Disclosed herein are clumpable animal litters. Specifically, disclosed herein are animal litters comprising composite particles of filler materials, such as limestone and sand, and sodium bentonite that perform as well as traditional clay-based, clumping litters, yet have a lower bulk density as compared to a granular mixture of the same percentage of filler and sodium bentonite clay and contain up to eighty-five percent less clay.
Clay has long been used as a liquid absorbent and has found particular usefulness as an animal litter. Typically, the clay is mined, dried, and crushed to the desired particle size. Some clay litters have the ability to clump upon wetting. For example, sodium bentonite is a water-swellable clay which, upon contact with moist animal waste, is able to agglomerate with other moistened sodium bentonite clay particles. The moist animal waste is contained by the agglomeration of the moist clay particles into an isolatable clump, which can be removed from the container (e.g., litter box) housing the litter. The clump strength of clay litters containing equal or greater than ninety percent sodium bentonite are strong enough to hold the clump shape upon contact with moisture and retain that shape upon scooping without pieces of the litter breaking off of the clump and remaining in the litter box, allowing waste therein to create malodors. However, sodium bentonite clay is very heavy and is mined. As such, it is a limited resource.
Another problem inherent in typical sodium bentonite clay litters is the inability to effectively control malodors. Clay has very poor odor-controlling qualities, and inevitably waste build-up leads to severe malodor production. What is needed is an animal litter that uses less sodium bentonite with effective odor-controlling properties.
Accordingly, what is needed is an absorbent material suitable for use as an animal litter that uses less sodium bentonite, yet has clumping characteristics equivalent to clay-based litters that contain at least ninety percent sodium bentonite. What is further needed is an animal litter with odor-controlling properties that has clumping properties comparable to clay-based litters containing greater than ninety percent sodium bentonite, yet that requires much lower concentrations of sodium bentonite. What is further needed is an animal litter containing composite particles of sodium bentonite and filler material (e.g., limestone) that has lower bulk density relative to an animal litter containing the same percentage of a dry blend of sodium bentonite and filler material.
U.S. Pat. No. 4,671,208 discloses an absorbent cat litter that contains clay and limestone. US2006042553 discloses a cat litter that contains ground limestone and a thickener that is digestible by cats. Neither discloses an animal litter with the odor-controlling, bulk densities and clumping properties disclosed herein.
Before describing embodiments of the present invention in detail, it is to be understood that all publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to an “additive” includes two or more such additives.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Unless otherwise stated, amounts listed in percentage (“%'s”) are in weight percent.
Disclosed herein are composite absorbent particles that comprise a sodium bentonite component and a “filler material” (as defined herein) component. Optionally, additives, such as, powdered activated carbon “PAC” (as defined herein), can also be added to the composite absorbent particles.
The composite absorbent particles have improved physical and chemical properties such that a litter can be produced without compromising the performance of traditional clumping clay-based litters that contain equal or greater than ninety percent sodium bentonite. Although sodium bentonite-based litters clump well, they also have disadvantages. Sodium bentonite is relatively expensive, limited in terms of geographic availability, and not a renewable resource.
Disclosed herein are composite absorbent particles comprising between about thirty and about seventy percent by weight sodium bentonite that maintain the clumping benefit of “pure sodium bentonite” (as defined herein). In one an embodiment, a composite particle animal litter is disclosed that comprises as little as twenty percent by weight sodium bentonite, yet retains the majority of the clump strength of pure sodium bentonite litter. In preferred embodiments, a composite particle animal litter is disclosed that comprises as little as thirty percent by weight sodium bentonite, yet retains the clump strength of pure sodium bentonite litter. A high shear agglomeration process may be used to make the composite particles disclosed herein, such as pin mixing.
As used herein the term “pure sodium bentonite litter” means a clumping clay-based litter that contains equal or greater than ninety percent by weight sodium bentonite. As used herein, the term “granular sodium bentonite” means sodium bentonite clay that is either (a) mined, crushed and sieved or (b) processed by methods know in the industry to a suitable particle size (about 3 mm to about 0.4 mm) to be used as clumping animal litter. As used herein the term “composite particle” means a discrete particle that is formed by the combination of smaller component particles.
As used herein the term “PAC” means powdered activated carbon that is a fine black powder made from wood or other carbon-containing materials (e.g., coconut, coal, etc.) that have been exposed to very high temperatures in an airless environment and treated, or activated, to increase its ability to absorb by reheating with oxidizing gas or other chemicals. The result is a highly porous fine powder with a particle size less than about 0.25 mm and typically ranging from about 50 to about 150 microns.
As used herein the term “clump strength” means the percentage of particles retained in the clump after three hours using the clump strength test method described herein.
As used herein the term “high shear agglomeration process” means a high speed, conditioning and micro-pelletizing device that converts powder into small agglomerates through the action of a high speed and the addition of water. As used herein the term “component” when used in conjunction with a composite particle means a small particle of one material that was combined with other small particles of itself and/or of small particles of different materials to form a composite particle. As used herein the term “spacer material” means an agent that helps spread sodium bentonite on the surface of a filler material component for better distribution of the sodium bentonite during the agglomeration process.
As used herein the term “binder” means a substance that causes the composite particles to better adhere to each other upon contact with a liquid, such as water or urine, to form a strong clump. Examples of binders include guar gum, starch, modified starch, natural hydrocolloids, alginates, acrylates, and polyvinyl acetate. Particle size ranges are determined by screening methods known in the art.
Filler Materials
As used herein, the term “filler material” means a non-absorbent material that is more readily available than bentonite and used to replace a portion of a more expensive or scarce component of a cat litter formulation. Examples of suitable filler materials include limestone, dolomite, calcite, calcium carbonates, sand, shale, gravel, slate.
High shear agglomeration processes includes pin mixers, pelletizers, extruders, etc. . . . such an agglomeration process can be used to form discrete composite particles. Pin mixing is a pin-type, high speed, conditioning and micro-pelletizing device that converts small particles (“components”) into discrete agglomerates (“composite particles”) through the action of high speed and the addition of water.
Sodium Bentonite
Sodium bentonite powder having a mean particle size less than about 0.25 mm is preferred. Sodium bentonite expands when wet, absorbing as much as several times its dry mass in water. The main mineral that forms bentonite is Montmorillonite ((Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O). Sodium Montmorillonite (Na-montmorillonite), in particular, expands considerably more than other clays, e.g., Calcium Montmorillonite (CA-montmorillonite) due to water penetrating the interlayer molecular spaces and concomitant adsorption. The presence of sodium as the predominant exchangeable cation can result in the clay swelling to several times its original volume. Hence, its application in animal litters.
Adding a small amount of binder, such as guar gum, in an amount as little as 0.1 percent by weight can increase the clump strength of the resulting litter in some cases by up to ten percent. Preferred binders include guar gum, starch, polyacrylates, polysaccharides, and alginates. Guar gum (“guar”) is particularly preferred because it is a powdered solid that helps form strong and rigid clumps when wet and tends to be very evenly distributed throughout the resulting composite particles. Thus, a very small amount of guar can have a considerable impact. Binders, such as guar, are known for their binding properties. They have been used in several cat litters to facilitate the adhesion between particles thus, clumping. However, none of these composite particles (e.g., filler materials, such as limestone or sand and guar, even in much higher concentrations) could achieve the high absorption and immediate clumping of sodium bentonite.
On the other hand, when using a high shear agglomeration process to mix sodium bentonite with a filler material, such as limestone or sand, the resulting composite particles are strong and clump and absorb liquid as well as pure sodium bentonite.
The composite particles are formed using a filler material component preferably having a mean particle size no greater than 0.5 mm (preferably ranging from about 0.074 mm to about 0.42 mm) and a sodium bentonite component preferable having a mean particle size no greater than about 0.25 mm and optionally a PAC component.
The animal litter disclosed herein comprises limestone in an amount ranging from about 20 percent to about 80 percent (preferably from about 30 percent to about 70 percent and most preferably from about 40 percent to about 60 percent), sodium bentonite in an amount ranging from about 80 percent to about 20 percent (preferably from about 70 percent to about 30 percent and most preferably from about 60 percent to about 40 percent) by weight, and optionally PAC in an amount ranging about 0.1 to about 2 percent (preferably from about 0.3 to about 1 percent by weight). Higher amounts of PAC can be used, but generally are not cost effective. Embodiments of such animal litter can include (1) a dry blend of absorbent material suitable for use as an animal litter (e.g., sodium bentonite clay) and filler material/sodium bentonite composite particles, (2) a dry blend of absorbent material suitable for use as an animal litter (e.g., sodium bentonite clay) and filler material/sodium bentonite/PAC composite particles, (3) a dry blend of absorbent material suitable for use as an animal litter (e.g., sodium bentonite clay), filler material/sodium bentonite composite particles, and sodium bentonite/PAC composite particles, (4) filler material/sodium bentonite composite particles, (5) filler material/sodium bentonite/PAC composite particles, (6) a dry blend of filler material/sodium bentonite composite particles and filler material/sodium bentonite/PAC composite particles, and combinations or modifications thereof. In embodiments where the animal litter comprises dry blends of absorbent material and composite particles, the amounts of the filler material component, the sodium bentonite component and the carbon component in the pre-blend mixture to form the composite particles would be adjusted accordingly to provide the desired percentages of each in the resulting litter composition.
Embodiments of composite particles can comprise a filler material component in an amount ranging from about 20 percent to about 80 percent (preferably from about 30 percent to about 70 percent and most preferably from about 40 percent to about 60 percent) by weight and a sodium bentonite component in an amount ranging from about 80 percent to about 20 percent (preferably from about 70 percent to about 30 percent and most preferably from about 60 percent to about 40 percent) by weight. Relative to each other, the resulting composite particles all contain approximately the same level of the two components (clay and filler material) which allows for an efficient use of the sodium bentonite so that the amount of sodium bentonite can be significantly reduced without substantially sacrificing the clump strength and liquid absorbtion of the litter because the contact between component particles of the composite particle is maximized.
Additionally, PAC can be included in the composite particles. As used herein the term “bentonite/filler material/PAC composites” is defined as a composite particle comprising a filler material component, a sodium bentonite component, and a PAC component. As with the filler material/sodium bentonite composite particles, the resulting filler material/sodium bentonite/PAC composite particles all contain (relative to each other) approximately the same level of the three components (clay, filler material and PAC) such that the odor control efficacy of the carbon is not sacrificed because the distribution of the PAC within the composite particles is maximized. It is desired that the amount of PAC in the animal litter is an amount ranging from about 0.1 to about 2 percent (preferably about 0.3 percent to about 1 percent). If the litter will be comprised primarily of composite particles, then the appropriate amount of carbon component would be added to the composite particle pre-blend. If the litter was intended to be a dry blend of composite particles and absorbent material suitable for use as an animal litter (e.g., sodium bentonite), then the amount of each component in the pre-blend would be adjusted accordingly.
Optionally, a guar gum component in an amount ranging from 0 percent to about 1 percent by weight may be included.
It was anticipated that using a high shear agglomeration process to agglomerate a mineral-based material such as a limestone or sand and a sodium bentonite component would result in a composite particle having a significantly higher attrition than pure sodium bentonite. Contrary to this expectation, Table 1 below shows that the attrition of these composite particles is comparable to that of pure sodium bentonite.
In addition, it has unexpectedly been found that the clump strength of a sample litter made by pin-mixing a sodium bentonite component and a limestone component to form a litter comprising sodium bentonite/limestone composite particles is very near to that of pure sodium bentonite.
Without being bound by theory, it is believed that the filler material (e.g., limestone, sand) components have a very limited capacity to absorb liquids as compared to clays. It is therefore believed that the liquid will be channeled past the filler components in each composite particle and selectively absorbed by the sodium bentonite, with the net result of more optimal usage of the sodium bentonite absorbancy. This leads to a comparable clump strength and liquid absorption to a pure sodium bentonite cat litter. It is expected that a similar phenomenon will occur even if just a portion of the litter contains the composite particles (e.g., a litter composition comprising a dry blend of sodium bentonite and filler material/sodium bentonite composite particles).
Bulk density is another important property of animal litter. Bulk density is a property of powders, granules and other “divided” solids, especially used in reference to mineral components. It is defined as the mass of the many particles of the material divided by the total volume they occupy. The total volume includes particle volume, inter-particle void volume and internal pore volume. Bulk density is not an intrinsic property of a material; it can change depending on how the material is handled. For example, a powder poured into a cylinder will have a particular bulk density; if the cylinder is disturbed, the powder particles will move and usually settle closer together, resulting in a higher bulk density. Bulk density is a measure of the weight of the litter per unit volume (g/cc). The test method used to measure bulk density comprises a hopper with a pint container underneath. The hopper is filled with approximately 2000 cc of the sample. The gate situated at the bottom of the hopper is opened to fill the pint container with material until it overflows. The container is then leveled out using a straight edge tool and the weight is recorded. The same process is repeated twice and an average of three reps is reported (g/cc or lb/cf).
Referring to
The bulk density of a dry added combination of limestone and sodium bentonite was compared to the bulk density of an agglomerated combination of limestone and sodium bentonite.
Particle attrition was also measured.
Attrition Test Method
This test was developed as an in-process test to monitor the granule strength of agglomerated litter. It is based on the ASTM designation E 728 Standard Test Method for “Resistance to Attrition of Granular Carriers and Granular Pesticides”.
Materials Needed
Calculate Attrition (wt %) by determining the weight % change of the fines from before and after it was RoTapped with the steel balls. Attrition (wt %)=[(Final Weight−2/Initial Weight−2)−(Final Weight−1/Initial Weight−1)]×100
Clump Strength Test Method
Clump strength is measured by first generating a clump by pouring 10 ml of pooled cat urine (from several cats so it is not cat specific) onto a 2 inch thick layer of litter. The urine causes the litter to clump. The clump is then placed on a half inch screen after a predetermined amount of time 3 hours has passed since the particles were wetted. The screen is agitated for 5 seconds with the arm up using a Ro-Tap Mechanical Sieve Shaker made by W.S. Tyler, Inc or other similar device. The percentage of particles retained in the clump is calculated by dividing the weight of the clump after agitation by the weight of the clump before agitation. The clump strength indicates the percentage of particles retained in the clump after 3 hours. Ideally, greater than 90%, and more ideally, greater than 95% of the particles will be retained in a clump after 3 hours upon addition of an aqueous solution, such as deionized water or animal urine. Greater than 80% particle retention in the clump is preferred.
Composite Particle Litter Compositions
Table 1 lists a number of compositions of clumping cat litter prepared either by (1) dry blending granular sodium bentonite and limestone or (2) agglomerating sodium bentonite and powdered limestone into composite particles at the ratios given.
The clump strength, attrition and bulk density were measured for all compositions. Attrition was only measured for the pin-mixed composite particles, as a metric to indicate the strength of the composites. It was not measured on the dry blend because the individual particles were either pure sodium bentonite or limestone, for which attrition values are well established. The results shown in Table 1 below are the average values from several repetitions.
Animal Litter Compositions
Although the bentonite/limestone and the bentonite/limestone/PAC composites disclosed herein are suitable for use as an animal litter, using the bentonite/limestone and/or the bentonite/limestone/PAC composites disclosed herein as a component to an animal litter, either alone or dry blended with other litter additives yield excellent results. Combining the bentonite/limestone and/or bentonite/limestone/PAC composites disclosed herein with granular clay particles results in an animal litter that exhibits excellent clump strength, odor control, tracking, color and dust control. Combining the composite particles with granular clay simplifies the manufacturing process of the animal litter. The composite particles may comprise about 2 to about 100 percent by weight of the animal litter.
Odor control of the composite particles disclosed herein when used as an animal litter was found to be comparable to that of a pure sodium bentonite animal litter.
Thus, the described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. application Ser. No. 17/365,905, filed Jul. 1, 2021, which is a continuation of U.S. application Ser. No. 16/460,780, filed Jul. 2, 2019, now U.S. Pat. No. 11,076,576, which is a continuation of U.S. application Ser. No. 15/409,308, filed Jan. 18, 2017, now U.S. Pat. No. 10,383,308, which claims the benefit of U.S. Provisional Application No. 62/286,200, filed Jan. 22, 2016, all of which is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4355593 | Stapley | Oct 1982 | A |
4640225 | Yananton | Feb 1987 | A |
4671208 | Smith | Jun 1987 | A |
4756273 | Yananton | Jul 1988 | A |
4869204 | Yananton | Sep 1989 | A |
5295456 | Lawson | Mar 1994 | A |
5303676 | Lawson | Apr 1994 | A |
5421291 | Lawson et al. | Jun 1995 | A |
5927049 | Simard | Jul 1999 | A |
6015547 | Yam | Jan 2000 | A |
6276300 | Lewis et al. | Aug 2001 | B1 |
6354243 | Lewis et al. | Mar 2002 | B1 |
6860234 | Raymond et al. | Mar 2005 | B2 |
6962129 | Lawson | Nov 2005 | B1 |
7429421 | Greene et al. | Sep 2008 | B2 |
7665418 | Bracilovic | Feb 2010 | B2 |
7856946 | Burckbuchler, Jr. | Dec 2010 | B2 |
8156896 | Wadams et al. | Apr 2012 | B2 |
8273676 | Falcone et al. | Sep 2012 | B2 |
8584617 | Greene et al. | Nov 2013 | B2 |
8720375 | Miller et al. | May 2014 | B2 |
8722031 | Lawson et al. | May 2014 | B2 |
8733288 | Winkleman et al. | May 2014 | B2 |
8881681 | Zhang | Nov 2014 | B2 |
8904963 | Dixon et al. | Dec 2014 | B2 |
9010273 | Adamy et al. | Apr 2015 | B2 |
9072276 | Pechera et al. | Jul 2015 | B2 |
9119374 | Bracilovic et al. | Sep 2015 | B2 |
9398754 | Zhang et al. | Jul 2016 | B2 |
9986714 | Huck et al. | Jun 2018 | B2 |
10383308 | Nga et al. | Aug 2019 | B2 |
11076576 | Nga et al. | Aug 2021 | B2 |
11684035 | Nga et al. | Jun 2023 | B2 |
20050005869 | Fritter et al. | Jan 2005 | A1 |
20060042553 | Venezio | Mar 2006 | A1 |
20110185977 | Dixon et al. | Aug 2011 | A1 |
20120318205 | Kuras et al. | Dec 2012 | A1 |
20130239901 | Pechera et al. | Sep 2013 | A1 |
20130266657 | Trajkovska | Oct 2013 | A1 |
20130269623 | Lawson | Oct 2013 | A1 |
20130305997 | Miller et al. | Nov 2013 | A1 |
20150181831 | Huck et al. | Jul 2015 | A1 |
20180064059 | Brown et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2774092 | Oct 2012 | CA |
3180976 | Jun 2017 | EP |
2013109599 | Jul 2013 | WO |
Entry |
---|
Final Office Action, U.S. Appl. No. 15/409,308, dated Sep. 21, 2018. |
Final Office Action, U.S. Appl. No. 16/460,780; dated Dec. 21, 2020. |
Non-final Office Action received for U.S. Appl. No. 17/365,905, mailed on Oct. 5, 2022, 14 pages. |
Non-Final Office Action, U.S. Appl. No. 15/409,308; dated Feb. 21, 2019. |
Non-Final Office Action, U.S. Appl. No. 15/409,308; dated Mar. 8, 2018. |
Non-Final Office Action, U.S. Appl. No. 16/460,780; dated Jun. 26, 2020. |
Notice of Allowance received for U.S. Appl. No. 17/365,905, mailed Feb. 21, 2023, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20240156046 A1 | May 2024 | US |
Number | Date | Country | |
---|---|---|---|
62286200 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17365905 | Jul 2021 | US |
Child | 18198514 | US | |
Parent | 16460780 | Jul 2019 | US |
Child | 17365905 | US | |
Parent | 15409308 | Jan 2017 | US |
Child | 16460780 | US |