MOI about the CGx (also referred to as “Ixx”) of between about 40 kg-mm2 and about 75 kg-mm2, preferably between 50 kg-mm2 and 60 kg-mm2, and a MOI about the CGy (also referred to as “Iyy”) of between about 240 kg-mm2 and about 300 kg-mm2, preferably between 260 kg-mm2 and 280 kg-mm2. For example, by placing discretionary weight at the toe can increase the MOI of the golf club resulting in a golf club that resists twisting and is thereby easier to hit straight even on mishits.



FIG. 20 illustrates cross-sectional back view of the golf club head 100. Numerals 2001, 2003, 2005, 2007, 2007, 2009, and 2011 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. As depicted, the heel portion 102, toe portion 104, sole portion 108, and/or topline portion 106 can include thinned regions. The thinned regions can redistribute discretionary weight within the club head 100. For example, including thinned region 2001 in the topline portion 106 can allow discretionary weight to be redistributed low, such as to lower the center of gravity of the golf club head 100. Targeted thick regions, such as thickened regions 2003, 2005, can be included to retain stiffness in the topline portion 106, such as to maintain acoustic frequencies, producing a better sound and feel of the golf club head 100. Likewise, thinned regions 2007, 2009 and a thickened region 2011 can be included the toe portion 102. For example, the thinned region 2001 can be between about 0.8 mm and about 1.4 mm, preferably between about 0.95 mm and about 1.25 mm. The thinned region 2007 can be between about 0.8 mm and about 2.5 mm, preferably between about 1.95 mm and about 2.25 mm, or between about 0.95 mm and about 1.25 mm.


The striking face 109 can include a donut 145 (also referred to as a thickened central region, localized stiffened regions, variable thickness regions, or inverted cone technology (ICT)). The center of the donut 145 can be the location of a peak thickness of the striking face 109. For example, a peak or maximum thickness of the donut 145 can be between about 2.5 mm and about 3.5 mm, preferably between about 2.75 mm and about 3.25 mm, more preferably between about 2.9 mm and about 3.1 mm. The striking face 109 can have a minimum or off-peak thickness of the donut 145 can be between about 1.4 mm and about 2.6 mm, preferably between about 1.55 mm and about 2.35 mm, more preferably between about 1.70 mm and about 2.2 mm.


The position of the donut 145 relative to a geometric center of the striking face 109 can be different for one or more irons within a set of clubheads. For example, a set of clubheads may include a selection of clubheads, designated based on having different lofts of the striking face 109 at address, typically including numbered irons (e.g., 1-9 irons) and/or wedges (e.g., PW, AW, GW, and LW). The geometric center of the striking face 109 is determined using the procedures described in the USGA “Procedure for Measuring the Flexibility of a Golf Club head,” Revision 2.0, Mar. 25, 2005.


For example, in longer irons with less loft (e.g., typically designated with numerically lower numbers), the position of the donut 145 can be lower and more toeward relative to the geometric center of the striking face 109. In shorter irons (e.g., typically designated with numerically higher number) and wedges, the position of the donut 145 can be higher and more heelward relative to the geometric center of the striking face 109. The location of the donut 145 relative to a geometric center of the striking face 109 can influence localized flexibility of the striking face 109 and can influence launch conditions. For example, shifting the donut 145 can stiffen heelward locations the striking face 145 and can add flexibility to toeward locations on the striking face 145. Further, shifting the donut 145 upward, downward, toeward, and heelward can influence launch conditions, such impart a draw bias, fade bias, or to otherwise reduce lateral dispersion produced by the golf club head.



FIG. 21 a front elevation view of the golf club head 100 showing a peak/maximum and minimum/off-peak thicknesses of the striking face 109 of club head 100, measured at locations on the striking face 109 without grooves and/or scoring lines. Numerals 2101, 2103, 2105, 2107, 2109 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600.


The striking face 109 has a peak or maximum thickness, such as at a center of donut 145, between about 2.5 mm and about 3.5 mm, preferably between about 2.75 mm and about 3.25 mm, more preferably between about 2.9 mm and about 3.1 mm. The striking face 109 has a minimum or off-peak thickness of the donut 145 can be between about 1.4 mm and about 2.6 mm, preferably between about 1.55 mm and about 2.35 mm, more preferably between about 1.70 mm and about 2.2 mm. The maximum face thickness may not be aligned with the geometric center of the face, such as when the donut 145 is shifted lower and toeward to create a draw bias, such as in longer irons (e.g., 1-7 irons). In some embodiments, the donut 145 can be centered higher in short irons and wedges, and the donut 145 can be centered lower in middle and long irons.


For example, the minimum or off-peak thicknesses 2101, 2103, 2105, 2107, 2109 can vary based on iron loft. For example, for long irons with lofts between about 16 degrees and about 25 degrees (e.g., 1-5 irons), the off-peak thicknesses 2101, 2103, 2105, 2107, 2109 are preferably between about 1.6 mm and 1.9 mm, and a peak thickness between about and about 2.95 mm and about 3.25 mm. For example, for mid irons with lofts between about 21.5 degrees and about 32.5 degrees (e.g., 6-7 irons), the off-peak thicknesses 2101, 2103, 2105, 2107, 2109 are preferably between about 1.55 mm and 1.85 mm, and a peak thickness between about 2.9 mm and about 3.2 mm. For example, for short irons and wedges with lofts between about 28.5 degrees and about 54 degrees (e.g., 8 iron-AW), the off-peak thicknesses 2101, 2103, 2105, 2107, 2109 are preferably between about 1.95 mm and 2.25 mm, and a peak thickness between about 2.7 mm and about 3.05 mm. For example, for wedges with lofts between about 49 degrees and about 65 degrees (e.g., SW-LW), the off-peak thicknesses 2101, 2103, 2105, 2107, 2109 are preferably between about 1.6 mm and 1.9 mm, and a peak thickness between about 2.85 and about 3.15.


The striking face 109 of the golf club head 100 has coefficient of restitution (COR) change value between −0.015 and +0.008, the COR change value being defined as a difference between a measured COR value of the striking face 109 and a calibration plate COR value. In some embodiments, the damper 280 and/or filler material reduces the COR of the golf club head by no more than 0.010. A characteristic time (CT) at a geometric center of the striking face 109 is at least 250 microseconds. In some embodiments, the striking face 109 is made from a titanium alloy and a maximum thickness of less than 3.9 millimeters, inclusive. The striking face 109, excluding grooves, has a minimum thickness between 1.5 millimeters and 2.6 millimeters. The striking face 109 is a first titanium alloy and the body is a second titanium alloy, and the first titanium alloy is different than the second titanium alloy.


In some embodiments, the striking face 109 is a titanium alloy and the body 113 is a steel alloy. For example, the body can be a carbon steel with a modulus of elasticity of about 200 GPa and the face can be a higher strength titanium or steel alloy (e.g., stainless (17-4) with a modulus of elasticity of about 210 GPa, 4140 with a modulus of elasticity of about 205 GPa, or a Ti alloy with a modulus of elasticity between 110 GPa and 120 GPa).


In some embodiments, club heads within a set can have bodies 113 and/or striking faces 109 of different alloys. For example, longer irons can have bodies 113 and/or striking faces 109 of a first alloy (e.g., 3-8 irons using 450 SS with a modulus of elasticity of about 190-220 GPa), middle and short irons can have bodies 113 and/or striking faces 109 of a second alloy (e.g., 9 iron-AW using 17-4 PH SS with a modulus of elasticity of about 190-210 GPa), and short irons and wedges can have bodies 113 and/or striking faces 109 of a third alloy (SW-LW using 431 SS with a modulus of elasticity of about 180-200 GPa). Additional and different alloys can be used for different irons and wedges. In some embodiments, the club heads can be cast using alloys with a yield strength between 250 MPa and 1000 MPa, preferably greater than 500 MPa. Preferably, the iron-type club heads having a loft between 16 degrees and 33 degrees are formed from a material having a higher modulus of elasticity than the iron-type club heads having a loft greater than 33 degrees. Preferably, the iron-type club heads having a loft between 16 degrees and 33 degrees are formed from a material having a nickel content of at least 5% by weight and a Copper content of no more than 2% by weight.


In some embodiments, short irons and/or wedges can be manufactured using a different alloy and can have a thicker face than mid and long irons. In some embodiments, club heads with lofts greater 40 degrees can be manufactured using a different alloy (e.g., 17-4 PH SS) than club heads with lofts below 40 degrees (e.g., 450 SS). In some embodiments, a relatively stronger alloy may be required to cast ledges 193, 194 for receiving the shim 188. In embodiments without ledges 193, 194, a relatively weaker alloy may be used.


In some embodiments, the club head 100 has a blade length between about 75 mm and about 86.5 mm, preferably between 77.5 mm and 84 mm. In some embodiments, the club head 100 has a topline width between about 5.5 mm and about 11 mm, preferably between 7 mm and 9 mm. In some embodiments, the club head 100 has a toeward face height between about 52 mm and about 68 mm, preferably between 54 mm and 66 mm. In some embodiments, the club head 100 has a PAR face height between about 28 mm and about 43 mm, preferably between 30 mm and 41 mm. In some embodiments, the club head 100 has a hosel to PAR width between about 4 mm and about 8 mm, preferably between 5 mm and 7 mm.



FIG. 22 illustrates a back perspective view of the golf club head 100 showing an upper ledge 193 and a lower ledge 194 configured to receive the shim or badge 188 (not depicted in FIG. 22). Numerals 2201 and 2203 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The shim or badge 188 can close the cavity opening 163, enclosing and defining an internal cavity. The body 113 includes a heel portion 102, a toe portion 104, a sole portion 108, a topline portion 106, a rear portion 128, and a hosel 114. For example, the sole portion 108 extends rearwardly from a lower end of the face portion 110 to a lower end of the rear portion 128. A sole bar 135 can define a rearward portion of the sole portion 108. A cavity 161 can defined by a region of the body 113 rearward of the face portion 110, forward of the rear portion 128, above the sole portion 108, and below the top-line portion 106.


The upper ledge 193 can be formed at least as part of the topline portion 106 and the lower ledge 194 can be formed at least as part of the rear portion 120. In some embodiments, the upper ledge 193 is formed at least as part of both the topline portion 106 and the rear portion 120. In some embodiments, the lower ledge 194 is formed at least as part of both the topline portion 106 and the rear portion 120.


The shim 188 (not depicted in FIG. 22) can be received at least in part by the upper ledge 193 and the lower ledge 194. The shim 188 is configured to close an opening 163 in the cavity 161, enclosing an internal cavity volume. The upper ledge 193 and the lower ledge 194 can be planar or non-planar, and are shaped to receive at least a portion of the shim 188 with a corresponding planar or non-planar shape.


In some embodiments, the ledges 193, 194 can be discontinuous, such as provided as a one or more partial ledges and/or a series of tabs forming a discontinuous ledge. In some embodiments, a sealing wiper can be provided around shim 188 to prevent water from intruding into the cavity 161. The sealing wiper can be a gasket or another material provided around shim, such as to seal a discontinuous ledge.


For example, the upper ledge 193 has an upper ledge width 2201 with a width between about 0.5 mm and about 4.0 mm, preferably 3.25 mm, and a thickness between about 0.5 mm and about 1.5 mm, preferably about 1.0 mm. The lower ledge 194 has a lower ledge width 2203 has a width between about 0.1 mm and about 3.0 mm, preferably about 2.25 mm, and a thickness between about 0.8 mm and about 2 mm, preferably about 1.3 mm. In some embodiments, the width and thickness of the upper ledge 193 and/or lower ledge 194 are minimized to allow additional discretionary weight to be relocated in the clubhead 100, such as lower in the clubhead 100. In some embodiments, the upper ledge 193 is wider than the lower ledge 194 to provide additional structural support for the topline portion 106, such as to improve feel, sound, and to better support the striking face 109. The shim has an area as projected onto the face portion of between about 1200 mm2 and about 2000 mm2, more preferably between 1500 mm2 and 1750 mm2.


According to the embodiment depicted in FIG. 22, the upper ledge 193 extends from in a general heel-to-toe direction from the heel portion 102 to the toe portion 104 and across the topline portion 106, such as from the lower heelside of the cavity opening 163 to the toeside of the cavity opening 163, such as forming an upper edge, heelward edge, and toeward edge of the cavity opening 163. The lower ledge 194 extends in a general heel-to-toe direction across the rear portion 120, such as from the lower heelside of the cavity opening 163 to the lower toeside of the cavity opening 163, such as forming a lower edge of the cavity opening 163. In some embodiments, the upper ledge 193 can have an area between about 75 mm2 and about 750 mm2, preferably between 200 mm2 and 500 mm2. The lower ledge 194 can have an area between about 25 mm2 and about 250 mm2, preferably between 100 mm2 and 300 mm2. A total ledge area of the upper and lower ledges 193, 194, as projected onto the face portion 110, can be relatively small compared to an area of the cavity opening 163. For example, the total ledge area can be between about 100 mm2 and about 1000 mm2, preferably between about 300 mm2 and about 800 mm2.


The area of the cavity opening 163, as projected onto the face portion 110, can be between about 800 mm2 and about 2500 mm2, preferably between 1200 mm2 and 2000 mm2, more preferably between 800 mm2 and 1400 mm2 or more preferably between 300 mm2 and about 800 mm2. For example, a ratio of the total ledge area to the area of the cavity opening 163 can be between about 4% and about 55%, preferably between 30% and 45%.


The total ledge area of the upper and lower ledges 193, 194, as projected onto the face portion 110, can also be relatively small compared to an area of the shim 188, as projected onto the face portion 110. For example, a ratio of the total ledge area to the area of the shim 188 can be between about 15% and about 63%, preferably between 25% and 40%. A ratio the area of the cavity opening 163, as projected onto the face portion 110, to the area of the shim 188, as projected onto the face portion 110, is at least about 50%, 53%, 56%, 59%, 62%, 65%, 68%, 71%, and no more than about 100%.


In some embodiments, the upper ledge 193 and/or lower ledge 194 can be eliminated, and the shim or badge 188 can be received at least in part by the topline portion 106 and/or rear portion 128. For example, the shim or badge 188 can be bonded directly to a surface of the topline portion 106 and/or rear portion 128. In another example, the topline portion 106 and/or the rear portion 128 can include a notch, slot, channel, or groove for receiving at least a portion of the shim 188. In this example, the shim 188 can first hook into the topline portion 106 or the rear portion 128, then the shim 188 can be rotated and bonded to the rear portion 128 or the topline portion 106, respectively.



FIG. 23 illustrates another embodiment of an iron-type golf club head 500 including a body 113 having a heel portion 102, a toe portion 104, a sole portion 108, a topline portion 106, a rear portion 128, and a hosel 114. The golf club head 500 is manufactured with a cavity 161 (not depicted in FIG. 23), and a shim or badge 188 is adhered, bonded, or welded to the body 100 to produce a cap-back iron, giving the appearance of a hollow-body iron. In this embodiment, the shim 188 wraps into at least a portion of the toe portion 104. In some embodiments, the shim 188 also wraps into at least a portion of the heel portion 102, toe portion 104, sole portion 108, topline portion 106, and/or rear portion 128. Various shim or badge 188 arrangements and materials can be used, and a filler material and/or damper 180 can be included within the cavity 161 to improve sound and feel, while minimizing loss in COR.


Although golf club heads 100, 500 can have different shims 188, other design elements of the golf club heads 100, 500 can be used interchangeably between the embodiments. For example, the dimensions, material properties, and other design elements that are discussed with respect to golf club head 100 can be incorporated into the club head 500, and vice versa. For example, both club heads 100, 500 can be configured to receive a damper 180, 280 and/or a filler material within an internal cavity defined by affixing a shim or badge 188 to the golf club head 100, 500.



FIG. 24 illustrates the iron-type golf club head 500 without the shim or badge 188 installed. In some embodiments, in addition to the club head 500 including an upper ledge 193 and a lower ledge 194 configured to receive the shim 188, the club head 500 can also include a toeside ledge 125 in the toe portion 104 for receiving at least a portion of the shim 188 in the toe portion 104. In these embodiments, at least a portion of the shim 188 is received in and/or enclosing a toeside cavity 124.


In some embodiments, a damper 280 is installed in the cavity 161 before installing the shim or badge 188. In some embodiments, the damper 280 is received entirely within the lower undercut region 164, which is defined within the cavity 161 rearward of the face portion 110, forward of the sole bar 135, and above the sole portion 108. In some embodiments, at least a portion of the damper 280 is received within the lower undercut region 164. In some embodiments, a filler material (e.g., a foam or another material) can be injected into the cavity 161 after installing the shim or badge 188.



FIG. 25 illustrates is a top perspective view of a golf club head 100 showing topline portion 106 and hosel 114. Numerals 2501, 2503, and 2505 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The topline portion 106 can have a topline width, measured at various locations 2501, 2503, 2505 across the topline portion 106, between about 5 mm and about 10 mm, preferably between 7 mm and 9 mm. In some embodiment the topline width varies at the locations 2501, 2503, 2505. In some embodiments, longer irons in a set can have a wider topline width than shorter irons. For example, short irons and wedges (e.g., 9 iron-LW) can have a topline width between about 7.15 mm and about 7.65 mm, mid irons (e.g., 8 iron) can have a topline width between about 7.55 mm and about 8.05 mm, and long irons (e.g., 4-7 iron) can have a topline width between about 7.75 mm and about 8.25 mm. The aforementioned dimensions are also applicable to golf club heads 300, 500, and 600.


In some embodiments, a weight reducing feature can be used to selectively reduce the wall thickness around the hosel 114, such as for freeing up discretionary weight in the club head 100. For example, the weight reducing features removing weight from the hosel 114 can be used to remove mass from the hosel 114 wall thickness. The weight reducing feature can remove at least 1 g, such as at least 2 g, such as at least 3 g, such as at least 4 g of mass from the hosel. In the design shown, about 4 g was removed from the hosel 114 and reallocated to lower in the club head, resulting in a downward Zup shift of about 0.6 mm while maintaining the same overall head weight. The flute design shown can use flutes on the front side, rear side, and underside of the hosel 114, making the flutes less noticeable from address. By employing weight reducing features on the side and/or underside of the hosel, the golf club head can have a traditional look, while providing the performance benefits of weight reducing features and weight redistribution in the golf club head. For example, U.S. Pat. No. 10,265,587, incorporated herein by reference in its entirety, discloses additional details on weight reducing features.


In some embodiments, variable length hosels can be used within a set of irons. For example, shorter hosels can be used to redistribute mass lower in the club head 100. In some embodiments, a peak hosel height can be less than a peak toe height relative to ground plane when club head is at address.



FIG. 26 illustrates is a bottom perspective view of a golf club head 100 showing a hosel 114, a channel 150 and a weld point 2607. Numerals 2601, 2603, 2605, and 2607 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The hosel 114 includes a weight reducing feature can be used to selectively reduce the wall thickness around the hosel 114. The flute design shown can use flutes on the front side, rear side, and underside of the hosel 114, making the flutes more noticeable from below. By employing weight reducing features on the side and/or underside of the hosel, the golf club head can have a traditional look, while providing the performance benefits of weight reducing features and weight redistribution in the golf club head.


The channel 150 can have a channel width 2601 between 1.5 mm and 2.5 mm, preferably between 1.85 mm and 2.15 mm. The channel 150 can have a channel length 2603 between about 55 mm and about 70 mm, preferably between 63.85 mm and 64.15 mm. A channel setback 2605 from the leading edge between about 5 mm and about 20 mm, preferably between about 5 mm and about 9 mm, more preferably between 6 mm and 8 mm, more preferably between 6.35 mm and 7.35 mm. In embodiments with striking faces 109 welded to the body 113, a weld point 2607 can be offset from the leading edge, such as by the channel setback 2605.



FIG. 27 is a side cross-sectional view of the golf club head 100 showing a lower undercut region 164 in lower region 29B and an upper undercut region 165 in upper region 29A. Numerals 2701, 2703, and 2705 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The channel 150 has a width 2601 and a channel depth 2701 beyond the sole portion 108. The channel depth 2701 beyond the sole portion can be between about 1.0 mm and about 3.0 mm, preferably between 1.5 mm and 2.5 mm, preferably between 1.85 mm and 2.15 mm. The sole portion 108 has a sole thickness 2705 of between about 1.5 mm and about 3 mm, more preferably between 1.85 mm and 2.35 mm. A total channel depth can be a combination of the sole thickness 2705 and the channel depth 2701 beyond the sole portion 108. A topline thickness 2703 of the topline portion 106 can be between about 0.5 mm and about 2 mm, more preferably between 0.95 mm and 1.25 mm.


The sole bar 135 has a height, measured as the distance perpendicular from the ground plane (GP) to a top edge of the sole bar 135 when the golf club head is in proper address position on the ground plane. For example, the sole bar height can be between about 7.5 mm and about 35 mm, preferably between 10 mm and 30 mm, more preferably 15 mm and 26 mm. In some embodiments, the sole bar 135 can have a peak height between about 10 mm and about 30 mm, preferably between 15 mm and 26 mm. The sole bar 135 can have an off-peak height between about 7.5 mm and about 26 mm, preferably between 7.5 mm and 15 mm. A ratio of the sole bar height to the sole thickness 2705 can be between about 2:1 and about 20:1, more preferably 5:1, 6:1, 10:1, or 15:1. A ratio of the sole thickness 2705 to the sole bar height can be between about 1:25 and about 1:2.5, preferably between 1:14 and 1:7.



FIG. 28 is a side cross-sectional view of the golf club head 100 of FIG. 19 showing the topline portion 106, the sole portion 108, the striking face 110, the sole bar 135, the upper ledge 193, the lower ledge 194, the lower undercut region 164 and the upper undercut region 165. Numerals 2801, 2803, 2805, and 2807 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600.


The lower undercut region 164 is defined within the cavity rearward of the face portion 110, forward of the sole bar 135, and above the sole portion 108. The lower undercut region 164 can be forward of the lower ledge 194. For example, the lower ledge 194 can extend above the sole bar 135 to further define the lower undercut region 164. An upper undercut region 165 is defined within the cavity rearward of the face portion 110, and below the topline portion 106. The upper undercut region 165 can be forward of the upper ledge 193. For example, upper ledge 193 can extend below the topline portion 106 to further define the upper undercut region 165 forward of an upper ledge 193. In various embodiments, the upper ledge 193 can extend inward toward the face portion 110, outward away from the face portion 110, or downward parallel with the face portion 110.


The upper undercut region 165 can be defined at least in part by the upper ledge 193, and includes an upper undercut width 2801 and an upper undercut depth 2805. The upper undercut width 2801 can be between about 1.5 mm and about 7.5 mm, preferably between 2 mm and 6.5 mm, more preferably about 2.75 mm. The upper undercut depth 2805 can be between about 3 mm and about 15 mm, preferably between 4 mm and 13 mm, more preferably about 5 mm. A ratio of the upper undercut depth 2805 to the upper undercut width 2801 is at least 1.25, preferably at least 1.5, preferably at least 1.75. For example, an upper undercut depth 2805 can be 5 mm and upper undercut width 2801 as 2.75 mm, resulting in a ratio of about 1.8. The upper undercut width 2801 and the upper undercut depth 2805 is measured at a cross-section taken at the geometric center face or at a scoreline midline. Alternatively, the upper undercut depth 2805 is measured in a cross-section through 5 mm toeward or 5 mm heelward of the geometric center face in the y-z plane.


The lower undercut region 164 can be defined at least in part by the lower ledge 194, and includes a lower undercut width 2803 and a lower undercut depth 2807. The lower undercut width 2803 can be between about 2 mm and about 15 mm, preferably between 4 mm and 6 mm. The lower undercut depth 2807 can be between about 10 mm and about 30 mm, preferably between 11 mm and 26 mm. The lower undercut width 2803 and the lower undercut depth 2807 is measured at a cross-section taken at the geometric center face or at a scoreline midline.


In some embodiments, the lower undercut depth 2807 is greater than the upper undercut depth 2806, such as having a ratio of at least 2:1, preferably 2.5:1, more preferably 3:1.


In some embodiments, in order to cast a unitary body 113 without metal defects, a ratio of an undercut width to undercut depth should not exceed about 1:3.5. For example, to cast the golf club head 113 as a single piece (i.e., a unitary casting), the ratio of undercut width to undercut depth should not be greater than about 1:3.5 or 1:3.6 to allow for ample space for wax injection pickouts within the undercut. The ratio of the lower undercut width 2803 to the lower undercut depth 2807 can be between about between about 1:4.0 and about 1:2.0, preferably between about 1:3.5 and about 1:2.5. Table 1 below provides examples of lower undercut widths 2803, lower undercut depths 2807, and corresponding ratios:









TABLE 1







Exemplary Lower Undercut Ratios















Lower
Lower




Example No.

Undercut Width
Undercut Depth
Ratio


















1
6.5
mm
17
mm
1:2.6



2
5.25
mm
19
mm
1:3.6



3
4.5
mm
15.3
mm
1:3.4



4
4.7
mm
16.9
mm
1:3.6



5
5.2
mm
17.9
mm
1:3.4



6
7.5
mm
26
mm
1:3.5










In embodiments where the club head 113 comprises a striking face 110 welded to the body, and in embodiments where the lower undercut region 164 and/or the upper undercut region 165 are machined in the club head 113, the ratio of width to depth of an undercut can be less than 25-28%.



FIG. 29A is a side cross-sectional view of the upper region 29A of FIG. 27. Numerals 2901 and 2903 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The upper region 29A includes the upper undercut region 165. The upper undercut region 165 is at least in part defined by the upper ledge 193. The upper ledge 193 has an upper ledge width 2901 is between about 0.5 mm and about 4.0 mm, preferably 3.25 mm, and an upper ledge thickness 2903 between about 0.5 mm and about 1.5 mm, preferably about 1.0 mm. The topline portion 106 has a topline thickness 2703 is between about 0.5 mm and about 2 mm, more preferably between 0.95 mm and 1.25 mm.


The upper undercut region 165 can be defined as a cavity formed rearward of the face portion 110, below the topline portion 106, forward of the upper ledge 193, heelward of the toe portion 104, and toeward of the heel portion 102. In some embodiments, the upper undercut region 165 can be defined as a cavity formed rearward of the face portion 110, forward of and below the topline portion 106, heelward of the toe portion 104, and toeward of the heel portion 102.



FIG. 29B is a side cross-sectional view of the lower region 29B of FIG. 27. Numerals 2905 and 2907 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The lower region 29B includes the lower ledge 164. The lower ledge 194 has a lower ledge width 2905 is between about 0.1 mm and about 3.0 mm, preferably about 2.25 mm, and a lower ledge thickness 2907 is between about 0.8 mm and about 2 mm, preferably about 1.3 mm.


Referring back to FIG. 28, the lower undercut region 164 is at least in part defined by the lower ledge 194. For example, the lower undercut region 164 can be defined as a cavity formed rearward of the face portion 110, forward of the lower ledge 194 and the sole bar 135, heelward of the toe portion 104, and toeward of the heel portion 102. In some embodiments, lower undercut region 164 can be defined as a cavity formed rearward of the face portion 110, forward of the sole bar 135, heelward of the toe portion 104, and toeward of the heel portion 102.


Damper and/or Filler Materials


FIG. 30 is a perspective view of a damper 280 from the golf club head 100 of FIG. 19. The damper 280 includes one or more projections 282. For example, when the damper 280 is installed, each of the projections 282 can make contact with a rear surface of the striking face 110 or a front surface of the sole bar 135. The damper 280 also includes one or more relief cutouts 281, such as between the projections 282, which do not contact the rear surface of the striking face 110 or the front surface of the sole bar 135.


In some embodiments, the damper 280 is a combination of a combination of Santoprene and Hybrar, such as with a hybrar content between about 10% and about 40%, more particularly 15% or 30%. Other materials can also be used. The damper 280 can also be co-molded using different materials with different durometers, masses, densities, colors, and/or other material properties. In some embodiments, using a damper 280 can lower the CG when compared to using a filler material. Additional weighted materials can also be included in the damper 280, such as to further lower CG of the golf club head, such as using weight plugs or inserts made from a Tungsten alloy, another alloy, or another material.


In some embodiments, a damper 280 and/or a filler material is only used in a subset of clubs within a set. For example, some club heads 100 can provide adequate sound and feel without a damper 280 and/or a filler material. In this example, only long and mid irons (e.g., 2-8 irons) include a damper 280 and/or a filler material. Short irons and wedges (e.g., 9 iron-LW) can be manufactured without a damper 280 or a filler material. In these embodiments, each club head 100 within a set can be manufactured with or without the damper 280 and/or the filler material based on the sound and feel characteristics independent to each club head 100.


In some embodiments, a filler material can be used in place of the damper 280. In other embodiments, a filler material can be used in conjunction with the damper 280. For example, a foam, hot melt, epoxy, adhesive, liquified thermoplastic, or another material can be injected into the club head 100 filling or partially filling the cavity 161. In some embodiments, the filler material is heated past melting point and injected into the club head 100.


In some embodiments, the filler material is used to secure the damper 280 in place during installation, such as using hot melt, epoxy, adhesive, or another filler material. In some embodiments, a filler material can be injected into the club head 100 to make minor changes to the weight of the club head 100, such as to adjust the club head for proper swing weight, to account for manufacturing variances between club heads, and to achieved a desired weight of each head. In these embodiments, the club head weight can be increased between about 0.5 grams and about 5 grams, preferably up to 2 grams.


Shim Structure and Materials


FIG. 31 is a rear elevation view of the shim or badge 188 from the golf club head of FIG. 19. The shim or badge 188 is manufactured from a light weight, stiff material(s), which may provide additional support for the topline portion 106 to provide better sound and feel. The shim or badge 188 may dampen vibrations and sounds. Examples of such shims, badges, and inserts are disclosed in U.S. Pat. No. 8,920,261, which is incorporated by reference herein in its entirety. Additionally, the shim or badge 188 can also be used for decorative purposes and/or for indicating the manufacturer name, logo, trademark, or the like.


The shim or badge 188 can be manufactured from one or more materials. The shim or badge 188 may be made from any suitable material that provides a desired stiffness and mass to achieve one or more desired performance characteristics. In some embodiments, shim or badge 188 is co-molded or otherwise formed from multiple materials. For example, the shim or badge 188 can be formed from one or more of ABS (acrylonitrile-butadiene-styrene) plastic, a composite (e.g., true carbon or another material), a metal or metal alloy (e.g., titanium, aluminum, steel, tungsten, nickel, cobalt, an alloy including one or more of these materials, or another alloy), one or more of various polymers (e.g., ABS plastic, nylon, and/or polycarbonate), a fiber-reinforced polymer material, an elastomer or a viscoelastic material (e.g., rubber or any of various synthetic elastomers, such as polyurethane, a thermoplastic or thermoset material polymer, or silicone), any combination of these materials, or another material. In some embodiments, the shim or badge 188 can be formed from a first material (e.g., ABS plastic) with a second material (e.g., aluminum) inlayed into the first material.


The average thickness of the shim or badge 188 can be between about 0.5 mm and about 6 mm. A relatively thicker shim or badge 188 (e.g., average thickness of about 3 mm) may be more effective than a thinner shim or badge 188 (e.g., average thickness of about 1 mm).


The shim or badge 188 can have an average density (i.e., mass divided by water-displaced volume) that is lower than the body 113, such as between about 0.5 g/cc and about 20 g/cc, preferably between 1 g/cc and 2 g/cc, between 3 g/cc and 4 g/cc, or between 4 g/cc and 5 g/cc. A thinner shim or badge 188 can be used with a tighter material stack-up, increasing the density and durability of the shim or badge 188. The shim or badge 188 can have a mass between about 2.5 grams and about 15 grams, preferably between 2.5 grams and 10 grams, more preferably between 2.5 grams and 9 grams. A ratio of the average density to the mass can be between about 0.033 l/cc and about 8 l/cc, preferably between 0.08 l/cc and 0.8 l/cc, more preferably between 0.15 l/cc and 0.375 l/cc. The material density of the shim or badge 188, defined by the mass of the shim or badge 188 divided by the volume of the shim or badge 188, can be less than 7.8 g/cc, preferably between 1 g/cc and 2 g/cc, more preferably between 1.0 g/cc and 1.5 g/cc.


The shim or badge 188 can have an area weight (e.g., average thickness divided by average density) of between about 0.0065 cm4/g and about 1.2 cm4/g. The mass and thickness of the shim or badge 188 can vary within a set of club heads 100. For example, shorter irons and wedges have relatively thicker and heavier shims or badges 188 than mid and long irons.



FIG. 32 is a rear perspective view of the shim or badge 188 from the golf club head of FIG. 19. Numerals 3201, 3203 and 3205 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The shim or badge 188 can be three-dimensional and non-planar. A rear surface of the shim or badge 188 can include one or more three-dimensional features, such as ridges, depressions, ledges, lips, valleys, inlays, channels, slots, cavities, and other features. The three-dimensional features on the rear surface the shim or badge 188 can confer aesthetic and performance benefits to the club head 100.


For example, the three-dimensional features on the rear surface the shim or badge 188 can correspond to features of the golf club head 100, such as to give the appearance of a hollow body iron. In other examples, the three-dimensional features on the rear surface the shim or badge 188 can reduce the weight of at least a portion of the shim or badge 188, such as to redistribute discretionary weight lower in the club head 100. In further examples, the three-dimensional features on the rear surface the shim or badge 188 can increase structural stability of the shim and/or badge 188, and can provide additional support the topline portion 106, and can provide other performance benefits to the golf club head 110, such as altering sound and feel characteristics of the golf club head 100.


In some embodiments, the shim or badge 188 can include a ridge 3201, a channel 3203, a depression 3205. Given the three-dimensional features of the shim or badge 188, the projected area can be less than a surface area of one or more surfaces of the shim or badge 188. The shim or badge 188 has an area as projected onto the face portion of between about 1200 mm2 and about 2000 mm2, more preferably between 1500 mm2 and 1750 mm2.



FIG. 33 is a front elevation view of the shim or badge 188 from the golf club head of FIG. 19. Numerals 3301, 3303 and 3305 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. A front surface of the shim or badge 188 can have one or more three-dimensional features, such as ridges, depressions, ledges, lips, valleys, inlays, channels, slots, cavities, and other features. The three-dimensional features on the front surface the shim or badge 188 can performance benefits to the club head 100, such as weight reduction and redistribution, increasing structural stability, altering sound and feel characteristics, and providing other performance benefits to the golf club head 100.


The shim or badge 188 can have a ledge 3303 used for installing the shim or badge 188 onto the golf club head 100. In some embodiments, the width 3301 of the ledge 3303 is between about 0.5 mm and 5.0 mm, more preferably between 0.5 mm to 3.5 mm, more preferably between 1.0 mm and 3.0 mm, more preferably between 1.0 mm and 2.0 mm, more preferably between 1.25 mm and 1.75 mm. In some embodiments, the ledge width 3301 is variable, such as with a wider or narrower width on one or more of an upper portion, lower portion, toeward portion, heelward portion, and/or another portion of the ledge 3303. In some embodiments, a ledge width 3301 less than 1 mm can negatively impact durability of the shim or badge 188, such as when an ABS plastic is used.



FIG. 34 a front perspective view of the shim or badge 188 from the golf club head of FIG. 19. Numeral 3401 refers to a feature of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. In some embodiments, the ledge 3303 extends around the perimeter of the shim or badge 188. In other embodiments, the ledge 3303 is discontinuous, such as with the ledge 3303 separated into one or more of an upper ledge portion, a lower ledge portion, a toeward ledge portion, a heelward ledge portion, and/or another ledge portion. Support ridges 3305 can also be provided to stiffen and provide structural support for the shim or badge 188 and the topline portion 106.


The ledge 3303 can be defined by a center thickened region 3401. In some embodiments, the center thickened region 3401 is configured to fit within and close a cavity opening 163 in the cavity 161. In some embodiments, the center thickened region 3401 is configured to fit over and close a cavity opening 163 in the cavity 161. In some embodiments, the ledge 3303 can receive a portion of the club head 110 during installation. In this example, the shape of the ledge 3303 can correspond to the upper ledge 193 and the lower ledge 194 of the club head 110.


The ledge 3303 can be non-planar in one or more of the upper portion, lower portion, toeward portion, heelward portion, and/or another portion of the ledge 3303. For example, the ledge 3303 can be convex, concave, wavy, rounded, or provided with another non-planar surface.



FIG. 35 is a heelward perspective view of the shim or badge 188 from the golf club head of FIG. 19. Numerals 3501 and 3503 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. In some embodiments, the shim or badge thickness, as measured from the front surface to the rear surface of the shim or badge 188, can vary from the upper portion to the lower portion of the shim or badge 188. For example, an upper thickness 3501 of the shim or badge 188 is different from the lower thickness 3503 of the shim or badge 188. In some embodiments, the shim or badge 188 is thickest in the lower portion of the shim or badge 188, such as near to or at the bottom of the badge, and the shim or badge 188 is thinnest in the upper portion of the shim or badge 188, such as near to or at the top of the badge.



FIG. 35 also depicts the ledge 3303 and the ledge width 3301 discussed above with respect to FIG. 33. The ledge 3303 can extend around the perimeter of the shim or badge 188 and can provide a bonding surface between the shim or badge 188 and golf club head.


In some embodiments, a ratio of the upper thickness 3501 to the lower thickness 3503 to the can be between about 150% and about 500%, more preferably at least 150%, 200%, 250%, or 300%. Likewise, a ratio of the thinnest portion to the thickest portion of the shim or badge 188 can also be between about 150% and about 500%, more preferably at least 150%, 200%, 250%, or 300%.


In some embodiments, the shim or badge 188 has a minimum thickness between about 0.5 mm and about 3 mm, preferably between 0.5 mm and 1.5 mm. In some embodiments, the shim or badge 188 has a maximum thickness between about 0.75 mm and about 17 mm, preferably between 3 mm and 13 mm.



FIG. 36 is a toeward perspective view of the shim or badge 188 from the golf club head of FIG. 19. Numerals 3601 and 3603 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. In some embodiments, the shim or badge 188 has a maximum depth 3601 between about 5 mm and about 20 mm, preferably less than 16 mm, and more preferably less than 15 mm. In some embodiments, the shim or badge 188 has a minimum depth 3603 between about 1 mm and about 6 mm, preferably at least 2 mm, more preferably at least 2.5 mm.



FIG. 37 is a front perspective view of the shim or badge 188 from the golf club head 500 of FIG. 23. Numeral 3701 refers to a feature of club head 500. The features of club head 100 may also be applicable to club heads 100, 300, and 600. In this embodiment, the shim or badge 188 is configured to wrap into at least a portion of the toe portion 104. For example, the shim or badge 188 has a toewrap portion 3701, such as to be received by or enclosing the toeside cavity 124 of the golf club head 500. In some embodiments, the toewrap portion 3701 is separated from the center thickened region 3401 by a channel or slot for receiving at least a portion of the toeside ledge 125 in the toe portion 104 of the golf club head 500. In this embodiment, additional discretionary mass can be freed up in the toe portion and redistributed in the body, such as to further lower Zup. For example, high density steel in the toe portion can be replaced with the lower density material of the shim.



FIG. 38 is a lower perspective view of the shim or badge 188 from the golf club head of FIG. 23. In some embodiments, the shim or badge 188 has a ledge 3303. In some embodiments, the ledge 3303 of the shim or badge 188 is configured to match a profile of the sole bar 135, the upper ledge 193, the lower ledge 194, or another feature of the golf club head 500.


Rear Fascia, Shim, Plate, or Badge

Exemplary club head structures, including a rear fascia, plate, or badge, are described in U.S. patent application Ser. No. 16,870,714, filed May 8, 2020, titled “IRON-TYPE GOLF CLUB HEAD,” which is incorporated herein by reference in its entirety.


According to some examples of the golf club head 100, as shown in FIG. 39, the body 102 of the golf club head 100 has a cavity-back configuration and the golf club head 100 further includes a rear fascia 188, shim, rear plate, or badge, coupled to the back portion 129 of the body 102. As used herein, the terms rear fascia, shim, rear plate, and badge can be used interchangeably. The rear fascia 188 encloses the internal cavity 142 by covering, at the back portion 129 of the body 102, the plate opening 176. Accordingly, the rear fascia 188, in effect, converts the cavity-back configuration of the golf club head 100 into more of a hollow-body configuration. As will be explained in more detail, enclosing the internal cavity 142 with the rear fascia 188 allows a filler material 201 and/or damper to retainably occupy at least a portion of the internal cavity 142. The filler material 201 and/or damper can include organic and/or inorganic materials. In some examples, the filler material 201 and/or damper does not contain glass bubbles or inorganic solids.


As depicted in FIG. 39, the rear fascia 188 can bond to a surface without a pronounced ledge. For example, the upper edge of the rear fascia 188 can bond directly to the top portion 116. Likewise, the lower edge of the rear fascia 188 can bond directly to the back portion 129. In some embodiments, the rear fascia 188 does not bond to a ledge of the top portion 116 or back portion 129, such as one or more substantially vertical ledges (e.g., approximately 90 degrees with respect to the ground plane at address). In some embodiments, the rear fascia 188 bonds to a first surface on the top portion 116 and a second surface on the back portion 129. In some embodiments, the first surface and the second surface are not parallel surfaces, the surfaces are transverse to each other, or the surfaces are at an angle to each other, such as an angle between 25 25 degrees and 90 degrees to each other.


The rear fascia 188 is made from one or more of the polymeric materials described herein, in some examples, and adhered or bonded to the body 102. In other examples, the rear fascia 188 is made from one or more of the metallic materials described herein and adhered, bonded, or welded to the body 102. The rear fascia 188 can have a density ranging from about 0.9 g/cc to about 5 g/cc. Moreover, the rear fascia 188 may be a plastic, a carbon fiber composite material, a titanium alloy, or an aluminum alloy. In certain embodiments, where the rear fascia 188 is made of aluminum, the rear fascia 188 may be anodized to have various colors such as red, blue, yellow, or purple.


The golf club head 100 disclosed herein may have an external head volume equal to the volumetric displacement of the golf club head 100. For example, the golf club head 100 of the present application can be configured to have a head volume between about 15 cm3 and about 150 cm3. In more particular embodiments, the head volume may be between about 30 cm3 and about 90 cm3. In yet more specific embodiments, the head volume may be between about 30 cm3 and about 70 cm3, between about 30 cm3 and about 55 cm3, between about 45 cm3 and about 100 cm3, between about 55 cm3 and about 95 cm3, or between about 70 cm3 and about 95 cm3. The golf club head 100 may have a total mass between about 230 g and about 300 g.


In some embodiments, the volume of the internal cavity is between about 1 cm3 and about 50 cm3, between about 5 cm3 and about 30 cm3, or between about 8 cc and about 20 cc. For the purposes of measuring the internal cavity volume herein, the aperture is assumed to be removed and an imaginary continuous wall or substantially back wall is utilized to calculate the internal cavity volume.


In some embodiments, the mass of the filler material 201, and/or the damper, divided by the external head volume is between about 0.08 g/cm3 and about 0.23 g/cm3, between about 0.11 g/cm3 and about 0.19 g/cm3, or between about 0.12 g/cm3 and about 0.16 g/cm3 For example, in some embodiments, the mass of the filler material 201 and/or damper may be about 5.5 grams and the external head volume may be about 50 cm3 resulting in a ratio of about 0.11 g/cm3.


In some embodiments, the density of the filler material 201 and/or the damper, after it is fully formed and/or positioned within the internal cavity 142, is at least 0.21 g/cc, such as between about 0.21 g/cc and about 0.71 g/cc or between about 0.22 g/cc and about 0.49 g/cc. In certain embodiments, the density of the filler material 201 and/or the damper is in the range of about 0.22 g/cc to about 0.71 g/cc, or between about 0.35 g/cc and 0.60 g/cc. The density of the filler material 201 and/or the damper impacts the COR, durability, strength, and filling capacity of the club head. In general, a lower density material will have less of an impact on the COR of a club head. The density of the filler material 201 and/or the damper is the density after the filler material 201 and/or the damper is fully formed and/or positioned within and enclosed by the internal cavity 142.


During development of the golf club head 100, use of a lower density filler material and/or damper having a density less than 0.21 g/cc was investigated, but the lower density did not meet certain sound performance criteria. This resulted in using a filler material 201 and/or the damper having a density of at least 0.21 g/cc to meet sound performance criteria.


In one embodiment, the filler material 201 and/or the damper has a minor impact on the coefficient of restitution (herein “COR”) as measured according to the United States Golf Association (USGA) rules set forth in the Procedure for Measuring the Velocity Ratio of a Club Head for Conformance to Rule 4-1e, Appendix II Revision 2 Feb. 8, 1999, herein incorporated by reference in its entirety.


Table 2 below provides examples of the COR change relative to a calibration plate of multiple club heads of the construction described herein both a filled and unfilled state. The calibration plate dimensions and weight are described in section 4.0 of the Procedure for Measuring the Velocity Ratio of a Club Head for Conformance to Rule 4-1e.


Due to the slight variability between different calibration plates, the values described below are described in terms of a change in COR relative to a calibration plate base value. For example, if a calibration plate has a 0.831 COR value, Example 1 for an un-filled head has a COR value of −0.019 less than 0.831 which would give Example 1 (Unfilled) a COR value of 0.812. The change in COR for a given head relative to a calibration plate is accurate and highly repeatable.









TABLE 2







COR Values Relative to a Calibration Plate











Unfilled COR
Filled COR
COR Change



Relative to
Relative to
Between Filled


Example No.
Calibration Plate
Calibration Plate
and Unfilled













1
−0.019
−0.022
−0.003


2
−0.003
−0.005
−0.002


3
−0.006
−0.010
−0.004


4
−0.006
−0.017
−0.011


5
−0.026
−0.028
−0.002


6
−0.007
−0.017
−0.01


7
−0.013
−0.019
−0.006


8
−0.007
−0.007
0.000


9
−0.012
−0.014
−0.002


10
−0.020
−0.022
−0.002


Average
−0.0119
−0.022
−0.002









Table 2 illustrates that before the filler material 201 and/or the damper is introduced into the cavity 142 of the golf club head 100, an Unfilled COR drop off relative to the calibration plate (or first COR drop off value) is between 0 and −0.05, between 0 and −0.03, between −0.00001 and −0.03, between −0.00001 and −0.025, between −0.00001 and −0.02, between −0.00001 and −0.015, between −0.00001 and −0.01, or between −0.00001 and −0.005. In one embodiment, the average COR drop off or loss relative to the calibration plate for a plurality of Unfilled COR golf club heads 100, within a set of irons, is between 0 and −0.05, between 0 and −0.03, between −0.00001 and −0.03, between −0.00001 and −0.025, between −0.00001 and −0.02, between −0.00001 and −0.015, or between −0.00001 and −0.01.


Table 2 further illustrates that after the filler material 201 and/or the damper is introduced into the cavity 142 of golf club head 100, a Filled COR drop off relative to the calibration plate (or second COR drop off value) is more than the Unfilled COR drop off relative to the calibration plate. In other words, the addition of the filler material 201 and/or the damper in the Filled COR golf club heads slows the ball speed (Vout—Velocity Out) after rebounding from the face by a small amount relative to the rebounding ball velocity of the Unfilled COR heads. In some embodiments shown in Table 2, the COR drop off or loss relative to the calibration plate for a Filled COR golf club head is between 0 and −0.05, between 0 and −0.03, between −0.00001 and −0.03, between −0.00001 and −0.025, between −0.00001 and −0.02, between −0.00001 and −0.015, between −0.00001 and −0.01, or between −0.00001 and −0.005. In one embodiment, the average COR drop off or loss relative to the calibration plate for a plurality of Filled COR golf club head within a set of irons is between 0 and −0.05, between 0 and −0.03, between −0.00001 and −0.03, between −0.00001 and −0.025, between −0.00001 and −0.02, between −0.00001 and −0.015, between −0.00001 and −0.01, or between −0.00001 and −0.005.


However, the amount of COR loss or drop off for a Filled COR head is minimized when compared to other constructions and filler materials. The last column of Table 2 illustrates a COR change between the Unfilled and Filled golf club heads which are calculated by subtracting the Unfilled COR from the Filled COR table columns. The change in COR (COR change value) between the Filled and Unfilled club heads is between 0 and −0.1, between 0 and −0.05, between 0 and −0.04, between 0 and −0.03, between 0 and −0.025, between 0 and −0.02, between 0 and −0.015, between 0 and −0.01, between 0 and −0.009, between 0 and −0.008, between 0 and −0.007, between 0 and −0.006, between 0 and −0.005, between 0 and −0.004, between 0 and −0.003, or between 0 and −0.002. Remarkably, one club head was able to achieve a change in COR of zero between a filled and unfilled golf club head. In other words, no change in COR between the Filled and Unfilled club head state. In some embodiments, the COR change value is greater than −0.1, greater than −0.05, greater than −0.04, greater than −0.03, greater than −0.02, greater than −0.01, greater than −0.009, greater than −0.008, greater than −0.007, greater than −0.006, greater than −0.005, greater than −0.004, or greater than −0.003. In certain examples, the filler material in the internal cavity reduces the COR by no more than 0.025 or 0.010.


In some embodiments, at least one, two, three, or four golf clubs out of an iron golf club set has a change in COR between the Filled and Unfilled states of between 0 and −0.1, between 0 and −0.05, between 0 and −0.04, between 0 and −0.03, between 0 and −0.02, between 0 and −0.01, between 0 and −0.009, between 0 and −0.008, between 0 and −0.007, between 0 and −0.006, between 0 and −0.005, between 0 and −0.004, between 0 and −0.003, or between 0 and −0.002.


In yet other embodiments, at least one pair or two pair of iron golf clubs in the set have a change in COR between the Filled and Unfilled states of between 0 and −0.1, between 0 and −0.05, between 0 and −0.04, between 0 and −0.03, between 0 and −0.02, between 0 and −0.01, between 0 and −0.009, between 0 and −0.008, between 0 and −0.007, between 0 and −0.006, between 0 and −0.005, between 0 and −0.004, between 0 and −0.003, or between 0 and −0.002.


In other embodiments, an average of a plurality of iron golf clubs in the set has a change in COR between the Filled and Unfilled states of between 0 and −0.1, between 0 and −0.05, between 0 and −0.04, between 0 and −0.03, between 0 and −0.02, between 0 and −0.01, between 0 and −0.009, between 0 and −0.008, between 0 and −0.007, between 0 and −0.006, between 0 and −0.005, between 0 and −0.004, between 0 and −0.003, or between 0 and −0.002.


The filler material 201 and/or the damper fills the cavity 142 located above the sole slot 126. A recess or depression in the filler material 201 and/or the damper engages with the thickened portion of the strike plate 104. In some embodiments, the filler material 201 and/or the damper is a two-part polyurethane foam that is a thermoset and is flexible after it is cured. In one embodiment, the two-part polyurethane foam is any methylene diphenyl diisocyanate (a class of polyurethane prepolymer) or silicone based flexible or rigid polyurethane foam.


Shim Mass Per Unit Length

Exemplary club head structures are described in U.S. Pat. No. 10,493,336, titled “IRON-TYPE GOLF CLUB HEAD,” which is incorporated herein by reference in its entirety.


Referring to FIG. 19, an areal mass of the shim or badge 188 of the golf club head 100 between the rear portion 128, the topline portion 106, the sole portion 108, the toe portion 104, and the heel portion 102 is between 0.0005 g/mm2 and 0.00925 g/mm2, such as, for example, about 0.0037 g/mm2. Generally, the areal mass of the shim or badge 188 is the mass per unit area of the area defined by the opening 163 to the cavity 161 (see FIG. 22). In some implementations, the area of the opening 163 is about 1,600 mm2.


In some embodiments, the shim or badge 188 has a mass per unit length of between about 0.09 g/mm and about 0.40 g/mm, such as between about 0.09 g/mm and about 0.35 g/mm, such as between about 0.09 g/mm and about 0.30 g/mm, such as between about 0.09 g/mm and about 0.25 g/mm, such as between about 0.09 g/mm and about 0.20 g/mm, such as between about 0.09 g/mm and about 0.17 g/mm, or such as between about 0.1 g/mm and about 0.2 g/mm. In some embodiments, the shim or badge 188 has a mass per unit length less than about 0.25 g/mm, such as less than about 0.20 g/mm, such as less than about 0.17 g/mm, such as less than about 0.15 g/mm, such as less than about 0.10 g/mm. In one implementation, the shim or badge 188 has a mass per unit length of 0.16 g/mm.


Club Head, Damper, Filler Material, and Shim Interaction


FIG. 40 is an exploded view of the golf club head 100 showing the body 113, the damper 280 and the shim or badge 188. In some embodiments, a unitary cast body 113 is provided. A unitary cast body is manufactured by casting the face portion 110 and the striking face 109 with the body 113 as a single piece. In other embodiments, the body 113 is cast separately from the face portion 110 and/or the striking face 109, and the face portion 110 and/or the striking face 109 is welded to the body 113.


After the body 113 is manufactured, the damper 280 can be installed within the cavity 161 of the body 113. In some embodiments, an adhesive, an epoxy, and/or a hotmelt is used to install the damper 280 within the cavity. For example, an adhesive can be applied to the damper 280 before installation and/or a hotmelt can be injected into the cavity 161 after the damper 280 has been installed. In some embodiments, hotmelt can injected into the toeside of the cavity 161. In some embodiments, an adhesive can be applied to a rear surface of the damper 280, such as to bond the rear surface of the damper 280 to the sole bar 135 or rear portion 128.


After the damper 280 is installed in the body 113, the shim or badge 188 can be installed on the body 113, enclosing at least a portion of the cavity 161 to define or form an internal cavity. In some embodiments, the shim or badge 188 can be installed using a tape, such as an industrial strength double-sided tape (e.g., DC2000 series 0.8 mm 3M Very High Bond (VHB) or 1.1 mm 3M VHB tape), an adhesive, an epoxy, a weld, a screw(s), or another fastener(s). In some embodiments, a tape is used rather than screws, clamps, or other fasteners to improve aesthetics of the club head. In some embodiments, at least a portion of the shim or badge 188 snaps in place, such as using a friction fit. After installation, the force required to remove the shim or badge 188 can be between about 20 kilogram-force (kgf) and about 50 kgf, more preferably between 25 kgf and 35 kgf. In some embodiments, a sealing wiper is installed around shim to help prevent water intrusion, such as when a discontinuous ledge is used.


After installing the damper 280 to the body 113, the club head 100 has the appearance of a hollow body iron. The shim or badge 188 seals the cavity 161, such as preventing water from entering the cavity 161. In some embodiments, no portion of the shim or badge 188 contacts the striking face 109. In some embodiments, no structure attached to the badge or shim 188 contacts the striking face 109. In some embodiments, at least a portion of the shim protrudes forward of one or more of the ledges 193, 194 and toward the striking face 109. For example, at least a portion of the cavity 161 separates the shim or badge 188 from the face portion 110.


An assembled club head weight can be between about 200 grams and about 350 grams, more preferably between 230 grams and 305 grams. A combined weight of damper 280 and shim or badge 188 can be between about 8 g and about 20 g, preferably less than about 13 g, more preferably less than 12 g. In some embodiments, the combined weight of damper 280 and shim or badge 188 can be between about 0.2% and about 10% of the assembled club head weight, preferably between 2.6% and 8.7%, more preferably less than about 5%.



FIG. 41 is a side cross-sectional view of the golf club head 100. Numerals 4101, 4103, 4105, 4107, 4121, 4123, 4125, and 4127 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The golf club head 100, as assembled, includes a sole portion 108, a topline portion 106, a rear portion 128, face portion 110, a striking face 109, a sole bar 135, a damper 280, and a shim or badge 188.


The golf club head 100 includes an upper undercut region 165. In some embodiments, no part of the damper 280 or the shim or badge 188 is within the upper undercut region 165. In some embodiments using a filler material, no filler material is within the upper undercut region 165.


The golf club head 100 includes a lower undercut region 164. In some embodiments, the damper 280 is installed entirely within the lower undercut region 164. In some embodiments, at least a portion of the damper 280 is installed partially within the lower undercut region 164, thus the damper extends above an opening of the lower undercut region 164 defined by a line perpendicular to the striking face 109 and extending to the upper most point of the lower ledge 194. In some embodiments, the damper 280 does not contact the sole portion 108 and does not entirely fill the lower undercut region 164. The damper 280 can fill a portion of the cavity 161. In some embodiments, the damper 280 fills between about 5% and about 70% of the cavity 161, preferably between 5% and 50%, preferably between 20% and 50%, preferably between 5% and 20%, preferably between 50% and 70%.


The golf club head 100 may include installation surfaces 4101, 4103, 4105, 4107 for receiving at least a portion of the shim or badge 188. Likewise, the shim or badge 188 can include corresponding installation surfaces 4121, 4123, 4125, and 4127 for receiving at least a portion of the club head 100. In some embodiments, the shim or badge 188 is adhered, taped, bonded, welded, or otherwise affixed to the body 113 between installation surfaces 4101, 4103, 4105, 4107 and installation surfaces 4121, 4123, 4125, and 4127. In some embodiments, the shim or badge 188 is installed using a tape between the installation surfaces 4123, 4125 and the installation surfaces 4103, 4105, respectively. In some embodiments, the tape separates the body 113 from the shim or badge 188. The separation can be between about 0.5 mm and about 1.5 mm, preferably between 0.8 mm and 1.1 mm. In some embodiments, the shim or badge 188 does not contact any portion of the striking face 109 or the face portion 110. For example, when installed, the shim or badge 188 can be up to 10 mm from the striking face 109, such as between 0.1 mm and 10 mm, preferably between 0.1 mm and 5 mm, alternatively between 2 mm and 7 mm. In some embodiments, the shim or badge 188 extends within the cavity 161 and contacts at least a portion of the striking face 109 and/or the face portion 110.


When compared to using a bridge bar 140 (e.g., depicted in FIG. 6), the shim or badge 188 can allow the club head 100 to have a lower center of gravity (CG). For example, by manufacturing the shim or badge 180 from a light weight, stiff material(s), the shim or badge 180 can provide support for the topline portion 106, such as to provide better sound and feel, while allowing additional discretionary weight be positioned lower in the golf club head 100. Thus, using a shim or badge 188 can allow the golf club head 100 to achieve similar modes for sound and feel, while conferring additional performance benefits achieved by freeing up additional discretionary weight.


A coefficient of restitution (COR) of the golf club head 100 can be affected by installation of the damper 280 and/or the shim or badge 188. For example, installing the damper 280 and/or a filler material can reduce the COR by between about 1 and about 4 points, preferably no more than 3 points, more preferably no more than 2 points. Installing the shim or badge 188 (e.g., such as a shim 188 that does not contact a rear surface of the striking face and stiffens the topline portion 106) can increase COR by between about 1 and about 6 points, preferably by at least 1 point, more preferably by at least 2 points. Installing the shim or badge 188 with the damper 280 can minimize or negate the loss of COR caused by the damper 280, and in some cases can increase COR for the striking face. For example, installing the shim or badge 188 with the damper 280 can affect COR by between a loss of about 2 points and a gain of about 6 points.









TABLE 3







COR Values Relative to a Calibration Plate













COR Change



COR Relative to
COR Relative to
Between Without



Calibration Plate
Calibration Plate
Shim and Damper



Without Shim and
With Shim and With
and with Shim and


Example No.
Without Damper
Damper
Damper













1
−0.004
−0.004
−0.000


2
−0.002
−0.004
−0.002


3
−0.004
−0.003
0.001


4
−0.004
−0.004
−0.000


5
−0.003
−0.004
−0.001


Average
−0.0034
−0.0038
−0.0004


6
0.000
−0.010
−0.010


7
−0.004
−0.009
−0.005


8
0.000
−0.011
−0.011


9
−0.003
−0.007
−0.004


10
−0.005
−0.009
−0.004


Average
−0.0024
−0.0092
−0.0068


11
−0.001
−0.004
−0.003


12
−0.001
−0.006
−0.005


13
−0.003
−0.007
−0.004


14
−0.005
−0.008
−0.003


15
−0.002
−0.002
0.000


Average
−0.0024
−0.0054
−0.003


16
−0.004
−0.010
−0.006


17
−0.004
−0.009
−0.005


18
−0.004
−0.008
−0.004


19
0.000
−0.005
−0.005


20
−0.005
−0.008
−0.003


Average
−0.0034
−0.008
−0.0046









Table 3 illustrates the results of COR testing on four different iron embodiments. Examples 1-5 are results for a first 4 iron embodiment. Examples 1-5 show that adding a shim and damper can reduce COR by less than 1 point (i.e., 0.4 points). Examples 6-10 are results for a second 4 iron embodiment. Examples 6-10 show that adding a shim and damper can reduce COR by over 6 points (i.e., 6.8 points). Examples 11-15 are results for a first 7 iron embodiment. Examples 11-15 show that adding a shim and damper can reduce COR by an average of 3 points. Examples 16-20 are results for a second 7 iron embodiment. Example 16-20 show that adding a shim and damper can reduce COR by an average of 4.6 points. In some embodiments, installing a damper and a shim results in a COR change value of no more than −0.011 compared to a club head without the badge and damper installed.


As used herein, a COR change value of 0.001 is considered a change value of 1 point and a negative sign means a decrease in COR. If no sign is present, then that represents an increase. For example, Example No. 3 shows an initial COR value of −0.004 without a shim or damper and a value of −0.003 including a shim and damper for a positive COR change value of 0.001 or a 1 point change in COR (i.e., COR increased).



FIG. 42 is a side cross-sectional view of the golf club head 100, showing a cross-section through the Y-Z plane though a geometric center of the striking face 109, with the club head at zero loft (depicted as cross-section 42-42 in FIG. 21). Numerals 4201, 4203, 4205, 4207, 4209, 4211, and 4213 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. The club head 100 has an upper undercut depth 4201, a lower undercut depth 4203, and a club head section height 4205. In some embodiments, no portion of shim or badge 188 extends into upper undercut region 165 or the lower undercut region 164.


An upper portion 4207 of the lower undercut region 164 is at least partial defined by an upper surface 4209 of the lower ledge 194. In some embodiments, the geometric center of the striking face 109 is located above the upper portion 4207 of the lower undercut region 164. In some embodiments, the lower undercut region 164 does not extend beyond the geometric center of the striking face 109.


A lower portion 4211 of the upper undercut region 165 is at least partial defined by a lower surface 4213 of the lower ledge 193. In some embodiments, the geometric center of the striking face 109 is located below the lower portion 4211 of the upper undercut region 165. In some embodiments, the upper undercut region 165 does not extend beyond the geometric center of the striking face 109.


In some embodiments, the upper undercut depth 4201 is between about 2 mm and about 10 mm, preferably at least 3 mm, more preferably less than the lower undercut depth 4203, more preferably less than a maximum depth of the lower undercut depth 4203. In some embodiments, the upper undercut depth 4201 is between about 25% and about 50% of the lower undercut depth 4203, preferably between 30% and 40% of the lower undercut depth 4203. In some embodiments, the upper undercut depth 4201 is between about 10% and about 25% of the club head section height 4205, preferably between 13% and 18% of the club head section height 4205, more preferably at least 5% of the club head section height 4205.


In some embodiments, the lower undercut depth 4203 is less than 50% of the club head section height 4205, more preferably between 30% and 50% of the club head section height 4205, more preferably between 38% and 43% of the club head section height 4205.


In some embodiments, the lower undercut depth 4203 is at least 2 times the upper undercut depth 4201, preferably at least 2.5 times the upper undercut depth 4201.



FIG. 43 is a top cross-sectional view of the golf club head 100, showing the body 113 including locating or interlocking features 4301, 4303. Numerals 4301 and 4303 refer to features of club head 100. The features of club head 100 may also be applicable to club heads 300, 500, and 600. In some embodiments, the body 113 includes one or more locating or interlocking features 4301, 4303 that engages the damper 280 during installation. In some embodiments, there is a toeside locating or interlocking feature 4301 and a heelside locating or interlocking feature 4303. In some embodiments, the damper 280 is installed by first positioning the damper 280 in an upper position within the cavity 161, then is moved into a lower position within the cavity 161, engaging one or more of the locating or interlocking features 4301, 4303.



FIG. 44 is an exploded view of the golf club head 600, showing the body 113 including a shim or badge 188, a fill port 4403 and a screw 4401. Numerals 4401 and 4403 refer to features of club head 600. The features of club head 100 may also be applicable to club heads 100, 300, and 500. In some embodiments, after the shim or badge 188 is installed onto the body 113, a filler material can be injected into the body 113 through the fill port 4403. After the filler material is injected into the body 113, the screw 4401 can be installed in the fill port 4403. In some embodiments, the shim or badge 188 can prevent the filler material from leaving the body 113 and can also to achieve a desired aesthetic and further dampening. In some embodiments, the filler material completely fills the cavity 161. In some embodiments, the filler material only partially fills the cavity 161, such as between 25% and 75% of the cavity 161, preferably less than 50% of the cavity 161.


Club Head Sound and Feel

Exemplary club head structures for acoustic mode altering and dampening are described in U.S. Pat. No. 10,493,336, titled “IRON-TYPE GOLF CLUB HEAD,” which is incorporated herein by reference in its entirety.


The sound generated by a golf club is based on the rate, or frequency, at which the golf club head vibrates and the duration of the vibration upon impact with a golf ball. Generally, for iron-type golf clubs, a desired first mode frequency is generally above 2000 Hz, such as around 3,000 Hz and preferably greater than 3,200 Hz. Additionally, the duration of the first mode frequency is important because a longer duration may feel like a golf ball was poorly struck, which results in less confidence for the golfer even when the golf ball was well struck. Generally, for iron-type golf club heads, a desired first mode frequency duration is generally less than 10 ms and preferably less than 7 ms.


In some embodiments, the golf club head 100 has a COR between about 0.5 and about 1.0 (e.g., greater than about 0.79, such as greater than about 0.8) and a Z-up less than about 18 mm, preferably less than 17 mm, more preferably less than 16 mm. In some examples, the golf club head 100 has a first mode frequency between about 3,000 Hertz (Hz) and 4,000 Hz and a fourth mode frequency between about 5,000 Hz and about 7,000 Hz, preferably a first mode frequency between 3,394 Hz and 3,912 Hz and a fourth mode frequency between 5,443 Hz and 6,625 Hz. In these examples, the golf club head 100 has a first mode frequency duration between about 5 milliseconds (ms) and about 9 ms and a fourth mode frequency duration between about 2.5 ms and about 4.5 ms, preferably a first mode frequency duration between about 5.4 ms and about 8.9 ms and a fourth mode frequency duration of about 3.1 ms and about 3.9 ms.



FIGS. 45-46 provide graphical representations of a golf club head undergoing first through fourth mode frequency vibration and associated characteristics of the golf club head. In some embodiments, such as for a 4 iron, includes a first mode frequency of 3,318 Hz with a first mode frequency duration of 4.8 ms, a second mode frequency of 3,863 Hz with a second mode frequency duration of 5 ms, a third mode frequency of 4,647 Hz with a third mode frequency duration of 2.4 ms, and a fourth mode frequency of 6,050 Hz with a fourth mode frequency duration of 11.6 ms. In some embodiments, such as for a 7 iron, includes a first mode frequency of 3,431 Hz with a first mode frequency duration of 7 ms, a second mode frequency of 4,088 Hz with a second mode frequency duration of 4 ms, a third mode frequency of 4,389 Hz with a third mode frequency duration of 2.8 ms, and a fourth mode frequency of 5,716 Hz with a fourth mode frequency duration of 10 ms.


Although the foregoing discussion cites features related to golf club head 100 and its variations (e.g. 300, 500, 600), the many design parameters discussed above substantially apply to all golf club heads 100, 300, 500, and 600 due to the common features of the club heads. With that in mind, in some embodiments of the golf clubs described herein, the location, position or orientation of features of the golf club head, such as the golf club head 100, 300, 500, and 600, can be referenced in relation to fixed reference points, e.g., a golf club head origin, other feature locations or feature angular orientations. In some instances, the features of club heads 100, 300, 500, and 600 discussed above are referred to by numerals corresponding to their figure numbers (e.g., FIGS. 1-46) and can applicable to all golf club heads 100, 300, 500, and 600. Features from 100, 300, 500, and 600 can be used between embodiments. For example, each of golf club heads 100, 300, 500, and 600 can be provided with or without a damper and/or a filler material.


Toewrap Badge Structure

As clubheads continue to relocate discretionary weight low and rearward, it can become more difficult to remove additional mass from high on an iron clubhead body (i.e., above the center of gravity or Zup) and relocate the mass low on the clubhead body in order to lower the center of gravity of the club head. In some embodiments, removing too much mass in the central region of the topline portion of the clubhead can negatively impact the sound, feel, and aesthetics of the clubhead, and can also compromise durability of the clubhead body due to stress and deflection caused by removing too much weight from the topline portion.


Referring back to FIGS. 23, 24, 37, and 38, and as depicted in FIG. 47, the clubhead 500 can include a body 113 having a heel portion 102, a toe portion 104, a sole portion 108, a topline portion 106, a rear portion 128, a face portion 110 (not depicted in FIG. 47), and a hosel 114.


The clubhead portions can be described with respect to an x-axis, y-axis, and z-axis. An x-axis can be defined being tangent to the striking face at the origin and parallel to a ground plane. The x-axis extends in a positive direction from the origin heelward to the heel portion 102 of the clubhead body and in a negative direction toeward from the origin to the toe portion 104 of the clubhead body. The y-axis intersects the origin and is parallel to the ground plane. The y-axis is orthogonal to the x-axis and extends in a positive direction rearward from the origin to the rear portion 128 of the club head body. The z-axis intersects the origin and is orthogonal to the x-axis, the y-axis, and the ground plane. The z-axis extends in a positive direction from the origin upward to the topline portion 106 of the clubhead body and in a negative direction from the origin downward to the sole portion 108 of the club head body.


The heel portion 102 is defined as the portion of the golf club head extending to and including the hosel portion 114 (i.e., the club shaft receiving portion) from a y-z plane passing through the origin. For example, the heel portion extends heelward from a scoreline mid-plane SLmid. The scoreline mid-plane SLmid is a plane defined at the midpoint of the longest scoreline on the striking face 109, normal to the striking face 109 and normal to the ground plane GP when the golf club is in a zero-loft address position. The toe portion 104 is defined as the portion of the golf club head extending from the y-z plane in a direction opposite the heel portion. For example, the toe portion 104 extends toeward from the scoreline mid-plane SLmid.


The sole portion 108 portion is defined as the portion of the golf club extending to and including the sole of the golf club head from an x-y plane passing through the origin. The sole portion 108 extends downwards from to an address mid-plane ML, defined 20 mm above and parallel to the ground plane GP, to a lowest point of the club head (i.e., the sole), located at the ground plane GP, when the golf club is in a zero-loft address position.


The topline portion 106 portion is defined as the portion of the golf club extending to and including the topline of the golf club head from an x-y plane passing through the origin. The topline portion 106 extends upwards from the address mid-plane ML, defined 20 mm above and parallel to the ground plane GP, to a highest point of the club head (i.e., the topline) when the golf club is at a zero-loft address position.


The rear portion 128 is defined as the portion of the golf club extending to and including the sole bar of the golf club head from an x-z plane passing through the origin. The rear portion 128 extends rearward from the rear surface of the striking face 109 to a rearward-most point of the club head when the golf club is at a zero-loft address position.


The face portion 110 is defined as the portion of the golf club extending to and including the striking face of the golf club head from an x-z plane passing through the origin. The face portion 110 extends forward from the rear surface of the striking face 109 to a forward-most point of the club head when the golf club is at a zero-loft address position.


The body 113 can be a unitary cast body having the face portion 110 cast as a single piece with the other portions of the body. Alternatively, one or more of the portions of the body can be manufactured separately and attached to the body 113. For example, the face portion 110 can be welded to the body 500. Other portions of the clubhead body 113 can also be welded or otherwise attached to the body 113, such as at least a portion of the sole portion 108 and/or the topline portion 106, for example. In some embodiments, the striking face 109 can wrap into the sole portion 108 and/or the topline portion 106.


The body 113 also includes a hosel portion 114. The hosel portion 114 can include one or more weight reducing features to remove mass from the hosel portion 114, as discussed herein. For example, selectively reducing a wall thickness around the hosel portion 114 can allow for discretionary mass to be relocated to the rear portion 128 of the clubhead 500, for example.


As discussed herein, the face portion 110 (not depicted in FIG. 47) has a striking face 109, which can have a variable face thickness profile with a minimum face thickness no less than 1.0 mm and a maximum face thickness no more than 3.5 mm. The variable thickness profile can be provided symmetrically (e.g., with a “donut” shaped area of increased thickness located within the unsupported striking face) or asymmetrically (e.g., with at least one transition region between a thicker region and a thinner region within the unsupported striking face).


A shim or badge 188 can be formed separately from the body 113 and attached to the body 113. The shim or badge 188 can be received at least in part by the body 113. For example, as depicted in FIG. 47, the shim or badge 188 is received by the body 113 within the rear portion 128 and within the toe portion 104. The shim or badge 188 can be received below the topline portion 106 and above the sole bar 135. In this embodiment, the shim or badge 188 in part forms the outermost surface of the rear portion 128 and the toe portion 104. The body 113 also in part forms the outermost surface of the rear portion 128 and toe portion 104, such as above and below the badge. The body 113 also extends heelward of the shim or badge 188.


The shim or badge 188 can be formed from one or more materials. For example, the shim or badge 188 can be formed of a lower density material than the body 113. The shim or badge 188 can also be formed from a combination of materials, such as a polymer, a composite, a metal, and/or another material. In some embodiments, the shim or badge 188 can be a multi-material shim formed from a first material having a first density between about 0.5 g/cc and about 2 g/cc and a second material having a second density between about 1.5 g/cc and about 10 g/cc. For example, the first material can be a polymer material and the second material can be a metal or a composite material. In other embodiments, a first material can be a polymer material, a second material can be a composite material, and a third material can be a metal.


The iron-type golf club head 500 is provided with a weight reduction zone 175 located in the toe portion 104 of the club head 500. The weight reduction zone 175 can include one or more weight reduction features, such as a mass reduction in the toe portion 104 and the badge or shim 188 extending into the weight reduction zone 175 in the toe portion 104. The weight features in the weight reduction zone can reduce between 0.5 g and 4.0 g from the toe portion 104, more preferably between 0.7 g and 3 g, more preferably at least 0.9 g. The weight reduction zone 175 can extend between about 5 mm and 55 mm above the ground plane, preferably between about 10 mm and 45 mm above the ground plane when the clubhead is in a zero-loft address position. In some embodiments, the weight reduction zone 175 can extend from the sole (e.g., between about 0 mm and about 5 mm above the ground plane) upward. In some embodiments, the weight reduction zone can extend from the topline downward. The weight reduction zone 175 can have a length between about 5 mm and about 15 mm as measured on a plane parallel to the z-axis, such as between about 5 mm and about 10 mm, such as between about 10 mm and about 15 mm. In some embodiments, the weight reduction zone can have a length between about 15 mm and about 55 mm as measured on a plane parallel to the z-axis, such as between about 25 mm and about 45 mm.


The weight reduction features can shift a center of gravity z-axis location (Zup) by 0.5 mm toward a ground plane, such as between about 0.25 mm and about 4 mm toward the ground plane. In some embodiments, the clubhead can have a center of gravity z-axis location (Zup) between about 12 mm and about 19 mm above a ground plane, such as between about 13 and about 18 mm, such as between about 14 mm and about 17 mm, preferably no more than 18 mm, more preferably no more than 17.5 mm, and more preferably no more than 17 mm.


The toe portion the shim or badge 188 replaces high density material in the toe portion of the body (i.e., between about 2.5 g/cc and about 20 g/cc) with a lower density material of the toe portion of the shim or badge 188 (i.e., between about 0.5 g/cc and about 2 g/cc). The shim or badge 188 can wrap from a rear portion 128 of the body into the toe portion 104 of the body 113 to create a multi-material toe portion of the body. The multi-material toe portion can include a first material having a first density between about 2.5 g/cc and about 20 g/cc, and a second material having a second density between about 0.5 g/cc and about 2 g/cc. Mass removal in the high toe-region of the body allows for lower of the center-of gravity.


The shim or badge 188 includes a toe-to-rear-portion transition region 178. In some embodiments, the toe-to-rear-portion transition region 178 can form an edge as the shim or badge 188 wraps from the toe portion 104 to the rear portion 128. In some embodiments, the edge can be beveled, creating a ribbon between the rear portion 128 and toe portion 104. In other embodiments, the toe-to-rear-portion transition region 178 can rounded between the rear portion 128 and toe portion 104. The body 113 also includes a toe-to-topline-portion transition region 181 and a toe-to-sole-portion transition region 182. In some embodiments, transition regions 181, 182 can be rounded between the toe portion 104, the topline portion 106, and/or the sole portion 108. In other embodiments, the transition regions 181, 182 can be provided with an edge, such a beveled edge. Additional and different features can define the transition regions 178, 181, 182.



FIG. 48 depicts a toe view of the clubhead 500 at zero loft. To orient the clubhead 500 into the toe view, the clubhead 500 is first oriented in a zero-loft address position. The zero-loft address position has the clubhead 500 soled on a ground plane and rotated such that a vertical axis tangent to a face plane FP and normal to ground plane GP. The clubhead is then rotated 90-degrees from a face-on view about a vertical axis counter-clockwise, resulting in a view of the toe portion 104. To orient the clubhead 500 in a rear view (not depicted in FIG. 48), the clubhead 500 is rotated another 90-degrees about a vertical axis counter-clockwise (i.e., 180-degrees from the face-on view), resulting in a view of the rear portion 128.


As depicted in FIG. 48, the shim or badge 188 can extend into the toe portion 104, in part forming an outermost surface of the toe portion 104 when received by the body 113. The outermost surface of the toe portion 104 is defined by the toe view of the clubhead discussed above. The shim or badge 188 can also form at least part of an outermost surface of the rear portion 128 when received by the body 113. The outermost surface of the rear portion 128 is defined by the rear view of the clubhead discussed above. In some embodiments, the shim or badge 188 extends into the toe portion 104 by wrapping from the toe portion 104 onto the rear portion 128 to connect at least a portion of the outermost surface of the toe portion 104 and a portion of the outermost surface of the rear portion 128.


The shim or badge 188 can extend into at least a portion of the toe portion 104 to form a non-continuous, multi-material toe portion 104. For example, the shim or badge 188 can be formed from a polymer material, or a combination of different materials, and the body 113 above and below the shim or badge 188 can be formed from a metal, such as part of a cast metal body 113.


In some embodiments, the forward-most portion of the shim or badge 188 in the toe portion 104, shown by leading edge line LE, extends beyond a forward-most portion of the shim or badge 188 in the rear portion 188, such as when positioned in the toe view of the clubhead. The forward-most portion of the shim or badge 188 in the toe portion 104, shown by leading edge line LE, does not extend beyond the face plane line FP. In some embodiments, the face plane line FP and the leading edge line LE are separated by between about 0.5 mm and about 5 mm. Further, in some embodiments, a gap is positioned between the forward-most portion of the shim or badge 188 in the toe portion 104 and the toe portion 104.


In some embodiments, the forward-most portion of the shim or badge 188 in the toe portion 104, shown by leading edge line LE, is substantially parallel to the striking face 109, shown by face plane line FP. An upper-most edge of the toe portion of the badge, shown by the upper edge line UP, and a lower-most edge of the toe portion of the badge, shown by the lower edge line LP, may be substantially perpendicular to the striking face 109.


In some embodiments, the width W1 from the leading edge line LE and the first trailing edge line TE1 is between about 2 mm and about 6 mm, preferably between about 4 mm and about 5 mm. In some embodiments, the width W2 from the leading edge line LE and the second trailing edge line TE2 is between about 10 mm and about 14 mm, preferably between about 11 mm and about 12 mm. In some embodiments, the width W3 from the face plane line FP and the first trailing edge line TE1 is between about 3 mm and about 8 mm, preferably between about 5 mm and about 6 mm. In some embodiments, the width W4 from the face plane line FP and the second trailing edge line TE2 is between about 11.5 mm and about 15.5 mm, preferably between about 12.5 mm and about 13.5 mm.


In some embodiments, the height H1 from ground plane line GP to the lower edge line LP as measured along the z-axis is between about 10 mm and about 20 mm, preferably between about 12 mm and about 18 mm. In some embodiments, the height H1 from ground plane line GP to the lower edge line LP as measured along the z-axis is within 2 mm of Zup or between Zup−2 mm and Zup+2 mm, preferably Zup±1.5 mm, even more preferably Zup±1 mm. Removing mass above Zup and then redistributing it lower in the club head is preferred, which is a reason some embodiments may have height H1 within 2 mm of Zup. In some embodiments, the height H2 from the lower edge line LP to the the upper edge line UP as measured along the z-axis is between about 10 mm and about 30 mm, preferably between about 14 mm and about 25 mm. In some embodiments, the height H3 from the upper edge line UP to a topline plane line TOP as measured along the z-axis is between about 1 mm and about 15 mm, preferably between about 3 mm and about 13 mm. In some embodiments, the height H3 can be eliminated and the shim or badge 188 can extend directly from the topline downward. In some embodiments, the height H1 can be eliminated and the shim or badge 188 can extend directly from the sole upward. In some embodiments, the height H2 can be the entire height of the clubhead.


In some embodiments, the height H1 may range from 0.9*Zup to 1.1*Zup, and the height H2 may range from 0.7*Zup to 1.3*Zup.



FIG. 49 is a front elevation view of the golf clubhead 500 (i.e., oriented in a face-on view). FIG. 49 depicts the toeward and heelward boundaries of the scorelines. For example, the scorelines extend toeward up to toeward line SLt and heelward up to heelward line SLh. The scorelines end just before the par line PL. The par line PL is at the transition point between the flat striking face 109 and the organically shaped region that attaches the club head body 113 to the hosel 114 (i.e., the location of a blend of the hosel 114 into the planar striking face 109). The scoreline mid-plane SLmid is a plane defined at the midpoint of the longest scoreline on the striking face 109, normal to the striking face 109 and normal to the ground plane GP when the golf club is in a zero-loft address position. The scoreline mid-plane bisects the longest scoreline.


The clubhead 500 has a projected area between the scorelines (i.e., between toeward line SLt and heelward line SLh) that is projected onto a plane tangent to the face plane between about 1300 mm2 and about 2700 mm2, such as between about 1400 mm2 and about 2100 mm2. In some embodiments, a projected area of shim or badge 188 that is projected onto a plane tangent to the face plane is greater than total area of the face within scorelines projected onto the plane tangent to the face plane (i.e., bounded by the heelward-most scoreline SLh, the toeward-most scoreline SLt, the upward-most scoreline, and the lower-most scoreline).


Referring back to FIG. 47, the shim or badge 188 can extend heelward of the scorelines (i.e., heelward of heelward line SLh) and/or heelward of the par line PL. The shim or badge 188 can also extend toeward of the scorelines (i.e., toeward of toeward line SLt). For example, a total length of the badge from a first end to a second end (in a heel-to-toe direction parallel to the ground plane) can be greater than a total length from a par line PL to the toeward-most portion of the toe portion denoted by line TP (i.e., PL to TP). In some embodiments, a total length from a heelward-most scoreline (i.e., SLh) to the toeward-most portion of the toe portion (i.e., TP) is less than a total length of the shim or badge 188.



FIG. 50 is a rear perspective view of the clubhead 500 without the shim or badge 188 installed. The toe portion 104 includes a beam 132 with a toeside ledge 125 for receiving at least a portion of the shim or badge 188. The beam 132 can also provide structural support for the topline portion 106 when mass is removed from the toe portion 104. In some embodiments, the toeside ledge 125 can connect the upper ledge 193 and the lower ledge 194. In other embodiments, the toeside ledge 125 is only connected to one of the upper ledge 193 or the lower ledge 194. In other embodiments, the toeside ledge 125 does not connect the upper ledge 193 or the lower ledge 194.


In some embodiments, the toe portion 104 extends toeward of the beam 132, and the shim or badge 188 wraps around the beam 132 and forward toward the face portion 110. In other embodiments, the beam 132 provides a toeward peripheral surface of the toe portion 104, and the shim or badge 132 does not extend beyond or toeward of the of the beam 132. In some embodiments, the shim or badge 188 wraps around both a toeward and a heelward side of the beam 132 and forward toward the face portion 110 on both sides of the beam 132.


The beam 132 can have one or more relief sections 133 to further reduce discretionary mass above the center of gravity of the clubhead 500. By providing relief sections 133 in the beam, additional discretionary mass can be relocated while still providing stiffness to support the badge or shim 188, the topline portion 106, and the toe portion 104. In some embodiments, the relief sections 133 extend only partially through the beam as depicted in FIG. 50. In other embodiments, the relief section 133 extend entirely through the beam 132 to the cavity 161. In some embodiments, the sections 133 are filled with a filler material.



FIG. 51 is a front elevation view of the golf clubhead 500 (i.e., oriented in a toe view at zero-loft) without the shim or badge 188 installed. The toeside ledge 125 extends below the topline portion 106 and above the sole bar 135. In some embodiments, the toeside ledge 125 connects the upper ledge 193 and the lower ledge 194. In some embodiments, the relief sections 133 are at least 20% of the toeward surface of the beam 132, such as between about 20% and about 60% of the toeward surface of the beam 132. The toeward surface of the beam 132 can be defined by the clubhead at zero-degrees loft and rotated 90 degrees counter-clockwise about a vertical axis tangent to a face plane and normal to a ground plane.


As depicted in FIG. 51, the beam 132 can have a minimum beam depth that is less than a minimum thickness of the topline portion 106. The beam 132 can also have a maximum beam depth that is less than a minimum thickness of the sole bar 135.


The beam 132 extends between the shim or badge 188 and the face portion 110. The shim or badge 188 is received at least in part by the upper ledge 193, the lower ledge 194, and the toeside ledge 125. In some embodiments, the shim or badge 188 can close an opening in the cavity and to enclose an internal cavity volume, such as between 5 cc and 20 cc. Alternatively, the shim or badge 188 can be provided within the cavity of a cavity-back iron.


The shim or badge 188 is received at least in part by the body 113 below the topline portion 106. In this embodiment, the shim or badge 188 does not form or extend into any portion of the topline portion 106. For example, an outermost surface of the topline portion 106 can be formed from a metal. For example, outermost surface of the topline portion 106 can be defined by a topline view of the clubhead at zero-degrees loft and rotated 90 degrees about a horizonal axis tangent to the face plane and parallel to the ground plane.



FIG. 52 is a perspective view of the clubhead 500 depicting three surface areas A1, A2, A3, each depicted with a different cross-hatching. The rear portion of the shim or badge 188 can have a surface area A1 of at least 1,400 mm2 and no more than 5,000 mm2, such as between about 1,400 mm2 and about 2,100 mm2, such as between about 1,750 mm2 and about 1,950 mm2, such as between 2,000 mm2 and 4,000 mm2, such as between 3,000 mm2 and 4,500 mm2. The surface area A1 is the area projected onto a plane parallel to the rear view discussed herein. The toe portion of the shim or badge 188 can have a surface area A2 of at least 100 mm2 and no more than 400 mm2, such as between about 100 mm2 and about 250 mm2, such as between about 200 mm2 and 400 mm2, such as between 200 mm2 and 350 mm2, such as between about 130 mm2 and about 180 mm2. The toe portion 104 of the body 113 above and below shim or badge 188 can have a surface area A3 of at least 500 mm2, such as between about 500 mm2 and about 850 mm2, such as between about 600 mm2 and about 750 mm2. The surface areas A2, A3 are the areas projected onto a toe plane, defined as a plane perpendicular to a strike face of the clubhead and perpendicular to a ground plane, when the clubhead is in a zero loft orientation on the ground plane. The surface area A2 is greater than a surface area of the outermost surface of the toe portion above the shim or badge 188, as projected onto the toe plane.



FIG. 53 is a perspective view of the shim or badge 188 depicting surface areas A4, A5, each depicted with a different cross-hatching. For example, the shim or badge 188 can have a ledge 3303 used for installing the shim or badge 188 onto the golf club head 500. The ledge 3303 surrounds an inner portion 3307 of the shim or badge 188. The inner portion of the shim or badge 188 can be inserted into the cavity of the clubhead 500 when the shim or badge 188 is installed. The inner portion of the shim or badge 188 can have a surface area A4 of at least 700 mm2, such as between about 700 mm2 and about 1,600 mm2, such as between about 900 mm2 and about 1,400 mm2. The ledge 3303 can have a surface area A5 of at least 400 mm2, such as between about 400 mm2 and about 1,000 mm2, such as between about 550 mm2 and about 750 mm2.


As depicted in FIG. 53, the shim or badge 188 has a variable thickness and with a three-dimensional outer surface including a toewrap portion 3701. The inner portion 3307 of the shim or badge 188 can be three-dimensional and can protrude into the opening in the cavity of the clubhead 500. The toewrap portion 3701 can extend beyond all other exterior surfaces of the badge and toward the face portion 110. For example, the toewrap portion 3701 can extend beyond the inner portion 3307 proximate to the face portion 110 of the clubhead 500. As such, the toewrap portion 3701 can extend forward than any other portion of the shim or badge 188 when installed and the club oriented in normal address and zero-loft positions.


In some embodiments, the toewrap portion 3701 creates an angle with respect to the rear portion 128 and/or outermost surface of the shim or badge 188. For example, the toewrap portion 3701 can form an angle with respect to the rear portion 128 of the shim or badge 188. For example, the angle can be greater than about 40 degrees, such as between about 40 degrees and about 120, such as between about 60 degrees and about 100 degrees, such as about 80 degrees, about 90 degrees, about 100 degrees, or about 110 degrees. As such, the shim or badge 188 can wrap from the toe portion 104 onto the rear portion 128 forming at least a 40-degree angle as measured between the outermost surface of the toe portion 104 and the outermost surface of the rear portion 128.


In some embodiments, no portion of the shim or badge 188 directly contacts the face portion 110, such as in a hollow-body iron. In these embodiments, at least a portion of the cavity can separate the shim or badge 188 from the face portion 110. In other embodiments, a portion of the shim or badge 110 can directly contact the face portion 110, such as in a cavity-back iron. For example, toewrap portion 3701 of the shim or badge 110 can extend rearward away from the face portion 110 in the toe portion 104 in a cavity-back iron.



FIG. 54 depicts another embodiment of the clubhead 500, which can include a body 113 having a heel portion 102, a toe portion 104, a sole portion 108, a topline portion 106, a rear portion 128, a face portion 110 (not depicted), and a hosel 114. As discussed herein, a damper 280 can be installed within a cavity in the body 113. Alternatively or additionally, a filler material can be injected or otherwise included within the cavity in the body 113.


A sole bar can define a rearward portion of the sole portion, and a cavity can be defined by a region of the body rearward of the striking face, forward of the sole bar, above the sole, and below the topline. A lower undercut region can be defined within the cavity rearward of the striking face, forward of the sole bar, and above the sole. A lower ledge can extend above the sole bar to further define the lower undercut region. An upper undercut region can be defined within the cavity rearward of the striking face, forward of an upper ledge and below the topline. The upper ledge can extend below the topline.


In this embodiment, no beam 132 is provided to support the shim or badge 188. Instead of including a beam 132, a recessed area 130 is provided in the toe portion 104 for supporting the shim or badge 188. For example, by hollowing out the inside the toe portion 104 and forward of the toeside ledge 125, resulting in the recessed area 130, discretionary mass can be removed and relocated lower in the body 113, while providing the toeside ledge 125 for supporting the shim or badge 188. By omitting the beam 132, the support structure for the shim or badge 188 does not need to contact the rear surface of the striking face 110, resulting a larger unsupported area of the striking face 110. The toeside ledge 125 can extend heelward from the toe portion 104 to provide support for the badge or shim 188.


In some embodiments, the toeside ledge 125 can connect with the upper ledge 193 and/or the lower ledge 194. The lower ledge 193 can have a variable surface area as projected onto a plane substantially parallel to a plane tangent to the lower ledge 193. For example, a lower edge of the lower ledge 193 can be rounded and an upper edge of the lower ledge 193 can be substantially straight. Accordingly, a midpoint of the lower ledge has a greater projected surface area than the endpoints of the lower ledge proximate to the toe and the heel of the clubhead. In this embodiment, the lower ledge 193 is tapered at each end.



FIG. 55 depicts a toeward view of an embodiment of the clubhead 500, without the shim or badge 188 installed. As discussed above, additional discretionary mass can be relocated by omitting the beam 132 and providing a toeside ledge 125 directly in the toeside area of the toe portion. In some embodiments, the toeside area of the toe portion can include another recessed area 130 provided in the outside surface of the toe portion 104. The additional recessed area 130 can allow for more discretionary weight to be relocated lower in the body 113 and to allow for the shim or badge 188 to wrap into the toe portion 104 and sit substantially flush with the areas of the body 113 above and below the shim or badge 188 (as depicted in FIG. 56).


As depicted in FIG. 55, the toeside ledge 125 can largely follow the shape of the toe portion, such as having an organically rounded profile. As such, when the shim or badge 188 is installed, the clubhead 500 gives the appearance of a hollow iron. The damper 280 can be installed into the cavity of the body 113 prior to attaching the shim or badge 188. As discussed herein, the shim or badge 188 can include relief portions to reduce contact between the damper 180 and the striking face 110, while improving acoustics and feel of the clubhead 500.



FIG. 56 depicts a toeward view of the clubhead 500, with the shim or badge 188 installed. As depicted, the shim or badge 188 wraps from the rear of the body 113 into the toe portion 104 and toward the striking face 110. The shim or badge 188 can have a three-dimensional external surface, such as including ledges, indentions, and other features that can organically flow with the shape of the body 113. In some embodiments, a chamfered edge 135 can be provided between the shim or badge 188 and the striking face 110, such as to provide for a designed gap between the striking face 110 and the shim or badge 188.


By increasing the size of the shim or badge 188, additional discretionary weight can be relocated low in the body 113. In some embodiments, the shim or badge 188 can extend from slightly below the topline to the sole bar 135, such as to an upper edge of the sole bar 135. In some embodiments, the shim or badge 188 can extend from topline downward toward the sole portion 108. In some embodiments, the shim or badge can extend into the sole bar 135, such as below an upper edge of the sole bar 135.



FIG. 57 is a cross-section along line 57 in FIG. 54. As depicted in FIG. 57, the badge or shim 188 can be three-dimensional, and can be installed into the body 113 without contacting the striking face 110. The shim or badge 188 can be installed forming a portion of the rear portion 128 and the sole bar 135. The shim or badge 188 can extend from underneath the topline to above at least a portion of the rear portion 128 and the sole bar 135. Material from the toe portion 104 can be removed, increasing the size of the cavity within the body 113 and increasing the unsupported area of the striking face 104.


Central Regions, Weighted COR, and Club Head Structures

Exemplary central regions, COR weighting factors and values, weighted COR, balance point COR, COR area, club head testing for weighted COR, CT tuning, and club head structures for increasing COR values are described in U.S. patent application Ser. No. 17/171,656, filed Feb. 9, 2021, which is incorporated herein by reference in its entirety.


Examples of iron-type, fairway wood-type, driver wood-type, driving iron-type, and hybrid-type club head structures for increasing COR values are described in U.S. patent application Ser. No. 17/191,617, filed Mar. 3, 2021, U.S. patent application Ser. No. 16/673,701, filed Nov. 4, 2019, U.S. patent application Ser. No. 17/107,462, filed Nov. 30, 2020, U.S. patent application Ser. No. 17/003,610, filed Aug. 26, 2020, U.S. patent application Ser. No. 17/107,447, filed Nov. 30, 2020, U.S. Pat. No. 9,975,018, filed Feb. 8, 2017, U.S. patent application Ser. No. 16/866,927, filed May 5, 2020, U.S. patent application Ser. No. 17/110,112, filed Dec. 2, 2020, U.S. patent application Ser. No. 17/105,234, filed Nov. 25, 2020, U.S. patent application Ser. No. 16/795,266, filed Feb. 19, 2020, U.S. patent application Ser. No. 17/131,539, filed Dec. 22, 2020, U.S. patent application Ser. No. 17/198,030, filed Mar. 10, 2021, U.S. patent application Ser. No. 16/875,802, filed May 15, 2020, U.S. patent application Ser. No. 16/990,666, filed Aug. 11, 2020, which are incorporated herein by reference in their entireties.


Central Regions

In various embodiments, central regions and striking locations can be selected for weighted COR, such as based at least in part on the type of golf club head. For example, historical data (e.g., real shot data points) can indicate that different types of golf club heads (e.g., iron-type, hybrid-type, wood-type, etc.) are typically struck at different locations on the striking face. For example, iron-type golf club heads typically strike golf balls off of the ground more often than off of a tee, such as when compared to driver wood-type club heads. Further, when iron-type golf club heads strike golf balls off of a tee, the golf ball is often teed lower than when teeing a golf ball for a driver wood-type golf club head. Likewise, iron-type golf club heads typically strike golf balls with a steeper angle of attack, while driver wood-type golf club heads typically strike golf balls with a shallower angle of attack, and in some cases with a positive angle of attack. Likewise, hybrid-type and fairway wood-type club heads often strike golf balls off of the ground and off of a lower tee than driver wood-type golf club heads. Taken together, real shot data points for different types of golf club heads can indicate that the different types of golf club heads often strike the golf ball at different locations between the types of heads. For example, iron-type, hybrid-type, and fairway wood-type golf club heads often strike the golf ball lower on the face compared to some driver wood-type golf club heads. Using this data for different types of golf club heads, different central regions, striking locations, and COR weighting factors can be chosen based on the unique strike patterns for the particular golf club head type (e.g., different patterns between irons and woods), as well as different lofts within a golf club head type (e.g., different patterns between short and long irons).


In addition to differences between golf club head types, historical data can also indicate that differences in striking patterns exist between different groups of golfers. For example, low handicap golfers have more consistent striking patterns, as well as often striking the golf club low in the heel and high in the toe, and generally lower on the face. Higher handicap golfers have more erratic striking patterns, and often strike the golf ball high on the face. Different styles of golf swings can also result in different striking patterns. For example, some golfers have steeper angles of attack (e.g., so-called diggers) relative to other golfers with shallower angles of attack (e.g., so-called pickers), and can be grouped based on their relative angles of attack. Likewise, golfers can be grouped based on relative swing speeds (e.g., driver swing speeds: (1) less than 95 mph; (2) 95 mph to 105 mph; and (3) greater than 105 mph). Using this additional data, different central regions, striking locations, and COR weighting factors can be chosen based on the unique strike patterns for different groups of golfers and the particular golf club head type.


Further, in various embodiments, additional and different central regions can be used, such as with additional or fewer striking locations. In some embodiments, fewer striking locations can be used to simply design and/or manufacturing processes for the club head, such as with a tradeoff of incorporating fewer real shot data points on the striking face. In other embodiments, additional striking locations can be used to incorporate data for additional real shot data points on the striking face. For example, using three striking locations (e.g., FIG. 60) can include at least about 38% of real shots. In another example, using five striking locations (not depicted) can include at least about 62% of real shots. In another example, using eight striking location (e.g., FIG. 61) can include at least about 85% of real shots. Symmetric or asymmetric striking locations can also be selected based on the historical shot data. In some embodiments, the central region 120 is centered on a geometric center of the striking face 110. Alternatively, the central region 120 can be centered on a point located at a mid-point of the longest scoreline on the striking face and 20.5 mm above the ground plane when the golf club head is at a normal address position.


In the embodiment depicted in FIGS. 58-59, the central region 120 is defined for a cavity back iron-type golf club head 100. In other embodiments, the central region 120 can be defined for other iron-type golf club heads, including blade irons, muscle back irons, hollow irons, and other iron-types. In other embodiments, the central region 120 can be defined for wood-type club heads, hybrid or utility-type club heads, or other golf club heads. For example, in the embodiment depicted in FIG. 60, the central region 120 is defined for a wood-type (e.g., FIG. 63) or a hybrid-type (e.g., FIG. 62) golf club head.



FIG. 59 illustrates a front elevation view of another golf club head 100 with striking locations 101, 102, 103, 104, 105, 106, 107 within a central region 120 positioned on the striking face 110. For example, the strike or striking face 110 can include the central region 120 centered on a geometric center of the striking face 110. In some embodiments, the central region 120 is defined with the club head 110 at zero-degrees loft and the central region is positioned on a face plane normal to a ground plane. In some embodiments, the central region 120 is centered on a different location on the face, such as the location of the club head center of gravity (CG) projected onto the striking face 110 or another location. The central region 120 can be defined by a 36 millimeter (mm) by 18 mm rectangular area centered on the striking face 110. The central region can be elongated in a heel-to-toe direction, such as tangential to the face 110 and parallel to a ground plane (GP). In some embodiments, the central region 120 is elongated at an angle with respect to the GP, such as elongated at a 45-degree angle to GP and extending from low-to-high in a heel-to-toe direction or in another direction. In some embodiments, the central region 120 can be defined by a larger or smaller rectangular area, defined by a different shape, such as a circular region, an octagonal region, a square region, a diamond shaped region, or another in another shape.


The central region 120 can be used to define a central region coordinate system. For example, the central region coordinate system can be defined by the 36 millimeter (mm) by 18 mm rectangular area centered on the geometric center of the striking face. In this example, the central region coordinate system is defined with the club head at zero-degrees loft and positioned on a face plane normal to a ground plane. The central region coordinate system can be elongated in a heel-to-toe direction, and can include a central region x-axis being tangent to the striking face at the origin and parallel to a ground plane. The x-axis extends in a positive direction from the origin to the heel portion of the club head body. The central region coordinate system can also include a central region y-axis intersecting the origin being perpendicular to the ground plane and orthogonal to the x-axis. The y-axis extends in a positive direction from the origin to the top-line portion of the club head body. Locations in the central region coordinate system can be referred to with x-axis and y-axis coordinates with a “cr” subscript, such as (xcr, ycr).



FIG. 59 illustrates the central region 120 depicted in FIG. 58. For example, the central region 120 includes striking locations 101, 102, 103, 104, 105, 106, 107 for a right-handed golf club head. The central region 120 includes a first striking location 101 positioned 9 mm below the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (0, −9). The central region 120 includes a second striking location 102 positioned 9 mm toe-ward of the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (−9, 0). The central region 120 includes a third striking location 103 positioned at the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (0, 0). The central region 120 includes a fourth striking location 104 positioned 9 mm toe-ward of and 9 mm below the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (−9, −9). The central region 120 includes a fifth striking location 105 positioned 9 mm heel-ward of and 9 mm below the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (9, −9). The central region 120 includes a sixth striking location 106 positioned 18 mm toe-ward of the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (−18, 0). The central region 120 includes a seventh striking location 107 positioned 9 mm heel-ward of the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (0, −9). The above coordinates are provided in a 1 mm scale, but other scales can be used.



FIG. 60 illustrates another embodiment of a central region 120. The central region 120 can be defined by a 20 millimeter (mm) by 10 mm rectangular area centered on the striking face 110. The central region can be elongated in a heel-to-toe direction, such as tangential to the face 110 and parallel to a ground plane (GP). For example, the central region 120 includes striking locations 101, 102, 103 for a right-handed golf club head. The central region 120 includes a first striking location 101 at the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (0, 0). The central region 120 includes a second striking location 102 positioned 10 mm toe-ward of and 5 mm above the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (−10, 5). The central region 120 includes a third striking location 103 positioned 10 mm heel-ward of and 5 mm below the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (10, −5). The above coordinates are provided in a 1 mm scale, but other scales can be used.



FIG. 61 illustrates the central region 120 depicted in FIG. 58. The central region 120 can be defined by a 48 millimeter (mm) by 24 mm rectangular area centered on the striking face 110. The central region can be elongated in a heel-to-toe direction, such as tangential to the face 110 and parallel to a ground plane (GP). For example, the central region 120 includes striking locations 101, 102, 103, 104, 105, 106, 107, 108 for a right-handed golf club head. The central region 120 includes a first striking location 101 positioned at the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (0, 0). The central region 120 includes a second striking location 102 positioned 12 mm toe-ward of the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (−12, 0). The central region 120 includes a third striking location 103 positioned 12 mm heel-ward of the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (12, 0). The central region 120 includes a fourth striking location 104 positioned 12 mm toe-ward of and 12 mm above the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (−12, 12). The central region 120 includes a fifth striking location 105 positioned 12 mm above the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (0, 12). The central region 120 includes a sixth striking location 106 positioned 12 mm below the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (0, −12). The central region 120 includes a seventh striking location 107 positioned 24 mm toe-ward of the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (−24, 0). The central region 120 includes an eighth striking location 108 positioned 12 mm heel-ward of and 12 mm below the geometric center of the striking face 110 corresponding to an (x, y) coordinate of (12, −12). The above coordinates are provided in a 1 mm scale, but other scales can be used.


COR Weighting Factors, COR Values, and COR Drop Off Values

Each striking location has a weighting factor and a COR value. The weighting factors can be selected based on historical data on the impact locations where golfers most often impact the golf ball on the striking face 110. To selectively increase or optimize COR at likely impact locations on the striking face of the golf club heads, weighting factors are selected for each of the striking locations. The weighting factors and COR values are then used to calculate a weighted COR value for the golf club head. COR values are tested with the golf club head in a zero-loft address position. In some embodiments, the COR values for the striking locations can be between about 0.650 and about 0.900, such as between about 0.700 and about 0.840, such as between about 0.710 and about 0.850. In some embodiments, the weighted COR value can be between about 0.740 and about 0.800, such as between about 0.780 and about 0.790.


COR values can also be expressed as COR changes relative to a calibration plate used during COR testing. The calibration plate dimensions and weight are described in section 4.0 of the Procedure for Measuring the Velocity Ratio of a Club Head for Conformance to Rule 4-1e. Due to the slight variability between different calibration plates, difference different golf balls, and other testing variabilities, the COR values can be described in terms of a change in COR relative to a calibration plate base value established during testing. For example, if a tested calibration plate has a 0.831 COR value, a 0.844 COR value, or another COR value, measuring a change in COR for a given head relative to the tested calibration plate is accurate and highly repeatable. The change in COR relative to the calibration plate can be described as a COR drop off relative to the calibration plate. For example, COR drop off values can be calculated by subtracting a measured COR value of the calibration plate from a COR value measured at the respective coordinate of a striking location to determine a respective drop off value for the location. In some embodiments, the COR drop off value for a particular striking location can be between about −0.150 and about 0.050, preferably between about −0.140 and about 0.000. In some embodiments, the weighted COR drop off value can be between about −0.104 and about −0.044, such as between about −0.064 and about −0.054.


For example, Table 4 includes exemplary values for an embodiment of an iron-type golf club head. In this example, a COR drop off value for location 101 can be between about −0.100 and about −0.130, for location 102 can be between about 0.000 and about −0.090, for location 103 can be between about 0.040 and about −0.050, for 104 can be between about −0.100 and about −0.200, for location 105 can be between about −0.090 and about −0.160, for 106 can be between about −0.100 and about −0.170, and for location 107 can be between about 0.000 and about −0.090. In this example, a weighted COR can be between about 0.740 and about 0.800, such as about 0.759.












TABLE 4






COR Weighting

COR Dropoff


Striking Location
Factor
COR Value
Value







101 (0, −9)
0.2347
0.730
−0.114


102 (−9, 0)
0.1935
0.804
−0.040


103 (0, 0) 
0.1715
0.840
−0.004


 104 (−9, −9)
0.1518
0.701
−0.143


105 (9, −9)
0.1230
0.717
−0.127


 106 (−18, 0)
0.0740
0.707
−0.137


107 (9, 0) 
0.0515
0.804
−0.040









The exemplary weighting factors in table 4 can be applicable for a club head that is typically struck relatively lower on the face (e.g., a 7 iron vs. a 4 iron) and/or applicable for players that typically strike the club head relatively lower on the face. Alternatively, different weighting factors can be used for club heads that are typically struck relatively higher on the face (e.g., a 4 iron vs. a 7 iron) and/or are applicable for players that typically strike the club head relatively higher on the face. For example, location 101 (0, −9) can have a weighting factor of about 0.1390, location 102 (−9, 0) can have a weighting factor of about 0.2520, location 103 (0, 0) can have a weighting factor of about 0.2770, location 104 (−9, −9) can have a weighting factor of about 0.0700, location 105 (9, −9) can have a weighting factor of about 0.0890, location 106 (−18, 0) can have a weighting factor of about 0.0740, and location 107 (9, 0) can have a weighting factor of about 0.0980. The exemplary weighing factors and COR values described herein can be applicable to any club head, including any iron within a set of iron-type club heads.


In some embodiments, an iron-type club head (e.g., a 7 iron, a 4 iron, or another iron) can have a first COR drop off value between −0.090 and −0.130, a second COR drop off value is between 0.000 and −0.090, a third COR drop off value is between 0.010 and −0.010, a fourth COR drop off value is between −0.100 and −0.200, a fifth COR value is between −0.090 and −0.160, a sixth COR value is between −0.100 and −0.170, and a seventh COR value is between 0.000 and −0.090.


In some embodiments, an iron-type club head (e.g., a 7 iron, a 4 iron, or another iron) can have a first COR drop off value is between −0.100 and −0.130, a second COR drop off value is between −0.020 and −0.040, a third COR drop off value is between 0.006 and −0.006, a fourth COR drop off value is between −0.130 and −0.160, a fifth COR value is between −0.115 and −0.135, a sixth COR value is between −0.110 and −0.135, and a seventh COR value is between −0.010 and −0.040.


In another embodiment, Table 5 includes exemplary values for a wood-type golf club head (e.g., a fairway wood). In this example, using three (3) striking locations can incorporate historical data for approximately 38% of real shots. Further, in this example, the fairway wood can be a 15-degree fairway wood with a weighted COR of 0.804 and an unweighted COR of 0.801, resulting in a change (i.e., a delta) of 0.003.












TABLE 5






COR Weighting

COR Dropoff


Striking Location
Factor
COR Value
Value







101 (0, 0) 
0.4531
0.812
−0.032


102 (−10, 5)
0.3796
0.800
−0.044


103 (10, −5)
0.1673
0.790
−0.054









In another embodiment, Table 6 includes exemplary values for another wood-type golf club head using three (3) striking locations. In this example, the fairway wood can be a 15-degree fairway wood with a weighted COR of 0.807 and an unweighted COR of 0.799, resulting in a change of 0.008.












TABLE 6






COR Weighting

COR Dropoff


Striking Location
Factor
COR Value
Value







101 (0, 0) 
0.4531
0.823
−0.021


102 (−10, 5)
0.3796
0.805
−0.039


103 (10, −5)
0.1673
0.770
−0.074









In another embodiment, Table 7 includes exemplary values for another wood-type golf club head using three (3) striking locations. In this example, the fairway wood can be a 15-degree fairway wood with a weighted COR of 0.781 and an unweighted COR of 0.778, resulting in a change of 0.003.












TABLE 7






COR Weighting

COR Dropoff


Striking Location
Factor
COR Value
Value







101 (0, 0) 
0.4531
0.791
−0.053


102 (−10, 5)
0.3796
0.776
−0.068


103 (10, −5)
0.1673
0.766
−0.078









In another embodiment, Table 8 includes exemplary values for another wood-type golf club head using three (3) striking locations. In this example, the fairway wood can be a 15-degree fairway wood with a weighted COR of 0.789 and an unweighted COR of 0.785, resulting in a change of 0.004.














TABLE 8








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.802
−0.042



102 (−10, 5)
0.3796
0.780
−0.064



103 (10, −5)
0.1673
0.773
−0.071










In another embodiment, Table 9 includes exemplary values for another wood-type golf club head using three (3) striking locations. In this example, the fairway wood can be a 15-degree fairway wood with a weighted COR of 0.793 and an unweighted COR of 0.789, resulting in a change of 0.004.














TABLE 9








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.816
−0.028



102 (−10, 5)
0.3796
0.771
−0.073



103 (10, −5)
0.1673
0.782
−0.062










In another embodiment, Table 10 includes exemplary values for a wood-type golf club head (e.g., a driver). In this example, using eight (8) striking locations can incorporate historical data for approximately 85% of real shots. In this example, the wood-type club head can be a 9-degree driver with a weighted COR of 0.803 and an unweighted COR of 0.793, resulting in a change of 0.010.














TABLE 10








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.3107
0.823
−0.021



102 (−12, 0)
0.2261
0.805
−0.039



103 (12, 0)
0.1083
0.77
−0.074



104 (−12, 12)
0.1046
0.799
−0.045



105 (0, 12)
0.0957
0.813
−0.031



106 (0, −12)
0.0742
0.787
−0.057



107 (−24, 0)
0.0417
0.78
−0.064



108 (12, −12)
0.0388
0.772
−0.072










In another embodiment, Table 11 includes exemplary values for another wood-type golf club head using eight (8) striking locations. In this example, the wood-type club head can be a 9-degree driver with a weighted COR of 0.814 and an unweighted COR of 0.805, resulting in a change of 0.009.














TABLE 11








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.3107
0.833
0.011



102 (−12, 0)
0.2261
0.815
0.029



103 (12, 0)
0.1083
0.78
0.064



104 (−12, 12)
0.1046
0.809
0.035



105 (0, 12)
0.0957
0.818
0.026



106 (0, −12)
0.0742
0.804
0.04



107 (−24, 0)
0.0417
0.795
0.049



108 (12, −12)
0.0388
0.782
0.062










In another embodiment, Table 12 includes exemplary values for a wood-type golf club head (e.g., a fairway wood). In this example, using five (5) striking locations can incorporate historical data for approximately 62% of real shots. In this embodiment, the historical data dictates the striking locations chosen, resulting in asymmetric striking locations being included in the Table 12 (e.g., three locations toe-ward and only one location heel-ward of the origin). In this example, the wood-type club head can be a 15-degree fairway wood with a weighted COR of 0.813 and an unweighted COR of 0.812, resulting in a change of 0.001.













TABLE 12






COR


COR


Striking
Weighting
Shots
COR
Dropoff


Location
Factor
Captured
Value
Value



















101 (−3.2, 1.4)
0.2631
33,090 (16%)
0.817
−0.027


102 (0, 0)
0.2219
27,908 (14%)
0.823
−0.021


103 (−11.4, 3.7)
0.1935
24,339 (12%)
0.803
−0.041


104 (4.6, −3.3)
0.1664
20,940 (10%)
0.809
−0.035


105 (−6.7, −5.4)
0.1550
19,496 (10%)
0.807
−0.037









In another embodiment, Table 13 includes exemplary values for a wood-type golf club head using five (5) striking locations. In this example, the wood-type club head can be a 15-degree fairway wood with a weighted COR of 0.804 and an unweighted COR of 0.803, resulting in a change of 0.001.













TABLE 13






COR


COR


Striking
Weighting
Shots
COR
Dropoff


Location
Factor
Captured
Value
Value



















101 (−3.2, 1.4)
0.2631
33,090 (16%)
0.807
0.037


102 (0, 0)
0.2219
27,908 (14%)
0.812
0.032


103 (−11.4, 3.7)
0.1935
24,339 (12%)
0.797
0.047


104 (4.6, −3.3)
0.1664
20,940 (10%)
0.803
0.041


105 (−6.7, −5.4)
0.1550
19,496 (10%)
0.797
0.047









In another embodiment, Table 14 includes exemplary values for a wood-type golf club head using six (6) striking locations. In this example, the wood-type club head can be a 15-degree fairway wood, such as with a steel face welded to the body, with a weighted COR of 0.802 and an unweighted COR of 0.798, resulting in a change of 0.004.














TABLE 14








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.3000
0.814
0.030



102 (0, 2.2)
0.2000
0.816
0.028



103 (0, 5)
0.1250
0.811
0.033



104 (0, −5)
0.1250
0.793
0.051



105 (−12.7, 0)
0.1250
0.771
0.073



106 (12.7, 0)
0.1250
0.781
0.063










In another embodiment, Table 15 includes exemplary values for a wood-type golf club head (e.g., a fairway wood). In this embodiment, the historical data also dictates the striking locations chosen, resulting in asymmetric striking locations being included in the Table 15 (e.g., four locations toe-ward origin, one location heel-ward of the origin, and no locations at the origin). In this example, the wood-type club head can be a 15-degree fairway wood with a weighted COR of 0.810 and an unweighted COR of 0.810, resulting in a change of 0.000.













TABLE 15






COR


COR


Striking
Weighting
Shots
COR
Dropoff


Location
Factor
Captured
Value
Value



















101 (−3.84, 2.42)
0.2262
6,136
0.812
−0.032


102 (−0.45, 0.25)
0.2124
5,761
0.819
−0.025


103 (−7.30, 1.49)
0.2085
5,656
0.807
−0.037


104 (−2.46, −3.15)
0.1817
4,930
0.805
−0.039


105 (3.38, −0.89)
0.1712
4,643
0.805
−0.039









In another embodiment, Table 16 includes exemplary values for a wood-type golf club head with asymmetric striking locations being included. In this example, the wood-type club head can be a 15-degree fairway wood with a weighted COR of 0.804 and an unweighted COR of 0.803, resulting in a change of 0.001.













TABLE 16






COR


COR


Striking
Weighting
Shots
COR
Dropoff


Location
Factor
Captured
Value
Value



















101 (−3.84, 2.42)
0.2262
6,136
0.808
−0.036


102 (−0.45, 0.25)
0.2124
5,761
0.809
−0.035


103 (−7.30, 1.49)
0.2085
5,656
0.793
−0.051


104 (−2.46, −3.15)
0.1817
4,930
0.804
−0.040


105 (3.38, −0.89)
0.1712
4,643
0.803
−0.041









In another embodiment, Table 17 includes exemplary values for a hybrid-type golf club head using three (3) striking locations. In this example, the hybrid-type club head can be a 19-degree hybrid with a weighted COR of 0.789 and an unweighted COR of 0.786, resulting in a change of 0.003.














TABLE 17








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.797
−0.047



102 (−10, 5)
0.3796
0.785
−0.059



103 (10, −5)
0.1673
0.775
−0.069










In another embodiment, Table 18 includes exemplary values for a hybrid-type golf club head using three (3) striking locations. In this example, the hybrid-type club head can be a 19-degree hybrid with a weighted COR of 0.792 and an unweighted COR of 0.784, resulting in a change of 0.008.














TABLE 18








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.808
−0.036



102 (−10, 5)
0.3796
0.790
−0.054



103 (10, −5)
0.1673
0.755
−0.089










In another embodiment, Table 19 includes exemplary values for a hybrid-type golf club head using three (3) striking locations. In this example, the hybrid-type club head can be a 19-degree hybrid, such as with a cast face, with a weighted COR of 0.766 and an unweighted COR of 0.763, resulting in a change of 0.003.














TABLE 19








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.776
−0.068



102 (−10, 5)
0.3796
0.761
−0.083



103 (10, −5)
0.1673
0.751
−0.093










In another embodiment, Table 20 includes exemplary values for a hybrid-type golf club head using three (3) striking locations. In this example, the hybrid-type club head can be a 19-degree hybrid with a weighted COR of 0.774 and an unweighted COR of 0.770, resulting in a change of 0.004.














TABLE 20








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.787
−0.057



102 (−10, 5)
0.3796
0.765
−0.079



103 (10, −5)
0.1673
0.758
−0.086










In another embodiment, Table 21 includes exemplary values for a hybrid-type golf club head using three (3) striking locations. In this example, the hybrid-type club head can be a 19-degree hybrid with a weighted COR of 0.797 and an unweighted COR of 0.789, resulting in a change of 0.008.














TABLE 21








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.813
−0.031



102 (−10, 5)
0.3796
0.795
−0.049



103 (10, −5)
0.1673
0.760
−0.084










In another embodiment, Table 22 includes exemplary values for a hybrid-type golf club head using three (3) striking locations. In this example, the hybrid-type club head can be a 19-degree hybrid with a weighted COR of 0.802 and an unweighted COR of 0.794, resulting in a change of 0.008.














TABLE 22








COR

COR



Striking
Weighting
COR
Dropoff



Location
Factor
Value
Value





















101 (0, 0)
0.4531
0.818
−0.026



102 (−10, 5)
0.3796
0.800
−0.044



103 (10, −5)
0.1673
0.765
−0.079










In some embodiments, the striking face 109 can have a COR area between about 100 mm2 and about 300 mm2, such as between about 150 mm2 and about 200 mm2, or between about 85 mm2 and about 125 mm2, such as between about 95 mm2 and about 115 mm2. In these embodiments, the COR area is the area of the striking face 109 defined by locations on the striking face 109 with a COR drop off value above −0.045, such as above −0.044. In some embodiments, the COR area is the area of the striking face 109 defined by locations on the striking face 109 with a COR value of 0.790, 0.800, or COR another value.


Head Structures for Increasing COR Values

In some embodiments, such as depicted in FIG. 58, the club head 100 includes a body 113 having a heel portion 102, a toe portion 104, a top-line portion 106, a rear portion 128, a face portion 110 comprising a striking face 109, a sole portion 108 extending rearwardly from a lower end of the face portion 110 to a lower portion of the rear portion 128. The striking face 109 includes a geometric center defining an origin of a coordinate system when the club head is at a normal address position. For example, the coordinate system includes: an x-axis being tangent to the striking face at the origin and parallel to a ground plane; a y-axis intersecting the origin being parallel to the ground plane and orthogonal to the x-axis; and a z-axis intersecting the origin being orthogonal to both the x-axis and the y-axis. The x-axis extends in a positive direction from the origin to the heel portion of the club head body, the y-axis extends in a positive direction from the origin to the rear portion of the club head body, and the z-axis extends in a positive direction from the origin to the top-line portion of the club head body.


The heel portion 102 is defined as the portion of the golf club head extending to and including the hosel portion 114 (i.e., the club shaft receiving portion) from a y-z plane passing through the origin. For example, the heel portion 102 extends heelward from a scoreline mid-plane. The scoreline mid-plane is a plane defined at the midpoint of the longest scoreline on the striking face 109, normal to the striking face 109 and normal to the ground plane when the golf club is in a zero-loft address position. The toe portion 104 is defined as the portion of the golf club head extending from the y-z plane in a direction opposite the heel portion 102. For example, the toe portion 104 extends toeward from the scoreline mid-plane.


The sole portion 108 portion is defined as the portion of the golf club extending to and including the sole of the golf club head from an x-y plane passing through the origin. The sole portion 108 extends downwards from to an address mid-plane defined 20 mm above and parallel to the ground plane GP, to a lowest point of the club head (i.e., the sole), located at the ground plane, when the golf club is in a zero-loft address position. The topline portion 106 portion is defined as the portion of the golf club extending to and including the topline of the golf club head from an x-y plane passing through the origin. The topline portion 106 extends upwards from the address mid-plane, defined 20 mm above and parallel to the ground plane, to a highest point of the club head (e.g., the topline) when the golf club is at a zero-loft address position.


The rear portion 128 is defined as the portion of the golf club extending to and including the sole bar of the golf club head from an x-z plane passing through the origin. The rear portion 128 extends rearward from the rear surface of the striking face 109 to a rearward-most point of the club head when the golf club is at a zero-loft address position. The face portion 110 is defined as the portion of the golf club extending to and including the striking face of the golf club head from an x-z plane passing through the origin. The face portion 110 extends forward from the rear surface of the striking face 109 to a forward-most point of the club head when the golf club is at a zero-loft address position.


In some embodiments, the heel portion 102 extends towards, and includes, the golf club shaft receiving portion (e.g., the hosel portion 114) from a y-z plane passing through the origin, and the toe portion 104 can be defined as the portion of the club head extending from the y-z plane in a direction opposite the heel portion 102. In some embodiments, a sole bar can define a rearward portion of the sole portion 108. In some embodiments, a cavity can be defined by a region of the body 113 rearward of the face portion 110, forward of the rear portion 128, above the sole portion 108, and below the top-line portion 106.


In some embodiments, the club head body can be a unitary cast body. A unitary cast body is manufactured by casting the body 113 with the striking face 109. In other embodiments, the body 113 and the striking face 109 can be cast or forged separately. In some of these embodiments, the striking face 109 is welded to the body 113. For example, the club head can be a hollow body iron with a forged striking face 109 that is welded to a cast body 113. In some embodiments, the club head has a center of gravity z-axis location (Zup) between 10 mm and 20 mm above a ground plane, such as less than 19 mm, less than 18 mm, less than 17 mm, or less than 16 mm.


One or more club head features can be manipulated to increase COR and CT at different locations across the striking face 109. For example, applicable club head features can be found in U.S. patent application Ser. No. 17/132,520, filed Dec. 23, 2020, which is incorporated by reference herein in its entirety. For example, a shim or badge can be received at least in part by the body to create the appearance of a hollow-body iron. The shim or badge can be configured to close an opening in the cavity and to enclose an internal cavity volume between 5 cc and 20 cc. In some embodiments, no portion of the shim or badge directly contacts the face portion, allowing the unsupported are of the striking face 109 to flex without being restricted by the shim or badge.


In some embodiments, the shim or badge includes a first layer of acrylonitrile-butadiene-styrene (ABS) plastic and a second layer of very high bond (VHB) tape. The VHB tape can have a thickness between 0.5 mm and 1.5 mm and can dampen vibrations of the club head. For example, the VHB tape can be applied directly to the topline portion 106 and can dampen some vibrations directly at the source of those vibrations at the topline. By applying damping at the propagation location of the vibrations, the vibrations can be dampened at the source, reducing vibrations that can excite other modes in the iron at other locations.


In some embodiments, a damper can be positioned within the internal cavity and can extend from the heel portion 102 to the toe portion 104. In some embodiments, the front surface of the damper can include one or more relief portions, and the front surface of the damper can contact a rear surface of the face portion 110 (e.g., the striking face 109) between the one or more relief portions. In some embodiments, the striking face 109 comprises an unrestricted face area extending above the damper and below the topline portion 106. In some embodiments, the club head can be configured to receive a filler material within the internal cavity, such as through a filler port in the toe portion 104. The filler material can extend from the heel portion 102 to the toe portion 104.


Depending on the type of club head (e.g., iron-type, hybrid-type, wood-type, etc.), the club head can have a head height between about 25 mm and about 60 mm, such as less than about 46 mm, as measured with the club head in a normal address position. An iron-type club head can have a volume between about 10 cc and about 120 cc, such as between about 30 cc and about 100 cc, such as between about 40 cc and about 90 cc, such as between about 50 cc and about 80 cc, such as between about 60 cc and about 80 cc. In various embodiments, the iron-type club head can include a projected face area between about 2,900 mm2 and about 3,400 mm2, such as between about 3,000 mm2 and about 3,200 mm2, such as between about 3,100 mm2 and about 3,200 mm2. A wood-type club head (e.g., a fairway wood) can have a volume between about 120 cc and about 240 cc, and a projected face area between about 1,800 mm2 and 2,500 mm2, such as between about 2,000 mm2 and about 2,300 mm2. A hybrid-type club head can have a volume between about 60 cc and about 150 cc, and a projected face area between about between about 2,000 mm2 and 3,000 mm2, such as between about 2,200 mm2 and about 2,800 mm2.


In some embodiments, an unsupported area of the striking face 109 can be increased, resulting in higher COR and CT values. For example, by removing material from the heel portion 102, the toe portion 104, the top-line portion 106, and/or the sole portion 108, the unsupported face area can be increased by between about 1% and about 12%, such as between 4% and 10%, such as about 6%. In some embodiments, material is removed from low in the toe portion 104 and/or low in the heel portion 102, resulting in an increased unsupported area of the striking face 109 toward the perimeter of the club head. In some embodiments, the striking face includes an unsupported face area between about 2300 mm2 and about 3500 mm2, such as between about 2500 mm2 and about 3200 mm2, such as between about 2700 mm2 and about 3000 mm2, such as between about 2600 mm2 and about 2800 mm2.


In some embodiments, the striking face 109 can include variable thickness regions that surround or are adjacent to an ideal striking location of the striking face 109. For example, the variable thickness regions can include a minimum thickness of the striking face no less than 1.4 mm and a maximum thickness that is greater than the minimum thickness and that is no more than 3.4 mm. As discussed herein, the variable face thickness profile can be non-symmetrical, such as incorporating one or more blend zones, off-sets, elliptical and/or other profile shapes, and other non-symmetrical features. In some embodiments, the variable face thickness profile can be offset toe-ward of the geometric center of the striking face. In some embodiments, the variable face thickness profile can include at least one transition region (e.g., a blend zone) between a thicker region and a thinner region of the striking face 109. CT over 259 CT. In some embodiments, the club head has a characteristic time (CT) greater than 257 microseconds, such as greater than 259 microseconds, and such as less than 300 microseconds.


In some embodiments, the striking face does not include a bulge and roll profile, such as an iron-type club head with a substantially flat striking face 109. In other embodiments, such as in a hybrid-type or wood-type club head, the striking face 109 includes a bulge and roll profile, such as with a bulge radius greater than 500 mm and less than 1.5 inches in a front to back direction along the y-axis.


In some embodiments, the club head face thickness can vary depending on the type of club head (e.g., iron-type, hybrid-type, wood-type, and other club head types). For example, a fairway wood-type club head can have a face thickness between about 1 mm and about 3.1 mm, such as between about 1.4 mm and about 2.9 mm, such as between about 1.55 mm and about 2.75 mm. For example, a hybrid-type club head can have a face thickness between about 1.0 mm and about 3.5 mm, such as between about 1.7 mm and about 2.5 mm, such as between about 1.75 mm and about 2.25 mm. Additional and different face thicknesses can be provided.


Additional Features

In some embodiments, the badge wraps from a toe portion to a rear portion of the golf club head. In some embodiments, the golf club head is a cavity back iron.


In some embodiments, the club head includes a transition region that transitions from the toe portion to the rear portion, and at least a portion of the transition region is formed of a material having a density between about 1.0 g/cc and about 3.0 g/cc.


In some embodiments, the transition region that transitions from the toe portion to the rear portion is formed by a badge that is separately formed from the club head body and is attached to the body. The badge can be formed from a low-density material, such that a mass of the badge divided by a volume of the badge is between about 1 g/cc and about 3 g/cc.


In some embodiments, a length of the transition region that transitions from the toe portion to the rear portion formed by the badge is at least 10 mm, more preferably at least 12.5 mm, more preferably at least preferably 15 mm, more preferably at least 17.5 mm, and no more than 25 mm. The length of the transition region can be defined in an up-down direction along the Z-axis when the club head is in a zero-loft orientation.


In some embodiments, at least a first portion of the badge on a toe portion has a width greater than 3 mm, more preferably greater than 4 mm, more preferably greater than 5 mm, more preferably greater than 6 mm, and less than 15 mm, and at least a second portion of the badge on at toe portion has a width greater than 9 mm, more preferably greater than 10 mm, more preferably greater than 11 mm, more preferably greater than 12 mm, and less than 25 mm.


In some embodiments, the badge comprises a toe portion, wherein the toe portion of the badge is tapered from a top portion of the badge to a bottom portion of the badge such that a top portion width is less than a bottom portion width of the badge on the toe portion.


In some embodiments, at least a portion of the badge extends above and below the balance point of the clubhead as measured relative to the Z-axis when the club head is in a zero-loft orientation.


In some embodiments, at least a portion of the badge extends above and below the Zup point or the center of gravity of the golf club head as measured relative to the Z-axis when the club head is in a zero-loft orientation.


In some embodiments, at least a portion of the toe portion located above the badge is formed of a metal and at least a portion of the toe portion located below the badge is formed of a metal. In these embodiments, portions of the body adjacent to the badge are formed from a metal.


In some embodiments, a toe-to-topline transition region of the golf club head is formed of metal.


In some embodiments, a toe-to-sole transition region of the golf club head is formed of metal.


In some embodiments, at least a portion of the toe portion in-between the toe-to-topline transition region and in-between the toe-to-sole transition region is formed of a non-metal material having a density between about 1 g/cc and about 3 g/cc.


In some embodiments, the badge wraps from a rear portion of the club head onto a toe portion of the club head, and further wraps from a rear portion of the club head onto a topline portion of the club head. The topline portion can be formed at least in part by the badge and the toe portion can be formed at least in part by the badge. In various embodiments, a topline portion of the badge and a toe portion of the back can be connected or separated by a portion of the body of the club head (i.e., not connected).


In some embodiments, at least a portion of the badge on the toe portion extends above and below Zup.


In some embodiments, with the club head at zero-loft orientation, the badge forms at least 30% of the outer surface area of the toe portion above a midplane of the club head. The midplane is halfway between an uppermost portion of the toe portion and a lowermost toe portion of the club head. More preferably, the badge can form at least 35% of the outer surface area of the toe portion above a midplane, more preferably at least 37% of the outer surface area of the toe portion above a midplane, more preferably at least 39% of the outer surface area of the toe portion above a midplane, more preferably at least 41% of the outer surface area of the toe portion above a midplane, more preferably at least 43% of the outer surface area of the toe portion above a midplane, and no more than 65% of the outer surface area of the toe portion above a midplane.


In some embodiments, a combined outermost surface area of the badge, as projected onto a rear plane, defined as a plane perpendicular to the toe plane and perpendicular to the ground plane, when the clubhead is in the zero loft orientation on the ground plane, or as projected onto the rear plane and onto the toe plane, is greater than an entire area of the face between scorelines formed in the face. The surface area of the face between scorelines is defined as the surface area in-between a heel-most portion of the scorelines and a toe-most portion of the scorelines, and is further defined as a surface area of the face between the scorelines that is projected onto a front plane, defined as a plane parallel to the rear plane, when the clubhead is in the zero loft orientation on the ground plane.


In some embodiments, the club head has a flat face projected area, excluding the scoreline grooves within the flat face projected area, and a badge surface area is between about 85% and about 125% of the flat face area. Accordingly, in some embodiments, the badge can have a projected surface area that is larger than the flat face projected surface area located between the grooves of the face.


In some embodiments, the flat face area is measured as if the face lacks scoreline grooves (i.e., has no grooves milled into the face).


In some embodiments, the badge forms at least part of a toe portion of the club head, at least part of a topline portion of the club head, at least part of a rear portion of the clubhead, and includes transition regions in between the rear portion and the toe portion, the rear portion and the topline portion, and the top line portion and the toe portion.


In some embodiments, the badge extends further heelward than the heelward-most scorelines and/or farther toeward than the toeward-most scorelines


In some embodiments, a total length of the badge from a first end to a second end is greater than a total length from a par line (i.e., the transition from a flat face surface to a curved surface proximate heel) to the toeward-most portion of the toe portion.


In some embodiments, a total length from a heelward-most scoreline to the toeward-most portion of the toe portion is less than a total length of the badge.


In some embodiments, an area of the toe portion of the badge, projected onto the toe plane when the clubhead is in the zero loft orientation on the ground plane, is at least 15%, or more preferably, at least 17%, of the total area of the toe portion, excluding the hosel that is projected onto the toe plane when the clubhead is in the zero loft orientation on the ground plane. In some embodiments, the projected area of the toe portion is at least 100 mm2 when viewed from a toe view.


In some embodiments, the projected area of the toe portion of the badge, when viewed from a toe view, is at least 5% of the projected area of the back portion of the badge, which view from a rear view, more preferably at least 7% of the projected area of the back portion of the badge.


In some embodiments, the area of badge is greater than total area of the face within scorelines (i.e., bounded by the heelward-most scoreline, the toeward-most scoreline, the upward-most scoreline, and the lower-most scoreline).


Dual Undercut Topline

In any of the herein disclosed iron-type club heads, the upper portion of the body can include a dual undercut geometry. Dual undercut geometry can include additional mass removed from the underside of the topline behind the face. Being behind the face and under the topline, the dual undercut geometry can be mostly hidden from sight such that the topline maintains the same visual appearance to the golfer but mass is removed, lowering the CG and Zup. The dual undercut geometry can be included in embodiments with or without a toe-wrap badge.



FIGS. 64-73 illustrate an exemplary iron-type club head 700 that includes a dual undercut geometry. The head 700 can comprise a hosel 702, a sole portion 704, a topline portion 706, a toe portion 708, a heel portion 710, a face portion 712, and a rear portion 714. The club head 700 can include a notch 720 that facilitates bending of the club head between the hosel and the body to adjust lie, face, and/or face angles of the club head relative to a shaft attached to the head. The club head 700 can also include a sole channel 722 that connects to a lower cavity 770 of the club head. As shown in FIG. 73, the lower cavity 770 is formed between the rear surface 724 of the face portion and a forward surface of the rear portion 714, and above a forward sole portion 705, which extends from the sole channel 722 forward to the lower end of the face portion 712.


As illustrated in FIGS. 65 and 66, at the top portion of the club head 700 there can be one or more forward undercuts and one or more rear undercuts below the topline 706. The forward undercuts can be defined between the rear surface 724 of the face and a front surface of an intermediate ledge 730. The intermediate ledge 730 extends downward and inwardly from the topline 706, and can terminate in an at least partially unsupported or cantilevered lower edge. The forward undercuts can include a first forward undercut 750 that is positioned more heelward and a second forward undercut 752 that is positioned more toeward. The first and second undercuts 750, 752 can be separated by a middle rib 754 that connects the intermediate ledge 730 to the rear surface 724. Similarly, a heelward rib 756 can be positioned at a heelward side of the first forward undercut 750 and a toeward rib 758 can be positioned at a toeward side of the second forward undercut 752. Like the middle rib 754, the heelward rib 756 and the toeward rib 758 can connect the intermediate ledge 730 to the rear surface 724 of the face. In some embodiments, one or more of the ribs 754, 756, 758 may not be included, which can connect the two forward undercuts 750, 752 and/or extend their lengths.


To the rear of the intermediate ledge 730, the upper portion of the club head can include one or more rearward undercuts that are defined below the topline 706 and between the rear surface of the intermediate ridge and forward of a rear ledge 732 that extends downwardly and inwardly from the rear of the topline 706 and terminates in an at least partially unsupported or cantilevered lower edge. The rear ledge 732 can be shorter than the intermediate ledge 730, as shown in FIG. 66. The rear undercuts can include a first rear undercut 740 that is positioned more heelward and a second forward undercut 742 that is positioned more toeward. The first and second undercuts 740, 742 can be separated by a rear middle rib 744 that connects the intermediate ledge 730 to the rear ledge 732. Similarly, a rear heelward rib 746 can be positioned at a heelward side of the first rear undercut 740 and a rear toeward rib 748 can be positioned at a toeward side of the second rear undercut 742. Like the rear middle rib 744, the rear heelward rib 746 and the rear toeward rib 748 can connect the intermediate ledge 730 to the rear ledge 732. In some embodiments, one or more of the rear ribs 744, 746, 748 may not be included, which can connect the two rear undercuts 740, 742 and/or extend their lengths.



FIGS. 74-79 illustrates another exemplary iron-type golf club head 800 that includes a dual undercut topline geometry similar to the club head 700. The head 800 can comprise a hosel 802, a sole portion 804, a topline portion 806, a toe portion 808, a heel portion 810, a face portion 812, and a rear portion 814. The club head 800 can include a notch 820 that facilitates bending of the club head between the hosel and the body to adjust lie, face, and/or face angles of the club head relative to a shaft attached to the head.


As illustrated in FIGS. 78 and 79, at the top portion of the club head 800 there can be one or more forward undercuts and one or more rear undercuts below the topline 806. The forward undercuts can be defined between the rear surface 824 of the face and a front surface of an intermediate ledge 830. The intermediate ledge 830 extends downward and inwardly from the topline 806, and can terminate in an at least partially unsupported or cantilevered lower edge. The forward undercuts can include a first forward undercut 850 that is positioned more heelward and a second forward undercut 852 that is positioned more toeward. The first and second undercuts 850, 852 can be separated by a middle rib 854 that connects the intermediate ledge 830 to the rear surface 824. Similarly, a heelward rib 856 can be positioned at a heelward side of the first forward undercut 850 and a toeward rib 858 can be positioned at a toeward side of the second forward undercut 852. Like the middle rib 854, the heelward rib 856 and the toeward rib 858 can connect the intermediate ledge 830 to the rear surface 824 of the face. In some embodiments, one or more of the ribs 854, 856, 858 may not be included, which can connect the two forward undercuts 850, 852 and/or extend their lengths.


To the rear of the intermediate ledge 830, the upper portion of the club head can include one or more rearward undercuts that are defined below the topline 806 and between the rear surface of the intermediate ridge and forward of a rear ledge 832 that extends downwardly and inwardly from the rear of the topline 806 and terminates in an at least partially unsupported or cantilevered lower edge. The rear ledge 832 can be shorter than the intermediate ledge 830, as shown in FIG. 75. The rear undercuts can include a first rear undercut 840 that is positioned more heelward and a second forward undercut 842 that is positioned more toeward. The first and second undercuts 840, 842 can be separated by a rear middle rib 844 that connects the intermediate ledge 830 to the rear ledge 832. Similarly, a rear heelward rib 846 can be positioned at a heelward side of the first rear undercut 840 and a rear toeward rib 848 can be positioned at a toeward side of the second rear undercut 842. Like the rear middle rib 844, the rear heelward rib 846 and the rear toeward rib 848 can connect the intermediate ledge 830 to the rear ledge 832. In some embodiments, one or more of the rear ribs 844, 846, 848 may not be included, which can connect the two rear undercuts 840, 842 and/or extend their lengths.


The dual undercut topline geometry can save from 0.1 grams to 5 grams of mass, such as from 1 gram to 3 grams of mass, and/or from 1.5 grams to 2.0 grams of mass, from the upper portion of the club head. This mass can be redistributed elsewhere in the club for advantageous effect. For example, the dual undercut geometry can lower the Zup and CG of the club head from 0.1 mm to about 2.0 mm, such as from 0.3 mm to about 1.0 mm, compared to a similar club head that lacks the dual undercut geometry.


Floating Weight Damper

In any of the herein disclosed iron-type club heads, the club head can comprise a weighted damper (or floating mass damper) positioned within the cavity behind the striking face. A weighted damper can comprise a low density damper with a high density weight at least partially encased within the damper. The damper portion can have similar materials (e.g., polymers), geometries, and purposes (e.g., modifying the feel and performance characteristics of the club head) as other dampers disclosed herein, such as the damper 280. However, a weighted damper can also include a high density (e.g., metal, or loaded nonmetal) weight held by the damper and suspended within the lower cavity without touching other rigid walls of the club head body (i.e., “floating”). The weight can be spaced between the back bar and the rear face surface, such that the weight is able to significantly affect the mass properties of the club head (e.g., lowering Zup and CG, increasing MOI, etc.) without adding too much stiffness to the lower part of the club head and having a large portion cantilevered from the damper portion.


As seen in FIGS. 75-77, the club head 800 is an example of a club head that includes a damper with a suspended weight. The club head 800 includes a sole channel 822 that connects to a lower cavity 870 that is defined between the rear surface 824 of the face and a front surface 874 of the rear portion/back bar 814, and above the front sole portion 805, the interior surface of which is the cavity floor. The club head 800 can also include a badge 880 or other rear wall that attaches to the rear of the club head to enclose an internal space that includes the undercut portions of the topline and the lower cavity 870. The badge 880 can be similar to other badges disclosed herein, such as the badge 188. The toe end 808 of the club head can also include a recess 882 that receives a wrap-around toe end portion of the badge. The recess 882 can reduce the mass of the club head as well, and/or the removed mass of the recess can be re-allocated elsewhere, such as in the weight 890.



FIGS. 83-86 illustrate an example of the weighted damper in isolation, including the damper 894 and the weight 890. The weight 890 is also shown in isolation in FIG. 80. The weight 890 can comprise a heel portion 900, a toe portion 902, and an intermediate portion 904. The heel portion of the weight 900 can be embedded in a heel portion of the damper 910, and the toe portion of the weight 902 can be embedded in the toe portion of the damper 912, while the intermediate portion of the weight 904 can be suspended below an intermediate portion of the damper 894 to position the added mass as low as possible without contacting the metal body of the club head. The toe and heel portions of the weight 900, 902 can include openings 906, 908 or other notches, bumps, ridges, etc., to help secure the weight to the damper. One embodiment includes at least one opening 906 through the weight heel portion 900 and at least one opening 908 through the weight toe portion 902. The damper 894 may be cast or molded around the weight 890 to create a unitary body with the damper 894 material extending through the openings 906, 908, solidifying, and locking the weight 890 to the damper 894.


With continued reference to FIG. 80, in one embodiment a maximum length of the weight 890, measured when installed and parallel to the sole length LB of FIG. 1, from the weight heel portion 900 to the weight toe portion 902, is at least 50% of the sole length LB, and at least 60% and at least 70% in further embodiments. While in a further series of embodiments the maximum length of the weight 890 is no more than 95% of the sole length LB, and no more than 90%, 85%, and 80% in further embodiments. In one such embodiment the maximum length of the weight 890 is at least 40 mm, and at least 45 mm, 50 mm, and 55 mm in still further embodiment. Yet a further series of embodiments caps the maximum length of the weight 890 so that it is no more than 80 mm, and no more than 75 mm, 70 mm, and 65 mm in further embodiments.


Similarly, with reference now to FIG. 83, in one embodiment a maximum length of the damper 894, measured when installed and parallel to the sole length LB of FIG. 1, from the heel portion of the damper 910 to the toe portion of the damper 912, is at least 50% of the sole length LB, and at least 60% and at least 70% in further embodiments. While in a further series of embodiments the maximum length of the damper 894 is no more than 95% of the sole length LB, and no more than 90%, 85%, and 80% in further embodiments. In an embodiment the maximum length of the damper 894 is greater than the maximum length of the weight 890, and in further embodiments at least 1% greater, 2.5% greater, 3.5% greater, and 5% greater. A further series of embodiments caps this relationship such that the maximum length of the damper 894 is no more than 50% greater than the maximum length of the weight 890, and in further embodiments no more than 40%, 30%, 20%, and 10% greater. In one embodiment the maximum length of the damper 894 is at least 45 mm, and at least 50 mm, 55 mm, and 60 mm in still further embodiment. Yet a further series of embodiments caps the maximum length of the damper 894 so that it is no more than 90 mm, and no more than 85 mm, 80 mm, and 70 mm in further embodiments. In one embodiment, not illustrated but easily understood, a portion of the weight 890 is embedded in the damper 894 over the entire maximum length of the weight 890. The damper 894 may serve to totally isolate the weight 890 from contacting any portion of the metal of the golf club head body.


As previously noted, FIG. 49 depicts the toeward and heelward boundaries of the scorelines. For example, the scorelines extend toeward up to toeward line SLt and heelward up to heelward line SLh. In one embodiment, when installed at least a portion of weight heel portion 900 extends beyond the heelward line SLh, while in another embodiment at least a portion of the weight toe portion 902 extends beyond the toeward line SLt, and in still another embodiment at least a portion of weight heel portion 900 extends beyond the heelward line SLh and at least a portion of the weight toe portion 902 extends beyond the toeward line SLt, Similarly, in one embodiment, when installed at least a portion of heel portion of the damper 910 extends beyond the heelward line SLh, while in another embodiment at least a portion of the toe portion of the damper 912 extends beyond the toeward line SLt, and in still another embodiment at least a portion of heel portion of the damper 910 extends beyond the heelward line SLh and at least a portion of the toe portion of the damper 912 extends beyond the toeward line SLt,


As noted with respect to FIG. 80, the intermediate portion of the weight 904 can be suspended below an intermediate portion of the damper 894, thereby creating a void 1100, seen in FIG. 77; although it should be noted that in the weight 890 may engage the damper throughout the length of the weight 890 and therefore not have a void 1100, or alternatively the void 1100 need not be continuous as illustrated but rather composed of multiple individual voids that in sum have the attributes disclosed herein. In the illustrated embodiment a maximum length of the void 1100 is a maximum length of the intermediate portion of the weight 904, which again is measured when installed and parallel to the sole length LB of FIG. 1, from the point at which the weight heel portion 900 enters the damper 894 to the point at which the weight toe portion 902 enters the damper 894. In one embodiment the maximum length of the void 1100 is at least 15% of the sole length LB, and at least 20%, at least 25%, at least 30%, and at least 35% in further embodiments. While in a further series of embodiments the maximum length of the void 1100 is no more than 75% of the sole length LB, and no more than 70%, 65%, and 60% in further embodiments. In one such embodiment the maximum length of the void 1100 is at least 10 mm, and at least 15 mm, 20 mm, and 25 mm in still further embodiment. Yet a further series of embodiments caps the maximum length of the void 1100 so that it is no more than 60 mm, and no more than 50 mm, 40 mm, and 30 mm in further embodiments. Further, the location of the void 1100 influences feel and performance. Thus, in one embodiment a face center vertical plane is taken through the geometric center of a strike face 110 and perpendicular to the strike face 110, and the void 1100 exists at the face center vertical plane, while in a further embodiment the void 1100 exists for at least 3 mm on each side of the face center vertical plane, and at least 5 mm, 7 mm, and 9 mm on either side, or both sides, in further embodiments. In one embodiment no portion of the weight 904 is within the intermediate portion of the damper 894 above the void 1100.


The weight 890 has a thickness 891, seen in FIG. 89, measured from a front surface to a rear surface. The embodiments illustrated show a constant thickness, however it may vary. Nonetheless, the weight 890 will have a maximum weight thickness and a minimum weight thickness, even if they are the same in the situation of a constant thickness weight. In one embodiment the maximum weight thickness 891 is less than the previously disclosed maximum face thickness, while in a further embodiment the maximum weight thickness 891 is less than the previously disclosed minimum face thickness, and in still another embodiment the maximum weight thickness 891 is less than the previously disclosed sole wrap thickness. In one embodiment a portion of the weight 890 embedded in the damper 894 has an embedded portion thickness that is less than a non-embedded portion thickness of a portion of the weight 890 that is not embedded in the damper 894. In a further embodiment at least a portion of the weight 890 has a non-embedded portion thickness that is at least 10% greater than the embedded portion thickness, and at least 15%, 20%, 25%, and 30% in additional embodiments. Thus, in one embodiment the later disclosed striking plane setback distance 4010 is less on a portion of the weight 890 that is not embedded in the damper 894, than the striking plane setback distance 4010 of a portion of the weight 890 that is embedded in the damper 894. In still a further embodiment the weight thickness 891 is greatest at the point closest to the front sole portion 805.


The void 1100 creates a separation distance 1102, seen in FIG. 83, between the weight 890 and the damper 894. The separation distance 1102 is relatively constant in FIG. 83, but may vary significantly. In one embodiment the separation distance 1102 is greater than the maximum weight thickness 891 throughout at least 25% of the maximum length of the void, and in further embodiments throughout at least 50%, 60%, 70%, 80%, and 90% of the maximum length of the void. In another embodiment the separation distance 1102 is at least 25% greater than the maximum weight thickness 891 throughout at least 25% of the maximum length of the void, and in further embodiments throughout at least 50%, 60%, 70%, 80%, and 90% of the maximum length of the void. Further embodiments cap this relationship to reduce the likelihood of sound and/or vibration issues, whereby a maximum separation distance 1102 is no greater than 5 times the maximum weight thickness 891, and/or no greater than 2 times the maximum face thickness; and further caps the relationship in another embodiment with a maximum separation distance 1102 of no greater than 4, 3, or 2 times the maximum weight thickness 891, and/or no greater than 1.5 or 1.0 times the maximum face thickness. In another embodiment the separation distance 1102 is greater than the minimum face thickness throughout at least 25% of the maximum length of the void, and in further embodiments throughout at least 50%, 60%, 70%, 80%, and 90% of the maximum length of the void. In another embodiment the separation distance 1102 is at least 25% greater than the minimum face thickness throughout at least 25% of the maximum length of the void, and in further embodiments throughout at least 50%, 60%, 70%, 80%, and 90% of the maximum length of the void


As seen in FIG. 84, the weight 890 may be planar in shape. Regardless of whether planar in shape, each vertical cross-section of the weight 890, taken perpendicular to the striking face, establishes a top-to-bottom primary axis 4060 of the weight, as seen in FIG. 89, as well as a striking plane setback distance 4010, an inner face separation distance 4012, a rear structure separation distance 4020, a floor separation distance 4030, a weight projection distance 4040, and a weight embedded distance 4050, any of which may vary depending on the location of the vertical section. In the illustrated embodiment the weight is planar with a constant thickness, and the primary axis 4060 is parallel with the striking face plane, therefore the striking plane setback distance 4010 is constant from the top to bottom of the weight within any vertical section from the heel to the toe, while the inner face separation distance 4012 may vary from the top to bottom of the weight within any vertical section from the heel to the toe as well as from section to section due to the varying face thickness.


Examining first the inner face separation distance 4012, in one embodiment a minimum inner face separation distance 4012 is at least as great as the minimum weight thickness 891, the maximum weight thickness 891, the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, the maximum sole wrap thickness, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. A further series of embodiments caps these relationships such that the maximum inner face separation distance 4012 is no greater than a predetermined multiplier times the minimum weight thickness 891, the maximum weight thickness 891, the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, the maximum sole wrap thickness, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. In one embodiment the predetermined multiplier is 5, while in further embodiments the predetermined multiplier is 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, and 1.25.


Next, examining the floor separation distance 4030, in one embodiment a minimum floor separation distance 4030 is at least as great as the minimum weight thickness 891, the maximum weight thickness 891, the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, the maximum sole wrap thickness, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. A further series of embodiments caps these relationships such that the maximum floor separation distance 4030 is no greater than a predetermined multiplier times the minimum weight thickness 891, the maximum weight thickness 891, the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, the maximum sole wrap thickness, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. In one embodiment the predetermined multiplier is 5, while in further embodiments the predetermined multiplier is 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, and 1.25.


Now, examining the striking plane setback distance 4010, in one embodiment a minimum striking plane setback distance 4010 is at least 50% greater than the minimum weight thickness 891, the maximum weight thickness 891, the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, the maximum sole wrap thickness, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. A further series of embodiments caps these relationships such that the maximum striking plane setback distance 4010 is no greater than a predetermined multiplier times the minimum weight thickness 891, the maximum weight thickness 891, the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, the maximum sole wrap thickness, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. In one embodiment the predetermined multiplier is 5, while in further embodiments the predetermined multiplier is 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, and 1.25.


Turning now to the weight projection distance 4040, in one embodiment the greatest weight projection distance 4040 is at least as great as a predetermined multiplier times the minimum weight thickness 891, the maximum weight thickness 891, the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, the maximum sole wrap thickness, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. In one such embodiment the predetermined multiplier is 1, and in further embodiments is 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5. A further series of embodiments caps these relationships such that the greatest weight projection distance 4040 is no greater than a predetermined multiplier times the minimum weight thickness 891, the maximum weight thickness 891, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. In one embodiment the predetermined multiplier is 15, while in further embodiments the predetermined multiplier is 12.5, 10.0, 8.0, and 6.0. A further series of embodiments caps these relationships such that the greatest weight projection distance 4040 is no greater than a predetermined multiplier times the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, and/or the maximum sole wrap thickness; and in this series the predetermined multiplier is 8, while in further embodiments the predetermined multiplier is 6, 5, 4, and 3. In another embodiment the greatest weight projection distance 4040 is less than 150% of the greatest weight embedded distance 4050, and in further embodiments it is less than 135%, 120%, 105%, and 90%. While in a further series of embodiments sets a floor such that the greatest weight projection distance 4040 is at least 50% of the greatest weight embedded distance 4050, and in further embodiments it is at least 60%, 70%, and 80%. The greatest weight projection distance 4040 is at least 100% greater than the minimum, and/or maximum, inner face separation distance 4012, and at least 200%, 300%, and 400% in further embodiments. The greatest weight projection distance 4040 is at least 100% greater than the minimum, and/or maximum, floor separation distance 4030, and at least 200%, 300%, and 400% in further embodiments.


Now addressing the weight embedded distance 4050, in one embodiment at least a portion of the weight has a weight embedded distance 4050 of at least as great as a predetermined multiplier times the minimum weight thickness 891, the maximum weight thickness 891, the minimum channel width 2601, the maximum channel width 2601, the lower ledge thickness 2907, and/or the upper ledge thickness 2903. In one such embodiment the predetermined multiplier is 3, while in further embodiments it is 5, 6, 7, and 8. In another embodiment at least a portion of the weight has a weight embedded distance 4050 of at least as great as 1.5 times the minimum face thickness, the maximum face thickness, the minimum sole wrap thickness, and/or the maximum sole wrap thickness. In an embodiment the weight embedded distance 4050 is the full vertical depth of the damper, and in further embodiments may extend out the top of the damper. In the illustrated embodiment the weight heel portion 900 may a have a maximum heel portion weight embedded distance and the weight toe portion 902 may a have a maximum toe portion weight embedded distance that is greater than the maximum heel portion weight embedded distance; and in a further embodiment the maximum toe portion weight embedded distance is at least 10% greater than the maximum heel portion weight embedded distance, and 15%, 20%, 25%, and 30% in further embodiments.


As previously mentioned, the top-to-bottom primary axis 4060 of the weight 890 may be parallel with the striking face plane, but it need not be. In fact in one embodiment at least a portion of the weight 890 has the primary axis 4060 angled toward the top of the striking face, while in another embodiment the primary axis 4060 is angled toward the bottom of the striking face, while in an even further embodiment the weight 890 has a portion with the primary axis 4060 angled toward the top of the striking face, and a portion with the primary axis 4060 is angled toward the bottom of the striking face. In any of these embodiments the primary axis 4060 is at least 1 degree from being parallel with the striking face plane, while in further embodiments it is at least 2, 3, 4, 6, 8, and 10 degrees. A further series of embodiments caps this relationship to no more than 60 degrees, and in further embodiments no more than 52.5, 45, 37.5, and 30 degrees.


Further, as previously disclosed the club head 100 has a Zup value, referring to the height of the CG above the ground plane as measured along the z-axis. Within each vertical section, perpendicular to the striking face, the weight 890 and the damper 894 each also have a greatest section height above the ground plane as measured along the z-axis, and the weight 890 and the damper 894 each also have an overall greatest height which is the largest of the greatest heights associated with the vertical sections. In one embodiment the overall greatest height of the damper 894 is larger than the Zup value, while in a further embodiment the overall greatest height of the damper 894 is less than the Zup value, while in still another embodiment the overall greatest height of the damper 894 is larger than the Zup value while at least one of the greatest section heights of the damper 894 is less than the Zup value. Similarly, in one embodiment the overall greatest height of the weight 890 is larger than the Zup value, while in a further embodiment the overall greatest height of the weight 890 is less than the Zup value. In another embodiment the greatest section height of the weight 890 at the geometric center of the strike face 110 is less than the Zup value, and in yet a further embodiment the greatest section height of the weight 890 at the geometric center of a strike face 110 is less than the Zup value while the greatest section height of the weight 890 at a location other than the geometric center of the strike face 110 is greater than the Zup value.


Just as the overall club head 100 has a center of gravity (CG) with a Zup value, referring to the height of the CG above the ground plane as measured along the z-axis, the individual components of the weight 890 and the damper 894 each have their individual center of gravity. Thus the weight 890 has a weight CG, and the damper 894 has a damper CG. The weight CG and the damper CG have coordinates measured from the overall club head CG along the previously disclosed x-axis 105, a y-axis 107, and a z-axis 103. As known, the CG-x distance is the location of the overall club head CG along the CG x-axis 105 from the origin of the orthogonal CG axes; similarly the CG-y distance is the location of the overall club head CG along the CG y-axis 107 from the origin of the orthogonal CG axes, and the CG-z distance is the location of the overall club head CG along the CG z-axis 103 from the origin of the orthogonal CG axes. Therefore, the weight CG has a CGW-x distance from the weight CG to the overall club head CG along the CG x-axis 105, and likewise a CGW-y distance from the weight CG to the overall club head CG along the CG y-axis 107, and likewise a CGW-z distance from the weight CG to the overall club head CG along the CG z-axis 103, and the CGW-x, CGW-y, and CGW-z values are absolute values so that it does not matter which direction they are measured along the designated axis from the overall club head CG, unless specifically noted as being in a direction toward the heel, toe, face, rear, top, or ground. Similarly, the damper CG has a CGD-x distance from the damper CG to the overall club head CG along the CG x-axis 105, and likewise a CGD-y distance from the damper CG to the overall club head CG along the CG y-axis 107, and likewise a CGD-z distance from the damper CG to the overall club head CG along the CG z-axis 103, and the CGD-x, CGD-y, and CGD-z values are absolute values so that it does not matter which direction they are measured along the designated axis from the overall club head CG, unless specifically noted as being in a direction toward the heel, toe, face, rear, top, or ground. Like the Zup value of the overall cub head 100, the weight 890 has a ZWup value referring to the height of the weight CG above the ground plane as measured along the z-axis, and the damper 894 has a ZDup value referring to the height of the damper CG above the ground plane as measured along the z-axis. In one embodiment the ZWup value is less than the Zup value, and in further embodiments the ZWup value is at least 10% less than the Zup value, and 20%, 30%, 40%, and 50% in additional embodiments. Conversely, in another embodiment the ZDup value is at least 50% of the Zup value, and in further embodiments the ZDup value is at least 60% of the Zup value, and 65%, 70%, 75%, and 80% in additional embodiments. In further embodiments the ZDup value is no more than 150% of the Zup value, and in further embodiments the ZDup value is no more than 125% of the Zup value, and 115%, 105%, 95%, and 85% in additional embodiments.


In one embodiment a CG coordinate of the damper 894 is closer to the club head CG than a coordinate of the weight 890 is. For example, first looking at the z-axis relationship, in one embodiment both the damper CG and weight CG are below the elevation of the club head CG, and CGW-z is greater than CGD-z, meaning the weight CG is lower than the damper CG, while in a further embodiment CGW-z is at least 10% greater than CGD-z, and at least 20%, 30%, 40%, and 50% in further embodiments. Another series of embodiments caps this relationship such that CGW-z is less than 500% of CGD-z, while in a further embodiment CGW-z is less than 400% of CGD-z, and less than 350%, 300%, and 250% in further embodiments. Similarly, in another embodiment both the damper CG and weight CG are in front of the club head CG, and further CGW-y is greater than CGD-y, while in a further embodiment CGW-y is at least 10% greater than CGD-y, and at least 20%, 30%, 40%, and 50% in further embodiments. Another series of embodiments caps this relationship such that CGW-y is less than 500% of CGD-y, while in a further embodiment CGW-y is less than 400% of CGD-y, and less than 350%, 300%, and 250% in further embodiments. In an embodiment the club head CG coordinates include a CG-x of 2.0 mm heelward to 2.0 mm toeward of the coordinate system origin, a CG-y of 10 mm to 18 mm, and a Zup value of 14 mm to 19 mm; plus the CGD-x that is at least 2 mm more toeward than the club head CG, and at least 3 mm, 4 mm, and 5 mm more toeward in further embodiments; plus the CGD-y that is at least 1 mm more forward than the club head CG, and at least 1.5 mm, 2.0 mm, and 2.5 mm more forward in further embodiments; plus the CGW-x that is at least 0.10 mm more toeward than the club head CG, and at least 0.5 mm, 1 mm, 2 mm, 3 mm, and 4 mm more toeward in further embodiments; plus the CGW-y that is at least 2 mm more forward than the club head CG, and at least 3 mm, 4 mm, 5 mm, and 6 mm more forward in further embodiments; plus a ZDup that is at least 0.5 mm less than Zup, and at least 1 mm, 2 mm, and 3 mm less in further embodiments; plus a ZWup that is at least 2 mm less than Zup, and at least 3 mm, 4 mm, 5 mm, and 6 mm in further embodiments.


However, in another embodiment a CG coordinate of the weight 890 is closer to the club head CG than a coordinate of the damper 894 is, thus in one such embodiment CGW-x is less than CGD-x. Looking at the x-axis relationship, in one embodiment both the damper CG and weight CG are located on the same side, either toeward or heelward, from the club head CG, while in another embodiment (a) one of the damper CG and the weight CG is located between the club head CG and the toe portion 104, and (b) one of the damper CG and the weight CG is located between the club head CG and the heel portion 102, while in a further embodiment both the damper CG and the weight CG are located between the club head CG and the toe portion 104, and in yet another embodiment both the damper CG and the weight CG are located between the club head CG and the heel portion 102. In an embodiment having the damper CG and weight CG located on the same side, either toeward or heelward, from the club head CG, the CGD-x is greater than the CGW-x, and in another embodiment CGD-x is at least 10% greater than the CGW-x, and at least 20%, 30%, and 40% in further embodiments. Another series of embodiments caps this relationship such that CGD-x is less than 500% CGW-x, and less than 400%, 350%, 300%, and 250% in further embodiments. In a further embodiment, the damper CG and the weight CG are located on opposite sides of the club head CG, and CGD-x is greater than CGW-x, and in another embodiment CGD-x is at least 10% greater than CGW-x, and at least 20%, 30%, and 40% in further embodiments. Another series of embodiments caps this relationship such that CGD-x is less than 500% of CGW-x, and less than 400%, 350%, 300%, and 250% in further embodiments.


In an embodiment the weight 890 CGW-z is at least 25% of Zup, and in further embodiments is at least 30%, 35%, and 40%. A further series of embodiments has CGW-z no more than 85% of Zup, and no more than 80%, 75%, 70%, and 65% in additional embodiments. However, in an embodiment the damper 894 location is tightly controlled so that CGD-z is no more than 50% of Zup, and in further embodiments no more than 40%, 30%, 25%, 20%, and 15%. A further series of embodiments establishes a floor for this relationship such that CGD-z is at least 5% of Zup, and in further embodiments at least 7.5%, 10%, and 12.5%.


Further, referring again to FIG. 83, in an embodiment a geometric center of the void 1100 is at an elevation below the elevation of the club head CG, which means the magnitude of the elevation of the geometric center of the void 1100 is less than Zup. In another embodiment the magnitude of the elevation of the geometric center of the void 1100 is less than CGD-z; while in a further embodiment the elevation of the geometric center of the void 1100 is also less than CGW-z. However, in yet another embodiment the elevation of the geometric center of the void 1100 is greater than CGW-z.


While many of these embodiments are disclosing measurements and relationships within a single vertical section, for the avoidance of any confusion, in one embodiment the measurements and relationships are true throughout at least 10% of the maximum length of the weight 890, and in further embodiments throughout 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and even 100% of the maximum length of the weight 890.


When mounted in the damper 894, as seen in FIG. 83, the weight 890 has a total surface area, as seen in FIG. 80, and a non-embedded surface area. In one embodiment the non-embedded surface area is at least 25% of the total surface area, while in further embodiments it is at least 30%, 35%, 40%, 45%, and 50%. A further series of embodiments establishes a ceiling for the relationship with the non-embedded surface area no more than 85% of the total surface area, while in further embodiments it is no more than 75%, 65%, 60%, and 55%. One particular embodiment has a total surface area of at least 425 mm2, and at least 525 mm2, 625 mm2, 725 mm2, and 825 mm2 in further embodiments. In a further embodiment the total surface area is no more than 1275 mm2, and no more than 1175 mm2, 1075 mm2, 975 mm2, and 900 mm2 in additional embodiments. Similarly, in one embodiment the non-embedded surface area is at least 200 mm2, and at least 250 mm2, 300 mm2, 350 mm2, and 400 mm2 in additional embodiments. While in still another embodiment the non-embedded surface area is no more than 600 mm2, and no more than 550 mm2, 500 mm2, and 450 mm2 in additional embodiments.


As previously disclosed, the damper 894 may be cast or molded around the weight 890 to create a unitary body with the damper 894 material extending through the openings 906, 908, seen in FIG. 80, solidifying, and locking the weight 890 to the damper 894. In one embodiment the minimum opening size (length, width, diameter, or other dimension) is at least as great as the maximum weight thickness 891, and in further embodiments is at least 2, 3, 4, and 5 times the maximum weight thickness 891. A further series of embodiments caps this relationship so that the maximum opening size (length, width, diameter, or other dimension) is no greater than 20 times the maximum weight thickness 891, and in further embodiments is no greater than 16, 12, 10, and 8 times the maximum weight thickness 891.


Further, the damper 894 has a damper mass, and the weight 890 has a weight mass. In one embodiment the damper mass is greater than the weight mass, while in further embodiments the damper mass is at least 10% greater, 20% greater, and 30% greater. Nonetheless, in another series of embodiments the damper mass is no more than 500% greater than the weight mass, and no more than 450%, 400%, 350%, and 300% greater in further embodiments. Conversely, in another embodiment the weight mass is greater than the damper mass, while in further embodiments the weight mass is at least 10% greater, 20% greater, and 30% greater. In another series of embodiments the weight mass is no more than 500% greater than the weight mass, and no more than 450%, 400%, 350%, and 300% greater in further embodiments. In one embodiment the combined mass of the damper mass and the weight mass is greater than a mass of the badge 188, while in a further embodiment the damper mass is greater than the mass of the badge 188, while in still another embodiment the weight mass is greater than the mass of the badge 188. In one embodiment the damper mass is no more than 12 grams, and no more than 10 grams, 8 grams, and 6 grams in additional embodiments. Similarly in an embodiment the weight mass is at least 2 grams, and in further embodiments is at least 4 grams, 6 grams, 8 grams, and 10 grams. Another series of embodiments has a weight mass of no more than 24 grams, and no more than 20 grams, 16 grams, 12 grams, and 8 grams in additional embodiments. The weight 890 can be formed from one or more of ABS (acrylonitrile-butadiene-styrene) plastic, a composite (e.g., true carbon or another material), a metal or metal alloy (e.g., titanium, aluminum, steel, tungsten, nickel, cobalt, an alloy including one or more of these materials, or another alloy), one or more of various polymers (e.g., ABS plastic, nylon, and/or polycarbonate), a fiber-reinforced polymer material, an elastomer or a viscoelastic material (e.g., rubber or any of various synthetic elastomers, such as polyurethane, a thermoplastic or thermoset material polymer, or silicone), any combination of these materials, or another material. In an embodiment no more than 50% of the weight mass is embedded within the damper 894, and in further embodiments no more than 45%, 40%, 35%, 30%, and 25%. While another series of embodiments establishes a floor on the relationship with at least 5% of the weight mass embedded within the damper 894, and in further embodiments at least 10%, 15%, and 20%.


It should be noted that the disclosure also covers embodiments having multiple weights 890 and/or multiple dampers 894. For example, with reference to FIGS. 80 and 83, the weight 890 may not have a weight intermediate portion 904, and the weight heel portion 900 and the weight toe portion 902 may be separate and distinct pieces, and all the disclosure and relationships applies equally to these separate pieces. Likewise, the damper 894 may not have a damper intermediate portion, but rather a separate the toe portion of the damper 912 and/or heel portion of the damper 910, and all the disclosure and relationships applies equally to these separate pieces.


The region of the lower cavity 870 between the bottom of the damper 894 and the cavity floor is devoid of other fill material in one embodiment and only contains air and a portion of the weight 890. However, in a further embodiment this region contains a secondary fill material. The secondary fill material may be any of the filler materials disclosed herein, provided the density and/or hardness (shore A scale) of the secondary fill material is at least 10% less than that of the damper 894, and at least 20% less, 30% less, 40% less, and 50% less in additional embodiments.


One embodiment includes a set of golf club heads consisting of at least 3 club heads in which a ratio of weight mass to damper mass increases with increasing loft. Another embodiment includes a set of golf club heads consisting of at least 3 club heads in which the maximum weight thickness 891 increases with increasing loft. A further embodiment includes a set of golf club heads consisting of at least 3 club heads in which the floor separation distance 4030 increases with increasing loft. Yet another embodiment includes a set of golf club heads consisting of at least 3 club heads in which the striking plane setback distance 4010 varies by less than 10%, and less than 5% in a further embodiment. Yet another embodiment includes a set of golf club heads consisting of at least 3 club heads in which the weight projection distance 4040 and/or the weight embedded distance 4050 decreases with increasing loft. Yet another embodiment includes a set of golf club heads consisting of at least 3 club heads in which the primary axis 4060 changes in each club head. Yet another embodiment includes a set of golf club heads consisting of at least 3 club heads in which a ratio of ZWup to Zup increases as loft increases. Yet another embodiment includes a set of golf club heads consisting of at least 3 club heads in which a ratio of ZDup to Zup increases as loft increases. Yet another embodiment includes a set of golf club heads consisting of at least 3 club heads in which a difference between the absolute value of CGD-x and the absolute value of CGW-x increases as loft increases. Yet another embodiment includes a set of golf club heads consisting of at least 3 club heads in which the weight non-embedded surface area decreases as loft increases. Any of these set embodiments may further include at least 4 club heads, 5 club heads, 6 club heads, or even 7 club heads having the disclosed relationships with loft.


The desired key goals are provided by a delicate interplay of relationships of the various components, variables within each component as well as relationships across the components. The disclosed relationships are more than mere optimization, maximization, or minimization of a single characteristic or variable, and are often contrary to conventional design thinking, yet have been found to achieve a unique balance of the trade-offs associated with competing criteria such as durability, acoustics, vibration, fatigue resistance, weight, and ease of manufacture. The relationships disclosed do more than maximize or minimize a single characteristic such as vibration damping, changes in face mode frequencies, changes in top line frequencies, coefficient of restitution (COR) at a single point such as face center or offset/distributed COR, the relationships achieve a unique balance among these characteristics, which are often conflicting, to produce a club head that has improved feel, sound, and/or performance. After all, a suspended weight 890 from a damper 894 has the potential to significantly adversely impact the sound and feel of the golf club head. The aforementioned balance requires trade-offs among the competing characteristics recognizing key points of diminishing returns. Further, it is important to recognize that all the associated disclosure and relationships apply equally to all embodiments and should not be interpreted as being limited to the particular embodiment being discussed when a relationship is mentioned. Further, the aforementioned balances require trade-offs among the competing characteristics recognizing key points of diminishing returns, as often disclosed with respect to open and closed ranges for particular variables and relationships. Proper functioning of each component, and the overall system, on each and every shot, over thousands of impacts during the life of a golf club, is critical. Therefore, this disclosure contains unique combinations of components and relationships that achieve these goals. While the relationships of the various features and dimensions of a single component play an essential role in achieving the goals, the relationships of features across multiple components are just as critical, if not more critical, to achieving the goals. Further, the relative length, width, thickness, geometry, and material properties of various components, and their relationships to one another and the other design variables disclosed herein, influence the durability, feel, sound, safety, and ease of manufacture.


Now to put the disclosed ranges and relationships into perspective with specific measurements, in one embodiment the striking plane setback distance 4010 is no more than 10 mm, and in further embodiments is no more than 8 mm, 6 mm, 5 mm, and 4 mm. In a further embodiment the inner face separation distance 4012 is at least 0.5 mm, and in further embodiments at least 1.0 mm, 1.5 mm, and 2 mm; while in a further series of embodiments the inner face separation distance 4012 is no more than 8 mm, and no more than 6 mm, 4 mm, and 3 mm in further embodiments. Similarly, in an embodiment the floor separation distance 4030 is at least 0.5 mm, and in further embodiments at least 1.0 mm, 1.5 mm, and 2 mm; while in a further series of embodiments the floor separation distance 4030 is no more than 10 mm, and no more than 8 mm, 6 mm, and 4 mm in further embodiments. Additionally, in another embodiment the rear structure separation distance 4020 is at least 0.5 mm, and in further embodiments at least 1.0 mm, 1.5 mm, and 2 mm; while in a further series of embodiments the rear structure separation distance 4020 is no more than 8 mm, and no more than 6 mm, 4 mm, and 3 mm in further embodiments. Further, in an embodiment the greatest weight projection distance 4040 is at least 3 mm, and at least 4 mm, 5 mm, and 6 mm in further embodiments; while in a further series of embodiments the greatest weight projection distance 4040 is no more than 16 mm, and no more than 14 mm, 12 mm, 10 mm, and 8 mm in further embodiments. Similarly, in an embodiment the greatest weight embedded distance 4050 is at least 3 mm, and at least 4 mm, 5 mm, and 6 mm in further embodiments; while in a further series of embodiments the greatest weight embedded distance 4050 is no more than 16 mm, and no more than 14 mm, 12 mm, 10 mm, and 8 mm in further embodiments. The maximum weight thickness 891 is no more than 4 mm in an embodiment, and no more than 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm, and 1.5 mm in further embodiments. The minimum weight thickness 891 is at least 0.5 mm in an embodiment, and at least 0.75 mm, 1.0 mm, 1.25 mm, and 1.5 mm in further embodiments.


Similar to other club heads disclosed herein, the damper 892 can be positioned within the lower cavity 870 with forward surfaces 894 of the damper in contact with the rear surface of the face 824, and with rear surface 896 of the damper in contact with the back bar 814. An upper portion 898 of the damper can be wider such that the damper “wedges” into the lower cavity 870 to keep the damper from sliding down and letting the weight 890 contact the sole of the club head. The wider upper portion 898 can extend rearwardly toward an upper wall 872 of the back bar 814. The bottom of the damper is spaced above the sole to provide room for the weight 890 to be suspended between the sole and the damper.



FIGS. 86 and 86 show another exemplary weighted damper, such as for a differently lofted iron compared to the weighted damper shown in FIGS. 77 and 78. For example, one can be for a 4-iron and one can be for a 7-iron from the same set. The embodiment of FIGS. 79 and 80 includes a damper 8940 and a weight 8900. The weight 8900 can comprise a heel portion 9000, a toe portion 9020, and an intermediate portion 9040. The heel portion of the weight 9000 can be embedded in a heel portion of the damper 9100, and the toe portion of the weight 9020 can be embedded in the toe portion of the damper 9120, while the intermediate portion of the weight 9040 can be suspended below an intermediate portion of the damper 8940. The toe and heel portions of the weight 9000, 9020 can include openings, notches, bumps, ridges, etc., to help secure the weight to the damper 8940. The damper 8920 can be positioned within the lower cavity of a club head with forward surfaces 8940 of the damper in contact with the rear surface of the face, and with rear surface 8960 of the damper in contact with the back bar. An upper portion 8980 of the damper can be wider such that the damper “wedges” into the lower cavity to keep the damper from sliding down and letting the weight 8900 contact the sole of the club head.


In each different iron of a set of irons, the damper and weight can be slightly different shapes, while providing similar functionality. Other clubs in a set, such as wedges, hybrids, and rescues, can also include analogous floating weighted dampers.


In some embodiments, the floating weight (890, 8900, etc.) can have a mass of from 1 gram to 10 grams, such as from 2 grams to 5 grams, such as from 3 grams to 4 grams. In a set of clubs, the mass and shape of the weight can vary slightly from club to club. The weight can comprise any material that is denser than the material of the damper, such as a metallic material, such as stainless steel or tungsten. The weight material can also be more rigid than the damper material, and can be more rigid than the club head body material as well. Together, the weight and damper as a unit can have a combined stiffness that is less than the stiffness of the weight itself, such that adding the weighted damper to the clubhead adds less stiffness to the clubhead than adding the weight in direct contact with (or fixed to) the club head body.


In some embodiments, the weighted damper can include two separate floating weights, such as with each having lower portion that projects down from the damper, such as with one at the toe end and one at the heel end, instead of a single weight that is connected across an intermediate portion. Such dual-weight embodiments can distribute the added mass further toward the heel and toe ends, further increasing moment of inertia.


When there is extra mass to spare in an iron (such as from the dual undercut portions at the top), it can be desirable to place that extra mass low in the head. Suspending a weight from the damper solves the puzzle of how to place mass low in the head of an iron without adding undue stiffness to the lower part of the club head. Placing the extra mass in the sole cavity between the face and the back bar without spacing the weight apart from the body surfaces can add stiffness to the club head, which can lower COR and/or CT. In a high COR iron, it can be desirable to maintain as much unsupported face span as possible. However, it was thought that this leaves a large volume in the interior cavity of the head where mass cannot be added. The floating weight dampers described herein solve this problem, while also maintaining the damping properties necessary for good sound, feel, and performance.


Face Thickness Measurement Features

In any of the herein disclosed iron-type club heads, the club head can also include several small, raised, flat regions on the rear face surface to allow for more accurate measurement of the thickness of the face at varied locations across the face. Such measurement features can be provided to allow for reliable thickness measurements to determine an exact thickness at a specific location on the iron face. A set of measurements using these pre-located features can then confirm the accuracy of the manufacturing as compared to design specifications.



FIGS. 87 and 88 is a cross-sectional view of an exemplary iron-type club head 1000, with the rear portions of the club head cut away, showing the rear face surface 1024. The club head 1000 can be similar to the club heads 700 and 800 is other aspects. The club head 1000 can have a hosel 1002, sole portion 1004, topline portion 1006, toe portion 1008, heel portion 1010, a front face surface 1012 (i.e., the striking face) with grooves 1013, and a notch 1020 between the hosel and the rest of the club head body to allow for bending to adjust the angles of the face relative to the shaft axis of the hosel.


The club head 1000 includes a plurality of spaced-apart, raised, flats 1030 that extend a small distance rearward from the rear face surface 1024. The flats 1030 are positioned at predetermined locations across the face where it is desired to measure the thickness of the face during or after manufacturing, such that the flats give an inspector a target for where to measure that is level and flat. As shown in the cross-sectional view of FIG. 88, each flat 1030 can be a different distance from the front face surface 1012 (e.g., T2 for flat 1030B is larger than T1 for flat 1030A). The inspector can measure those several thickness values (T1, T2, . . . T6) and compare the measured values to a specified set of thickness that each face region is supposed to have to check for manufacturing accuracy.


The flats 1030 can be planar and parallel to the planar front face surface 1012. Because the rear face surface 1024 may be uneven and not parallel to the front face surface 1012, each flat 1030 can protrude a varying distance from the rear face surface 1024 around the perimeter of the flat. For example, as shown in FIG. 88, flat 1030A that defines a face thickness of T1 protrudes from the rear face surface 1024 a distance Dmin on one side and a distance Dmax on another side. The distance Dmin should be greater than zero such that the entire perimeter of the flat is defined relative to the rear face surface. The distance Dmax can be limited as well, such as being no greater than 1.0 mm, no greater than 0.6 mm, and/or no greater than 0.4 mm. Dmax can depend on the diameter/size of the flats, where Dmax can be smaller when the flats are smaller in size. Dmax can also depend on the unevenness/slope of the rear face surface 1024, where Dmax can may be larger for club heads where the rear face surface has a more aggressive thickness variation (i.e., greater slopes relative to the front face surface).


The flats 1030 allow for an exact location and reference thickness for an inspection to be taken. In irons with free-form, variable thickness face geometries, it can be difficult to specify exactly where to take a measurement as there may be few, if any, defining features for human or automated inspectors to reference. The flats provides a visual location to easily identify where measurements should be taken. Without this reference, a measurement taken slightly off from the intended location can result in a wide range of values, since the face geometry often does not have constant thickness for large areas.


The embodiments and features described herein are not limiting, and are only examples of the inventive technology disclosed herein. Any of the embodiments, features, or characteristics of any of the described examples can be combined with one another, and with other golf related features, to form other embodiments, all of which combination are expressly included within the scope of this disclosure and within the scope of the invention. The scope of the disclosure is at least as broad as the following claims. We therefore claim all that comes within the scope and spirit of these claims and their equivalents.

Claims
  • 1. A clubhead for an iron-type golf club, the clubhead comprising: a club head body having a hosel portion, a heel portion, a toe portion, a face portion, a rear portion, a sole portion, and a topline portion;wherein the club head body defines a lower cavity adjacent the sole portion between the face portion and the rear portion, and between the heel portion and the toe portion, the lower cavity having a floor;a damper positioned in the lower cavity and contacting a rear surface of the face portion, the damper having a lower density than the club head body; anda weight supported by the damper and positioned within the lower cavity spaced apart from the club head body, the weight having a greater density, wherein a portion of the weight extends a weight projection distance from the damper toward the lower cavity floor without contacting the floor or the rear surface of the face portion, and defining a floor separation distance and an inner face separation distance, and wherein the weight projection distance is greater than the floor separation distance and the inner face separation distance.
  • 2. The clubhead of claim 1, wherein the sole portion has a sole length, the damper has a maximum damper length, the weight has a maximum weight length, and (a) the maximum damper length is 50-95% of the sole length, (b) the maximum weight length is 50-95% of the sole length, and (c) the maximum damper length is greater than the maximum weight length.
  • 3. The clubhead of claim 2, wherein the weight projection distance of at least a portion of the weight is greater than a minimum face thickness.
  • 4. The clubhead of claim 3, wherein the weight projection distance of at least a portion of the weight is greater than two times the minimum face thickness.
  • 5. The clubhead of claim 3, wherein a portion of the weight is embedded in the damper a weight embedded distance that is greater than the minimum face thickness.
  • 6. The clubhead of claim 3, wherein: the clubhead has a clubhead CG with a Zup value of the height of the clubhead CG above a ground plane as measured along a z-axis;the damper has a damper CG with a ZDup value of the height of the damper CG above the ground plane as measured along the z-axis, and the damper CG having coordinates measured from the clubhead CG along a x-axis, a y-axis, and the z-axis, including a CGD-x distance, a CGD-y distance, and a CGD-z distance;the weight has a weight CG with a ZWup value of the height of the weight CG above the ground plane as measured along the z-axis, and the weight CG having coordinates measured from the clubhead CG along the x-axis, the y-axis, and the z-axis, including a CGW-x distance, a CGW-y distance, and a CGW-z distance; andwherein the ZWup value is at least 10% less than the Zup value, and the ZDup value is 50-150% of the Zup value.
  • 7. The clubhead of claim 6, wherein the ZDup value is no more than 100% of the Zup value, ZWup value is at least 20% less than the Zup value, and the CGW-z distance is at least 10% greater than the CGD-z distance.
  • 8. The clubhead of claim 7, wherein the damper CG and weight CG are located between the face portion and the clubhead CG, and the CGW-y distance is greater than CGD-y distance.
  • 9. The clubhead of claim 8, wherein the CGW-x distance is less than the CGD-x distance.
  • 10. The clubhead of claim 9, wherein the CGD-x distance is at least 20% greater than the CGW-x distance.
  • 11. The clubhead of claim 6, wherein a portion of the weight is embedded in the damper, and the weight has a total surface area and a non-embedded surface area, and the non-embedded surface area is 25-85% of the total surface area.
  • 12. The clubhead of claim 11, wherein the damper has a damper mass, the weight has a weight mass, and the damper mass is greater than the weight mass.
  • 13. The clubhead of claim 6, wherein the weight has a weight thickness that is less than a minimum face thickness.
  • 14. The clubhead of claim 13, wherein throughout the entire maximum weight length, a minimum inner face separation distance is at least as great as a minimum weight thickness.
  • 15. The clubhead of claim 14, wherein throughout the entire maximum weight length, a maximum inner face separation distance is no greater than three times a maximum face thickness.
  • 16. The clubhead of claim 15, wherein throughout the entire maximum weight length, the floor separation distance is at least as great as the minimum face thickness.
  • 17. The clubhead of claim 16, wherein throughout the entire maximum weight length, a maximum striking plane setback distance is no greater than three times the maximum face thickness.
  • 18. The clubhead of claim 6, wherein the weight includes a weight heel portion, a weight toe portion, and a weight intermediate portion between the weight heel portion and the weight toe portion, and a portion of the weight heel portion is embedded in the damper, a portion of the weight toe portion is embedded in the damper, and the weight intermediate portion is not embedded in the damper.
  • 19. The clubhead of claim 18, wherein the portion of the weight heel portion embedded in the damper is formed with a heel portion through-opening, the portion of the weight toe portion embedded in the damper is formed with a toe portion through-opening, and a portion of the damper extends continuously through the heel portion through-opening and the toe portion through-opening.
  • 20. The clubhead of claim 18, wherein the weight intermediate portion does not contact the damper and forms a void between the weight and the damper.
  • 21. The clubhead of claim 20, wherein the void is present in a face center vertical plane is taken through the geometric center of the face portion and perpendicular to the face portion, and the void extends for at least 5 mm on each side of the face center vertical plane.
  • 22. The clubhead of claim 21, wherein no portion of the weight is within the damper above the void.
  • 23. The clubhead of claim 22, wherein the void has a void length that is 15-75% of the sole length.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of Ser. No. 17/368,520 filed Jul. 6, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 17/330,033, filed May 25, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 17/132,541, filed Dec. 23, 2020, which claims priority to U.S. Provisional Patent Application No. 62/954,211, filed Dec. 27, 2019 and is a continuation-in-part of U.S. patent application Ser. No. 16/870,714, filed May 8, 2020, which claims the benefit of U.S. Provisional Patent Application No. 62/954,211, filed Dec. 27, 2019, and U.S. Provisional Patent Application No. 62/846,492, filed May 10, 2019, all of which are incorporated by reference herein in their entirety.

Provisional Applications (3)
Number Date Country
62954211 Dec 2019 US
62954211 Dec 2019 US
62846492 May 2019 US
Continuation in Parts (4)
Number Date Country
Parent 17368520 Jul 2021 US
Child 17558387 US
Parent 17330033 May 2021 US
Child 17368520 US
Parent 17132541 Dec 2020 US
Child 17330033 US
Parent 16870714 May 2020 US
Child 17132541 US