The present invention relates to a cluster-supporting porous carrier and a method for producing same, and specifically to a cluster-supporting porous carrier to be used as a catalyst for exhaust gas purification, liquid phase chemical synthesis reaction, gas phase chemical synthesis reaction, fuel cell reaction and air battery reaction, and to a method for producing it.
Porous carriers such as zeolite are used as molecular sieves, ion-exchange materials, catalysts, catalyst carriers, adsorbents and the like. When zeolite is used as a catalyst or a catalyst carrier, in particular, high heat resistance is necessary so as to withstand the high temperature of catalytic reaction conditions and regeneration conditions.
Supported catalysts having catalyst metals supported on catalyst carriers are used in a wide range of fields, being employed as catalysts for exhaust gas purification, liquid phase chemical synthesis reaction, gas phase chemical synthesis reaction, fuel cell reaction and air battery reaction.
With such supported catalysts, it is known that the sizes of the catalyst metal particles supported on the catalyst carrier is important. In this regard, PTL 1 proposes a supported catalyst having catalyst metal particles with sizes of 1 nm to 10 nm supported on a carrier of alumina, silica, titania, zirconia or a combination thereof. Also, PTL 2 proposes a catalyst for nitrogen oxide, having copper ions supported on zeolite by ion-exchange. PTL 3 proposes drying palladium supported on zeolite by ion-exchange and then reducing it to form clusters to produce a cluster-supported catalyst, and using the cluster-supported catalyst in coupling reaction.
PTL 4, which was unpublished at the time of the basic application for this case, discloses a cluster-supported catalyst having porous carrier particles with acid sites, such as zeolite, and catalyst metal clusters supported within the pores of the porous carrier particles, and also a method for producing it.
Such catalysts, including exhaust gas purifying catalysts, usually employ precious metals such as platinum, palladium or rhodium as the catalyst metals. Because these precious metals are limited resources and are expensive, however, the use of base metals other than precious metals in the form of oxides has been studied, but metal oxide catalysts such as base metal oxides have lower catalytic activity than precious metal catalysts used in their metallic states.
In this regard, PTL 5 proposes homogeneously introducing a base metal supported catalyst onto the partition surfaces of a honeycomb substrate to support it, thereby effectively using the base metal as a catalyst in an exhaust gas purifying catalyst.
As mentioned above, there is a need for porous carriers of zeolite and the like that have high heat resistance. Moreover, while various constructions have been proposed for using base metals as catalysts in the form of their metal oxides, there is a demand for metal oxide supporting catalysts with even further improved catalytic activity.
The present invention therefore provides a metal oxide supporting catalyst having a porous carrier such as zeolite which has high heat resistance, and having improved catalytic activity, as well as a method for producing it.
The present inventors have found that a specific metal oxide-supporting porous carrier has improved heat resistance and/or catalytic activity, and have thereupon devised the following invention.
<Aspect 1>
A cluster-supporting porous carrier having porous a carrier particles, and metal oxide clusters supported within the pores of the porous carrier particles.
<Aspect 2>
The cluster-supporting porous carrier according to aspect 1, wherein the porous carrier particles are zeolite particles.
<Aspect 3>
The cluster-supporting porous carrier according to aspect 1 or 2, wherein the metal oxide clusters are positively charged, and are supported at the acid sites within the pores of the porous carrier particles by electrostatic interaction.
<Aspect 4>
The cluster-supporting porous carrier according to any one of aspects 1 to 3, wherein the metal oxide clusters are clusters of a base metal oxide or clusters of a complex metal oxide containing the base metal.
<Aspect 5>
The cluster-supporting porous carrier according to aspect 4, wherein the metal oxide clusters are clusters of an oxide of a metal selected from the group consisting of cerium, zirconium, manganese, molybdenum, vanadium, aluminum and their combinations, or clusters of a complex oxide including such metals.
<Aspect 6>
The cluster-supporting porous carrier according to aspect 5, wherein the metal oxide clusters are selected from the group consisting of ceria-zirconia complex oxide, alumina-ceria-zirconia complex oxide, ceria-zirconia-lanthanum oxide-yttrium oxide complex oxide and alumina-ceria-zirconia-lanthanum oxide-yttrium oxide complex oxide.
<Aspect 7>
The cluster-supporting porous carrier according to any one of aspects 1 to 6, which additionally has catalyst metal clusters supported within the pores of the porous carrier particles.
<Aspect 8>
A cluster-supporting porous carrier wherein:
a metal oxide cluster-supporting porous carrier according to any one of aspects 1 to 7, and a metal cluster-supporting porous carrier are mixed together, and
the metal cluster-supporting porous carrier has porous carrier particles and catalyst metal clusters supported within the pores of the porous carrier particles.
<Aspect 9>
The cluster-supporting porous carrier according to aspect 7 or 8, wherein the catalyst metal clusters are positively charged, and are supported at the acid sites within the pores of the porous carrier particles by electrostatic interaction.
<Aspect 10>
The cluster-supporting porous carrier according to any one of aspects 7 to 9, wherein the catalyst metal clusters are selected from the group consisting of rhodium, palladium, platinum or copper clusters, and their combinations.
<Aspect 11>
The cluster-supporting porous carrier according to any one of aspects 1 to 9, which is to be used as a catalyst.
<Aspect 12>
The cluster-supporting porous carrier according to aspect 11, which is to be used as an exhaust gas purifying catalyst.
<Aspect 13>
The cluster-supporting porous carrier according to aspect 11, which is to be used as a catalyst for liquid phase synthesis reaction, gas phase synthesis reaction, air batteries or fuel cell reaction.
<Aspect 14>
A catalyst device having a cluster-supporting porous carrier according to any one of aspects 11 to 13, and a substrate supporting the cluster-supporting porous carrier.
<Aspect 15>
A method for producing a cluster-supporting porous carrier, wherein:
the cluster-supporting porous carrier has porous carrier particles and metal oxide clusters supported within the pores of the porous carrier particles, and
the method for producing a cluster-supporting porous carrier includes the following steps:
providing a dispersion containing a dispersing medium and porous carrier particles dispersed in the dispersing medium, and
forming positively charged metal oxide clusters in the dispersion and supporting the metal oxide clusters within the pores of the porous carrier particles by electrostatic interaction.
<Aspect 16>
The method according to aspect 14, wherein the metal oxide particles that are to form the metal oxide clusters are dispersed in the dispersion, and the metal oxide clusters are formed in the dispersion by a laser ablation process in which the metal oxide particles are irradiated with a laser.
<Aspect 17>
The method according to aspect 14 or 15, wherein the clusters are formed in the dispersion by one of the following methods:
submerged laser ablation,
submerged microwave ablation,
submerged plasma ablation,
plus-minus inversion, or
submerged reduction.
<Aspect 18>
The method according to aspect 16, wherein the metal ion forming the metal oxide is reduced by submerged reduction using a reducing agent to form clusters in the dispersion, and the dispersion is irradiated with plasma and/or microwaves to accelerate reduction by the reducing agent.
<Aspect 19>
The method according to any one of aspects 14 to 16, wherein the dispersing medium of the dispersion is an organic solvent.
The cluster-supporting porous carrier of the invention can provide improved heat resistance and/or improved catalytic activity.
Embodiments of the invention will now be explained in detail. The present invention is not limited to the embodiments described below, and various modifications may be implemented within the scope of the gist thereof.
<Cluster-Supporting Porous Carrier>
The cluster-supporting porous carrier of the invention has a porous carrier particle, and metal oxide clusters supported within the pores of the porous carrier particle. The cluster-supporting porous carrier of the invention can be produced by the method of the invention which is described below. The cluster-supporting porous carrier of the invention may also be produced by loading metal ions onto porous carrier particles by ion-exchange, reducing the loaded metal ions with a reducing agent to form metal clusters, and then oxidizing the metal clusters by an ion-exchange/reduction/oxidation method. This oxidation step may be carried out as part of the drying step or as a separate step.
The metal oxide clusters are positively charged, and they may be supported at the acid sites within the pores of the porous carrier particles by electrostatic interaction. The cluster-supporting porous carrier of the invention can be produced by the method of the invention which is described below.
Without being limited to theory, it is believed that in the cluster-supporting porous carrier of the invention, the metal oxide provides excellent heat resistance to the porous carrier and/or the metal oxide has more excellent catalytic activity compared to metal oxides in other states because the metal oxide clusters maintain a fine state within the pores of the porous carrier, and/or because the metal oxide clusters are stably anchored within the pores of the porous carrier, and particularly because they are stably anchored at negatively charged locations within the pores, and more particularly at the acid sites within the pores.
Incidentally, the term “cluster” is generally defined as an aggregate of up to several hundred chemical species, but for the purpose of the invention, “cluster-supporting porous carrier” means a porous carrier having a cluster-containing fine metal oxide supported on carrier particles.
The cluster-supporting porous carrier of the invention is preferably used as a catalyst such as an exhaust gas purifying catalyst, a catalyst for liquid phase compound synthesis reaction, a catalyst for gas phase synthesis reaction, a catalyst for an air battery or a catalyst for a fuel cell, and as a carrier for these, and particularly as an exhaust gas purifying catalyst and its carrier.
The cluster-supporting porous carrier of the invention may additionally have catalyst metal clusters supported within the pores of the porous carrier particles.
The cluster-supporting porous carrier of the invention may be used as a mixture with other catalysts, and particularly it may be used in a form physically mixed with a catalyst having a metal cluster-supporting porous carner, i.e. porous carrier particles and catalyst metal clusters supported within the pores of the porous carrier particles.
The catalyst metal clusters may be catalyst precious metal clusters, and specifically clusters of precious metals such as gold, silver, platinum, palladium, rhodium, iridium, ruthenium and osmium.
The method of further supporting catalyst metal clusters within the pores of the porous carrier particles of the cluster-supporting porous carrier of the invention, and the method for producing the metal cluster-supporting porous carrier, may be carried out with reference to the following description relating to the method of the invention for supporting metal oxide clusters on a porous carrier.
Using the cluster-supporting porous carrier of the invention in combination with catalyst metal clusters such as catalyst precious metal clusters, is preferred from the viewpoint of obtaining a combination of the catalytic effect of the metal oxide clusters and the catalytic effect of the catalyst metal clusters.
<Metal Oxide>
The metal oxide forming the metal oxide clusters may be an oxide of any metal or metalloid that is capable of being supported within the pores of the porous carrier. In particular, the metal oxide forming the metal oxide clusters may be any metal oxide that can improve the heat resistance of the porous carrier, such as zeolite, and/or any oxide that can be used as a catalyst for the intended purpose. The metal oxide is, for example, a base metal oxide which is an oxide of a base metal, i.e. a metal other than a precious metal, and especially a base metal oxide in which the metal is a transition metal, or a base metal oxide in which the metal is a typical metal.
Specifically, a base metal oxide in which the metal is a transition metal may be an oxide of a metal selected from the group consisting of rare earth metals, zirconium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, molybdenum, tungsten and rhenium, as well as their combinations. Rare earth metals include scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, and particularly cerium.
A base metal oxide wherein the metal is a typical metal (a metal other than a transition metal), may be, specifically, an oxide of a metal selected from the group consisting of aluminum, gallium, silicon, germanium, indium and tin, and their combinations.
More specifically, the metal oxide may be an oxide of a metal selected from the group consisting of cerium, manganese, molybdenum and vanadium, and their combinations, or a complex oxide including such metals. In particular, the metal oxide may be a ceria-zirconia complex oxide, or an alumina-ceria-zirconia complex oxide.
<Porous Carrier Particles>
The porous carrier particles may be any porous carrier particles that are usable for the intended purpose, and particularly they may be a porous carrier composed of an oxide of a metal or metalloid, examples being particles of materials selected from the group consisting of microporous materials, mesoporous materials, macroporous materials, and combinations thereof.
A microporous material is a porous material in which the maximum peak of the volume-based pore size distribution is in the range of greater than 0.1 nm and up to 2 nm, a mesoporous material is a porous material in which the maximum peak of the pore size distribution is in the range of greater than 2 nm and up to 50 nm, and a macroporous material is a porous material in which the maximum peak of the pore size distribution is in the range of greater than 50 nm. For the invention, the volume-based pore size distribution is the value based on nitrogen adsorption, which can be obtained by a BET system (adsorption isotherm) using a TriStar II 3020 Series automatic specific surface area/pore distribution measuring apparatus (Shimadzu Corp.), for example.
Specifically, the microporous material may be a material selected from the group consisting of active carbon, zeolite, clay silicates, and combinations thereof, for example. Zeolite particles may be zeolite derivative particles or heterogenous element-introduced zeolite particles, where the heterogenous element introduced into heterogenous element-introduced zeolite particles may be an element selected from the group consisting of boron, iron, germanium, gallium, lanthanum, titanium and combinations thereof, for example.
Zeolite particles may be any zeolite particles that can be used for the intended purpose.
Examples of zeolites include type A (LTA), ferrierite (FER), type MCM-22 (MWW), type ZSM-5 (MFI), silicalite-type, mordenite-type (MOR), type L (LTL), type Y and type X (FAU), beta-type (BEA), type SSZ (CHA), and combinations of these.
In order for the porous carrier particles to stably support the catalyst metal oxide within the pores, and/or for the activity of the supported catalyst metal oxide to be satisfactorily exhibited, a porous carrier having acid sites (that is, electron-rich sites or negatively charged sites) in the pores, such as zeolite, is preferred.
<Catalyst Device>
The catalyst device of the invention has a cluster-supporting porous carrier of the invention, a substrate supporting the cluster-supporting porous carrier, and optionally, a vessel that houses the substrate.
The substrate used in the catalyst device of the invention may be a honeycomb substrate, and especially a cordierite honeycomb substrate. The optional vessel used in the catalyst device of the invention may be a metal vessel made of stainless steel, etc.
<Method for Producing Cluster-Supporting Porous Carrier>
In the method of producing a cluster-supporting porous carrier according to the invention, a cluster-supporting porous carrier having a porous carrier particle and metal oxide clusters supported within the pores of the porous carrier particle, and particularly a cluster-supporting porous carrier of the invention, is produced.
The method includes providing a dispersion containing a dispersing medium and porous carrier particles dispersed in the dispersing medium, forming positively charged metal clusters or metal oxide clusters in the dispersion, and supporting the metal clusters or metal oxide clusters at the negatively charged sites within the pores of the porous carrier particles, and especially at the acid sites within the pores, by electrostatic action. The method may also include drying and firing the porous carrier particles that have supported the metal clusters. In this method, when metal clusters instead of metal oxide clusters are supported in the porous carrier particles, they may be subjected to oxidizing treatment to convert the metal clusters to metal oxide clusters, as necessary.
According to the method of the invention, metal or metal oxide clusters are formed in a dispersion containing porous carrier particles, and the formed metal or metal oxide clusters are supported within the pores of the porous carrier particles, thus allowing metal clusters of controlled sizes, and particularly metal or metal oxide clusters having relatively uniform sizes, to be supported within the pores of the porous carrier particles. The sizes of the metal or metal oxide clusters can be controlled by regulating the conditions for forming the metal or metal oxide clusters in the dispersion.
In the method of the invention, electrostatic interaction between the metal or metal oxide clusters and the negatively charged sites of the porous carrier particles allows the metal or metal oxide clusters to be supported within the pores of the porous carrier particles.
The electrostatic interaction allows positively charged metal or metal oxide clusters to be supported at the negatively charged sites within the pores of the porous carrier particles that are negatively charged, and particularly at the acid sites within the pores.
<Metal Oxide>
The metal oxides that may be used in the method of the invention may be any mentioned in relation to the cluster-supporting porous carrier of the invention.
<Porous Carrier Particles>
The porous carrier particles that may be used in the method of the invention may also be any mentioned in relation to the cluster-supporting porous carrier of the invention.
The porous carrier particles used in the method of the invention are preferably zeolite particles. When zeolite particles are used as the porous carrier particles, the positively charged metal or metal oxide clusters can be supported at the negatively charged sites within the pores of the negatively charged zeolite particles, and particularly at the acid sites within the pores, by electrostatic action. Therefore, the zeolite particles preferably have a relatively low zeta potential, such as a zeta potential of −50 mV or lower, −70 mV or lower, −90 mV or lower or −100 mV or lower. For the same reason, the zeolite particles preferably have relatively numerous acid sites, i.e. they preferably have a relatively small Si/(Al and B) ratio, such as a Si/(Al and B) ratio of 500 or smaller, 300 or smaller, 100 or smaller or 50 or smaller.
In the method of the invention it is possible to provide a dispersion by pulverizing porous carrier particles and dispersing the pulverized porous carrier particles in a dispersing medium.
By thus pulverizing the porous carrier particles in advance, it is possible to accelerate loading of the metal or metal oxide clusters within the pores of the porous carrier particles. Since the porous carrier particles pulverized in this manner will sometimes be rendered amorphous, the porous carrier particles may be recrystallized by annealing, if necessary, either before or after loading of the metal or metal oxide clusters.
<Dispersing Medium of Dispersion>
The dispersing medium used for the dispersion may be any dispersing medium that is able to draw the metal or metal oxide clusters into the pores of the porous carrier particles by electrostatic interaction between the metal or metal oxide clusters and the porous carrier particles, and particularly the acid sites of the porous carrier particles.
In this regard, the dispersing medium may be selected so that when the metal or metal oxide clusters are supported within the pores of the porous carrier particles by electrostatic interaction, the surfaces of the metal or metal oxide clusters are positively charged and the locations within the pores of the porous carrier particles, and particularly the acid sites within the pores of the porous carrier particles, are negatively charged. In order to accelerate loading of the metal or metal oxide clusters into the pores of the porous carrier particles, therefore, the pH of the dispersing medium may be regulated and/or a salt may be added to the dispersing medium, to adjust the zeta potential and/or the ionization rate of the metal or metal oxide clusters and/or the porous carrier particles.
While the surface potential of the metal or metal oxide clusters and the porous carrier particles cannot be directly measured, it can be indirectly determined by measuring the zeta potential (electrokinetic potential).
For example, the zeta potential of platinum clusters largely depends on the pH, the zeta potential increasing slightly with decreasing pH when the pH is 8 or lower. This is thought to occur because the platinum atoms on the surfaces of the platinum clusters are partially oxidized, the platinum atoms that have been oxidized with decreasing pH being in the form of Pt—OH, while at the same time protons are added to some of the platinum atoms on the platinum cluster surfaces to form Pt—H+, resulting in higher positive charge density and thereby increasing the zeta potential.
When the pH is higher than 8, on the other hand, the zeta potential of the platinum clusters drastically decreases with increasing pH. This is thought to occur because the platinum atoms that have been oxidized with increasing pH are in the form of Pt—O−, while some of the surfaces of the platinum clusters are deprotonated, resulting in lower positive charge density, and thereby lowering the zeta potential.
When electrostatic interaction is used, the dispersing medium may be either aqueous or nonaqueous, although it is generally preferred to use a nonaqueous dispersing medium such as an organic solvent. This is because if an aqueous dispersing medium is used, since water has a large dielectric constant (dielectric constant: 80), i.e. high polarity, the metal or metal oxide clusters become stabilized in the dispersing medium, often preventing adequate loading of the metal clusters within the pores of the porous carrier particles.
On the other hand, if a dispersing medium with relatively low polarity, i.e. a dispersing medium with a relatively small dielectric constant is used, the metal or metal oxide clusters will not become stabilized in the dispersing medium and can therefore be supported and stabilized by electrostatic interaction within the pores of the porous carrier particles.
Therefore, the dispersing medium used may be a dispersing medium having a smaller dielectric constant than water (dielectric constant: 80), such as a dispersing medium having a dielectric constant of 50 or less, 40 or less, 30 or less, 25 or less, or 20 or less. Specific dispersing mediums to be used include acetone (dielectric constant: 20), 2-propanol (dielectric constant: 18), ethanol (dielectric constant: 25), methanol (dielectric constant: 32) and carbon tetrachloride (dielectric constant: 2.2).
<Formation of Metal Oxide Clusters>
Metal or metal oxide clusters, and particularly positively charged metal or metal oxide clusters, can be formed in the dispersion by any desired method. The method of forming such metal clusters may be submerged laser ablation, submerged microwave ablation, a submerged plasma method, plus-minus inversion, or submerged (liquid phase) reduction.
Submerged laser ablation, submerged microwave ablation and submerged plasma ablation are methods of forming metal clusters by irradiating a laser, microwaves or plasma onto a metal or metal oxide target disposed in the dispersion, and/or the metal or metal oxide particles dispersed in the dispersion.
In a plus-minus inversion method, first a metal ion source with a minus electrical charge is combined with the porous carrier that is in a state of minus electrification in a solution, and especially an aqueous solution. The minus charges repel each other in this state, so that no ion exchanger is formed. They are introduced into the solution by focusing of a pulse laser. This causes formation of plasma at the focal site of the laser, producing various chemical species (such as ligand-removed metal ions, and positive metal ions formed by dissociation of electrons of the negative metal ion source) from the metal ion source, while neutral metal atoms also aggregate at the positive metal ions, forming positively charged metal clusters. The positively charged metal or metal oxide clusters produced in this manner are supported at the negatively charged sites, and particularly the acid sites, of the porous carrier by electrostatic interaction.
Submerged reduction is a method in which a reducing agent is used to reduce the metal ion of the metal oxide in solution, forming metal clusters.
For submerged reduction, the reducing agent used may be any reducing agent that can reduce metal ions in solution, and specifically, a hydride reducing agent such as sodium borohydride, or an alcohol such as propanol, may be used. In addition, the dispersing medium used in submerged reduction is preferably a dispersing medium that is stable with the reducing agent used, the dispersing medium being able to dissolve the metal salt that is the metal ion supply source, and the reducing agent. Therefore, the same compound may be used as both the reducing agent and the dispersing agent, and an alcohol, for example, may be used as both the reducing agent and dispersing agent.
In submerged reduction, microwaves and submerged plasma may be optionally used in addition to the reducing agent, to promote reduction of the metal ions.
In order to form metal clusters having controlled sizes, such as metal clusters having relatively uniform sizes, microwaves or submerged plasma may optionally be used in addition to the reducing agent in the submerged reduction to promote reduction of uniform metal ions in the dispersion.
The present invention will now be explained in further detail with reference to examples, with the understanding that the scope of the invention is naturally not limited to the examples or their descriptions.
Alumina-ceria-zirconia complex oxide particles (ACZ oxide particles) and zeolite carrier particles were dispersed in acetone, and the complex oxide particles were subjected to laser ablation to form alumina-ceria-zirconia complex oxide particle cluster-supporting zeolite. The ACZ oxide particles also contained lanthanum oxide and yttrium oxide, in addition to alumina, ceria and zirconia.
Specifically, as shown in
The laser light was a Nd:YAG laser fundamental wave (1064 nm, 10 Hz), with an intensity of 2 W.
The cluster-supporting carrier particles were removed from the water and dried at about 25° C. for about 1 hour, and then fired at 300° C. for 2 hours, to obtain a catalyst for Example 1 having ACZ oxide clusters supported on zeolite.
The carrier particles and laser irradiation time in Example 1 were as follows:
Carrier particles: type MFI zeolite (MFI) (Si/Al ratio: 40)
Laser irradiation time: 9 hours
The ACZ oxide particles dispersed in water for Example 1 were used directly as a catalyst for Comparative Example 1.
<Evaluation>
The ACZ oxide cluster-supporting zeolite catalyst of Example 1 and the ACZ oxide catalyst of Comparative Example 1 were subjected to oxygen pretreatment by heating at 800° C. for 30 minutes in an atmosphere of 10 vol % oxygen and the remainder helium.
The oxygen-pretreated catalysts of Example 1 and Comparative Example 1 were raised in temperature from 25° C. to 800° C. and then lowered in temperature from 800° C. to 25° C. at a rate of 10° C./min in reactive gas, and the temperature at which 50 vol % carbon monoxide (CO) was purified (T(50%CO) and the temperature at which 50 vol % nitrogen monoxide (NO) was purified (T(50%NO) were evaluated. The obtained results are shown below.
T(50%CO)
Example 1 (ACZ oxide cluster-supporting zeolite catalyst):
389° C. (temperature increase), 374° C. (temperature decrease)
Comparative Example 1 (ACZ oxide catalyst):
511° C. (temperature increase), 482° C. (temperature decrease)
T(50%NO)
Example 1 (ACZ oxide cluster-supporting zeolite catalyst):
376° C. (temperature increase), 344° C. (temperature decrease)
Comparative Example 1 (ACZ oxide catalyst):
(50% purification not reached) (temperature increase and decrease)
The reactive gas composition was carbon monoxide: 0.65 vol %, oxygen: 0.25 vol %, nitrogen monoxide: 0.15 vol % and helium: remainder, and the space velocity was 30,000 h−1.
The catalyst of Example 1 used for evaluation had a total ACZ oxide cluster-supporting zeolite catalyst mass of 30 mg, of which the ACZ oxide mass was 0.95 mg. The catalyst of Comparative Example 1 used for evaluation, however, had an ACZ oxide mass of 30 mg.
As seen from these results, the ACZ oxide cluster-supporting zeolite catalyst of Example 1 had significantly superior catalytic activity compared to the common ACZ oxide catalyst of Comparative Example 1 which was not supported on zeolite.
Manganese oxide cluster-supporting zeolite was produced in the same manner as Example 1, except that manganese oxide particles were used instead of ACZ oxide particles.
The manganese oxide particles used in Example 2 were directly used as the catalyst for Comparative Example 2.
<Evaluation>
The manganese oxide cluster-supporting zeolite catalyst of Example 2 and the manganese oxide catalyst of Comparative Example 2 were evaluated for carbon monoxide and nitrogen monoxide purification, in the same manner as Example 1 and Comparative Example 1. In this case, however, evaluation was not of the temperature at which the purification rate for carbon monoxide and nitrogen monoxide was 50 vol % but rather the temperature at which the purification rate for carbon monoxide and nitrogen monoxide was 20 vol % (T(20%CO) and T(20%NO)), with temperature decrease from 800° C. to room temperature. The obtained results are shown below.
T(20%CO)
Example 2 (Manganese oxide cluster-supporting zeolite catalyst): 260° C. (temperature decrease) Comparative Example 2 (Manganese oxide catalyst): 317° C. (temperature decrease)
T(20%NO)
Example 2 (Manganese oxide cluster-supporting zeolite catalyst): 376° C. (temperature decrease)
Comparative Example 2 (Manganese oxide catalyst): (20% purification not reached) (temperature decrease)
The catalyst of Example 3 used for evaluation had a total manganese oxide cluster-supporting zeolite catalyst mass of 30 mg, of which the manganese oxide mass was 0.24 mg. The catalyst of Comparative Example 2 used for evaluation, however, had a manganese oxide mass of 30 mg.
As seen from these results, the manganese oxide cluster-supporting zeolite catalyst of Example 1 had significantly superior catalytic activity compared to the common manganese oxide catalyst of Comparative Example 2 which was not supported on zeolite.
Rhodium cluster-supporting zeolite was produced by laser ablation of a rhodium target in acetone.
Specifically, as shown in
The laser light was a Nd:YAG laser fundamental wave (1064 nm, 10 Hz), with an intensity of 2 W.
The cluster-supporting carrier particles were removed from the acetone and dried at about 25° C. for about 1 hour, and then fired at 300° C. for 2 hours to obtain rhodium cluster-supporting zeolite having rhodium clusters supported on zeolite.
The laser irradiation time was as follows:
Laser irradiation time: 4 hours
Rhodium loading mass: 0.33 mass %
Rhodium cluster- and ACZ oxide cluster-supporting zeolite (simultaneous contact loading) was prepared in the same manner as Preparation Example 3-1, except that a rhodium, aluminum, cerium and zirconium target was set in the acetone.
Ceria cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a cerium target was set in the acetone instead of a rhodium target, and the zeolite particles used were type ZSM-5 zeolite (MFI) (Si/Al ratio: 1500) instead of type ZSM-5 zeolite (MFI) (Si/Al ratio: 40).
Rhodium cluster- and ceria cluster-supporting zeolite (simultaneous contact loading) was prepared in the same manner as Preparation Example 3-1, except that a rhodium target and a cerium target were set in the acetone.
Rhodium cluster- and ceria cluster-supporting zeolite (sequential contact loading) was prepared in the same manner as Preparation Example 3-1, except that the zeolite dispersed in the acetone was rhodium cluster-supporting zeolite obtained in the same manner as Preparation Example 3-1, and a cerium target was set in the acetone instead of a rhodium target.
Rhodium cluster-supporting zeolite (Rhcluster/MFI) obtained in the same manner as Preparation Example 3-1 was used as a catalyst.
Rhodium cluster-supporting zeolite (Rhcluster/MFI) obtained in the same manner as Preparation Example 3-1 and ceria-zirconia complex oxide particles (CZ oxide particles) were physically mixed and used as a catalyst.
Rhodium cluster- and ACZ oxide cluster-supporting zeolite ((Rhcluster+ACZcluster)/MFI) (simultaneously contact loading) obtained in the same manner as Preparation Example 3-2 was used as a catalyst.
Rhodium cluster-supporting zeolite (Rhcluster/MFI) obtained in the same manner as Preparation Example 3-1, and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 3-3 were physically mixed and used as a catalyst.
Rhodium cluster- and ceria cluster-supporting zeolite ((Rhcluster+Cecluster)/MFI) (simultaneously contact loading) obtained in the same manner as Preparation Example 3-4 was used as a catalyst.
Rhodium cluster- and ceria cluster-supporting zeolite ((Rhcluster+Cecluster)/MFI) (sequential contact loading) obtained in the same manner as Preparation Example 3-5 was used as a catalyst.
<Evaluation>
The catalysts of Reference Examples 3A and B and Examples 3C to 3F were evaluated for carbon monoxide and nitrogen monoxide purification with temperature increase from 100° C. to 600° C., in the same manner as Example 1 and Comparative Example 1. The obtained results are shown below.
As seen by the results, the catalysts of Examples 3C to 3F which used a combination of rhodium cluster-supporting zeolite and metal oxide cluster-supporting zeolite had significantly superior catalytic activity compared to the catalyst of Example 3A which used the rhodium cluster-supporting zeolite alone, and the catalyst of Reference Example 3B which used a combination of rhodium cluster-supporting zeolite and ceria-zirconia complex oxide particles.
CZ oxide cluster-supporting zeolite was produced using a mixture of ceria oxide particles and zirconia oxide particles instead of ACZ oxide particles.
<Evaluation>
The CZ oxide cluster-supporting zeolite catalyst of Example 4 was subjected to oxygen pretreatment by heating at 800° C. for 30 minutes in an atmosphere of 10 vol % oxygen and the remainder helium.
The oxygen pretreated catalyst of Example 4 was raised in temperature from room temperature to 800° C. at a rate of 10° C./min in reactive gas, and the catalytic action in the following water-gas shift reaction was evaluated.
CO+H2O→CO2+H2
The water-gas shift reaction commenced from approximately 200° C.
The reactive gas composition was carbon monoxide: 2 vol %, water: few % and helium: remainder, and the space velocity was 30,000 h−1.
The catalyst of Example 4 used for evaluation had a total CZ oxide cluster-supporting zeolite catalyst mass of 30 mg, of which the CZ oxide mass was 1.2 mg.
As seen by these results, common CZ oxide particles did not have significant purification performance in the water-gas shift reaction, but the CZ oxide cluster-supporting zeolite catalyst of Example 4 exhibited significant purification performance in the water-gas shift reaction.
Palladium cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a palladium target was used instead of the rhodium target.
Ceria cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a cerium target was set in the acetone instead of a rhodium target.
Palladium was impregnated and supported on alumina powder using a tetramine palladium(II) chloride aqueous solution, and it was fired at 600° C. for 4 hours to produce palladium-supporting alumina.
Palladium cluster-supporting zeolite (Pdcluster/MFI) obtained in the same manner as Preparation Example 5-1 was used as a catalyst.
Palladium cluster-supporting zeolite (Pdcluster/MFI) obtained in the same manner as Preparation Example 5-1 and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 5-2 were physically mixed and used as a catalyst.
Palladium-supporting alumina (Pd/Al2O3) obtained in the same manner as Preparation Example 5-3 was used as a catalyst.
Palladium-supporting alumina (Pd/Al2O3) obtained in the same manner as Preparation Example 5-3 and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 5-2 were physically mixed and used as a catalyst.
<Evaluation>
A model gas containing 0.1 vol % nitrogen monoxide, 0.1 vol % carbon monoxide and the remainder helium was circulated through the catalysts of Reference Example 5A, Example 5B, Comparative Example 5C and Example 5D, listed below by their abbreviations, at a rate of 10° C./min with a space velocity of 10,000 h−1, and the temperature was increased from room temperature to 800° C., after which the temperature was decreased to room temperature, and the number of carbon monoxide molecules that could be oxidized to carbon dioxide molecules by one palladium atom in one second at a temperature of 60° C. during the temperature decrease was evaluated.
Reference Example 5A: Pdcluster/MFI
Example 5B: Pdcluster/MFI+Cecluster/MFI (physical mixture)
Comparative Example 5C: Pd/Al2O3
Example 5D: Pd/Al2O3+Cecluster/MFI (physical mixture)
The left side of
As seen from the results in
Moreover, as seen by the results in
Platinum cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a platinum target was used instead of the rhodium target.
Ceria cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a cerium target was set in the acetone, instead of setting a rhodium target.
Platinum was impregnated and supported on alumina powder using a tetramine platinum(II) nitrate aqueous solution, and it was fired at 300° C. for 2 hours to produce platinum-supporting alumina.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 6-1 was used as a catalyst.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 6-1 and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 6-2 were physically mixed and used as a catalyst.
Platinum-supporting alumina (Pt/Al2O3) obtained in the same manner as Preparation Example 6-3 was used as a catalyst.
Platinum-supporting alumina (Pt/Al2O3) obtained in the same manner as Preparation Example 6-3 and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 6-2 were physically mixed and used as a catalyst.
<Evaluation>
A model gas containing 8 vol % oxygen, 0.3 vol % carbon monoxide and the remainder helium was circulated through the catalysts of Reference Example 6A, Example 6B, Comparative Example 6C and Example 6D, listed below by their abbreviations, at a rate of 10° C./min with a space velocity of 10,000 h−1, and the temperature was increased from room temperature to 800° C., after which the temperature was decreased to room temperature, and the number of carbon monoxide molecules that could be oxidized to carbon dioxide molecules by one platinum atom in one second at a temperature of 60° C. during the temperature decrease was evaluated.
Reference Example 6A: Ptcluster/MFI
Example 6B: Ptcluster/MFI+Cecluster/MFI (physical mixture)
Comparative Example 6C: Pt/Al2O3
Example 6D: Pt/Al2O3+Cecluster/MFI (physical mixture)
The left side of
As seen from the results in
Moreover, as seen by the results in
Rhodium cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1.
Ceria cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a cerium target was set in the acetone, instead of setting a rhodium target.
Rhodium was impregnated and supported on alumina powder using a rhodium nitrate aqueous solution, and it was fired at 300° C. for 2 hours to produce rhodium-supporting alumina.
Rhodium cluster-supporting zeolite (Rhcluster/MFI) obtained in the same manner as Preparation Example 7-1 was used as a catalyst.
Rhodium cluster-supporting zeolite (Rhcluster/MFI) obtained in the same manner as Preparation Example 7-1, and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 7-2 were physically mixed and used as a catalyst.
Rhodium-supporting alumina (Rh/Al2O3) obtained in the same manner as Preparation Example 7-3 was used as a catalyst.
Rhodium-supporting alumina (Rh/Al2O3) obtained in the same manner as Preparation Example 7-3 and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 7-2 were physically mixed and used as a catalyst.
<Evaluation>
A model gas containing 1 vol % carbon monoxide, 0.5 vol % oxygen and the remainder helium was circulated through the catalysts of Reference Example 7A, Example 7B, Comparative Example 7C and Example 7D, listed below by their abbreviations, at a rate of 10° C./min with a space velocity of 10,000 h−1, and the temperature was increased from room temperature to 800° C., after which the temperature was decreased to room temperature, and the number of carbon monoxide molecules that could be oxidized to carbon dioxide molecules by one rhodium atom in one second at a temperature of 60° C. during the temperature decrease was evaluated.
Reference Example 7A: Rhcluster/MFI
Example 7B: Rhcluster/MFI+Cecluster/MFI (physical mixture)
Comparative Example 7C: Rh/Al2O3
Example 7D: Rh/Al2O3+Cecluster/MFI (physical mixture)
The left side of
As seen from these results, the catalysts of Examples 7B and 6D which used ceria cluster-supporting zeolite in a physical mixture had significantly superior catalytic activity compared to the catalysts of Reference Example 7A and Comparative Example 7C which did not use ceria cluster-supporting zeolite.
Moreover, as seen by the results in
Platinum cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a platinum target was used instead of the rhodium target.
Ceria cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a cerium target was set in the acetone, instead of setting a rhodium target.
Manganese oxide cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a manganese target was set in the acetone, instead of setting a rhodium target.
Molybdenum oxide cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a molybdenum target was set in the acetone, instead of setting a rhodium target.
Vanadium oxide cluster-supporting zeolite was prepared in the same manner as Preparation Example 3-1, except that a vanadium target was set in the acetone, instead of setting a rhodium target.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 8-1 was used as a catalyst.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 8-1 and ceria cluster-supporting zeolite (Cecluster/MFI) obtained in the same manner as Preparation Example 8-2 were physically mixed and used as a catalyst.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 8-1 and manganese oxide cluster-supporting zeolite (Mncluster/MFI) obtained in the same manner as Preparation Example 8-3 were physically mixed and used as a catalyst.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 8-1 and molybdenum oxide cluster-supporting zeolite (Mocluster/MFI) obtained in the same manner as Preparation Example 8-4 were physically mixed and used as a catalyst.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 8-1 and vanadium oxide cluster-supporting zeolite (Vcluster/MFI) obtained in the same manner as Preparation Example 8-5 were physically mixed and used as a catalyst.
Platinum cluster-supporting zeolite (Ptcluster/MFI) obtained in the same manner as Preparation Example 8-1 and cerium oxide powder were physically mixed and used as a catalyst.
<Evaluation: Number of Carbon Monoxide Molecules Oxidizable to Carbon Dioxide Molecules>
A model gas containing 8 vol % oxygen, 0.3 vol % carbon monoxide and the remainder helium was circulated through the catalysts of Reference Example 8A and Examples 8B to 8E, listed below by their abbreviations, at a rate of 10° C./min with a space velocity of 10,000 h−1, and the temperature was increased from room temperature to 800° C., after which the temperature was decreased to room temperature, and the number of carbon monoxide molecules that could be oxidized to carbon dioxide molecules by one platinum atom in one second at a temperature of 150° C. during the temperature decrease was evaluated. The results are shown in
Reference Example 8A: Ptcluster/MFI
Example 8B: Ptcluster/MFI+Cecluster/MFI
Example 8C: Ptcluster/MFI+Mncluster/MFI
Example 8D: Ptcluster/MFI+Mocluster/MFI
Example 8E: Ptcluster/MFI+Vcluster/MFI
As seen by these results, the catalysts of Examples 8B to 8E, which used ceria, manganese, molybdenum or vanadium cluster-supporting zeolite in physical mixture with platinum cluster-supporting zeolite (Ptcluster/MFI), had superior catalytic activity compared to the catalyst of Reference Example 8A which did not use ceria cluster-supporting zeolite.
<Evaluation: Oxygen Storage Capacity>
A gas containing 0.67 vol % carbon monoxide and the remainder helium was circulated through the catalysts of Reference Example 8A, Examples 8B to 8E and Comparative Example 8F, listed below by their abbreviations, at 700° C. for 60 minutes with a space velocity of 30,000 h-1, and washing was carried out for 30 minutes with helium gas. A gas containing 33 vol % oxygen and the remainder helium was then circulated for 60 minutes with a space velocity of 30,000 h−1, and washing was carried out for 60 minutes with helium gas at 700° C., to remove the non-adsorbed oxygen. Next, 0.67 vol % carbon monoxide was circulated through and the oxygen storage capacity (OSC) was measured from the amount of CO that underwent oxygen-free combustion and conversion to carbon dioxide. The following are the results, summarized as the numbers of oxygen atoms stored per metal atom forming the metal oxide clusters or powder.
Reference Example 8A: Ptcluster/MFI
Example 8B: Ptcluster/MFI+Cecluster/MFI
Example 8C: Ptcluster/MFI+Mncluster/MFI
Example 8D: Ptcluster/MFI+Mocluster/MFI
Example 8E: Ptcluster/MFI+Vcluster/MFI
Comparative Example 8F: Ptcluster/MFI+CeO2 powder
The catalysts of Examples 8B to 8E, which used ceria, manganese, molybdenum or vanadium cluster-supporting zeolite in physical mixture with platinum cluster-supporting zeolite (Ptcluster/MFI), had significantly more oxygen atoms stored per metal atom forming the metal oxide clusters or powder, compared to the catalyst of Example 8F which used ceria powder in physical mixture with platinum cluster-supporting zeolite (Ptcluster/MFI).
As seen by the results in
Chabazite (CHA13) zeolite was subjected to heat endurance in which it was heated, in a vacuum, from room temperature to 100° C. at a rate of 2° C./min, heated from 100° C. to 200° C. at a rate of 5° C./min, heated from 200° C. to 800° C. at a rate of 10° C./min, held at 800° C. for 5 minutes, heated from 800° C. to 900° C. at a rate of 10° C./min. held at 900° C. for 5 minutes, heated from 900° C. to 1000° C. at a rate of 10° C./min, and then held at 1000° C. for 5 minutes. XRD results were obtained with an X-ray diffraction (XRD) analysis device (X'Pert PRO MRD by Spectris Co., Ltd.) before and after the heat endurance. The results are shown in
Ceria cluster-supporting zeolite (CeO2/CHA13) was produced in the same manner as Preparation Example 3-1, except that a cerium (Ce) target was set in the acetone instead of a rhodium target, and the zeolite used was the CHA-zeolite used in Comparative Example 9A.
The obtained ceria cluster-supporting zeolite was subjected to heat endurance in the same manner as Comparative Example 9A, and XRD results were obtained by X-ray diffraction analysis before and after heat endurance. The results are shown in
Zirconia cluster-supporting zeolite (ZrO2/CHA13) was produced in the same manner as Preparation Example 3-1, except that a zirconium (Zr) target was set in the acetone instead of a rhodium target, and the zeolite used was the CHA-zeolite used in Comparative Example 9A.
The obtained zirconia cluster-supporting zeolite was subjected to heat endurance in the same manner as Comparative Example 9A, and XRD results were obtained by X-ray diffraction analysis before and after heat endurance. The results are shown in
Alumina cluster-supporting zeolite (Al2O3/CHA13) was produced in the same manner as Preparation Example 3-1, except that aluminum (Al) target was set in the acetone instead of a rhodium target, and the zeolite used was the CHA-zeolite used in Comparative Example 9A.
The obtained alumina cluster-supporting zeolite was subjected to heat endurance in the same manner as Comparative Example 9A, and XRD results were obtained by X-ray diffraction analysis before and after heat endurance. The results are shown in
<Evaluation: Zeolite Lattice Reinforcement by Oxide Clusters>
Of the XRD results for Comparative Example 9A and Examples 9B to 9D shown in
For evaluation of the heat endurance property of zeolite,
For reference, the bond energy between zeolite and metal oxide clusters was determined by structural calculation with insertion of specific metal oxide clusters in CHA-zeolite pores. The results were as follows:
Al3O6: 0.8 eV
Al4O6: 0.6 eV
Fe3O3: 3.2 eV
Fe4O6: 2.4 eV
Zn3O3: 3.0 eV
Zr3O6: 3.2 eV
Ce3O6: 2.0 eV
As shown by the results of the structural calculation, the bond energy between zeolite and metal oxide clusters was positive in all cases where the metal oxide clusters were inserted into zeolite pores, suggesting that the zeolite had been stabilized by insertion of the metal oxide clusters.
In the following Reference Examples and Reference Comparative Examples, which are described as Examples and Comparative Examples in PTL 4, it is demonstrated that the method of the invention can support catalyst metal clusters in zeolite pores, and that the supported catalyst having catalyst metal clusters supported in pores has excellent exhaust gas purification performance.
In Reference Examples 1 and 2 and Reference Comparative Example 1, gold clusters were formed by laser ablation of a gold target in acetone, supporting the gold clusters on the carrier particles to prepare a gold cluster-supported catalyst. The fluorescence spectra of the catalysts obtained in Reference Examples 1 and 2 and Reference Comparative Example 1 were evaluated.
As shown in
The laser light was a Nd:YAG laser fundamental wave (1064 nm, 10 Hz), with an intensity of 2 W.
The cluster-supporting carrier particles were removed from the acetone and dried at about 25° C. for about 1 hour, and then fired at 300° C. for 2 hours, to obtain a gold cluster-supported catalyst for Reference Example 1.
The carrier particles and laser irradiation time in Reference Example 1 were as follows:
Carrier particles: type ZSM-5 zeolite (MFI) (Si/Al ratio: 1500)
Laser irradiation time: 2 hours and 45 minutes
A gold cluster-supported catalyst for Reference Example 2 was obtained in the same manner as Reference Example 1, except that the carrier particles and laser irradiation time were as follows:
Carrier particles: type ZSM-5 zeolite (MFI) (Si/Al ratio: 1500)
Laser irradiation time: 12 hours and 30 minutes
Because the ablation efficiency differs depending on the surface condition of the carrier particles and the gold sheet, the laser ablation time was adjusted in Reference Example 2 and Reference Comparative Example 1 so that the amount of gold ablation was about the same as in Reference Example 1. The amount of gold ablation was judged based on the change in color of the dispersing medium.
A gold cluster-supported catalyst for Reference Comparative Example 1 was obtained in the same manner as Reference Example 1, except that the carrier particles and laser irradiation time were as follows:
Carrier particles: Fumed silica
Laser irradiation time: 30 minutes
<Evaluation: Fluorescence Spectra>
The fluorescence spectra of the gold cluster-supported catalysts of Reference Examples 1 and 2 and Reference Comparative Example 1 were measured (excitation wavelength: 350 nm). The evaluation results for the fluorescence spectra are shown in
In
The results for Reference Comparative Example 1 which had gold clusters supported on fumed silica (spectrum (iii)) was shifted toward the long wavelength end in comparison to the results for Reference Examples 1 and 2 which had gold clusters supported on zeolite (spectra (i) and (ii)). This suggests that the gold clusters supported on fumed silica, of Reference Comparative Example 1, had larger particle sizes than the gold clusters supported on zeolite, of Reference Examples 1 and 2. The peak near 550 nm was attributed to Mie scattering due to nanoparticles adhering to the surfaces of the carrier particle surfaces together with the clusters.
<Other Metals>
Gold clusters were formed using a gold target in Reference Examples 1 and 2 and Reference Comparative Example 1 described above. The following metals were also used in the same manner as Reference Example 1, to confirm that other metal clusters can be formed by submerged laser ablation using the metal targets.
Aluminum, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, niobium, silver, rhodium, ruthenium, palladium, indium, tin, tantalum, tungsten, iridium, platinum, cerium.
Of these metal clusters, copper, silver, rhodium, ruthenium, palladium and platinum were confirmed to produce observable fluorescence when irradiated with excitation light. Moreover, among these metal clusters, those of copper, silver, rhodium, ruthenium and platinum were confirmed to produce fluorescence when irradiated with excitation light even when the clusters produced by ion-exchange/reduction were on zeolite carrier particles.
For Reference Example 3, a copper cluster-supported catalyst having copper clusters supported on zeolite carrier particles was prepared in the same manner as Reference Example 1, except that a copper target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (MFI) (Si/Al ratio: 40). The fluorescence spectrum of the obtained catalyst was evaluated.
Copper differs from gold in that it is oxidized in air, and therefore the copper clusters immediately after preparation were in the oxide state. Therefore, the copper cluster-supported catalyst did not emit fluorescence immediately after preparation.
The obtained copper cluster-supported catalyst was heated under a hydrogen atmosphere at 300° C. for 2 hours for reduction treatment, and then the fluorescence intensity was evaluated. The reduced copper cluster-supported catalyst thereby exhibited fluorescence. The result of fluorescence intensity evaluation (excitation wavelength of 350 nm) is shown as spectrum (i) in
The reduced copper cluster-supported catalyst was then allowed to stand overnight in an air atmosphere for oxidizing treatment, and the fluorescence intensity was again evaluated. As a result, the copper cluster-supported catalyst that had been allowed to stand in the air atmosphere exhibited fluorescence, albeit weaker than before standing in the air atmosphere. The result of the fluorescence intensity evaluation is shown as spectrum (ii) in
The copper cluster-supported catalyst that had been allowed to stand in the air atmosphere was then again subjected to reduction treatment as described above, and the fluorescence intensity was again evaluated. The copper cluster-supported catalyst that had been subjected to reduction treatment exhibited fluorescence equivalent to that before standing in the air atmosphere. The result of the fluorescence intensity evaluation is shown as spectrum (iii) in
The fact that the copper cluster-supported catalyst after such oxidizing treatment and reduction treatment exhibited fluorescence equivalent to before treatment suggests that the copper clusters were held in the pores of the zeolite carrier particles, such that aggregation and similar changes in the copper clusters did not take place.
In Reference Example 4 and Reference Comparative Example 2, the catalytic activities of a rhodium cluster-supported catalyst (Reference Example 4) and a commercially available exhaust gas purifying catalyst (Reference Comparative Example 2) were evaluated.
Specifically, Reference Example 4 and Reference Comparative Example 2 were carried out in the following manner.
For Reference Example 4, rhodium clusters were supported on zeolite carrier particles in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the zeolite carrier particles used were beta zeolite carrier particles (BEA) (Si/Al ratio: 40).
An evaluation gas having the composition shown below was circulated through 30 mg of the obtained rhodium cluster-supported catalyst (Rhcluster/BEA), while a procedure of heating it in an electric furnace from room temperature up to a peak heating temperature of 640° C. to 800° C., at a heating rate of 12° C./min, over a period of 24 hours, and then cooling to room temperature, was repeated, and the temperature at which 50% of the supplied carbon monoxide was consumed (TCO(50%)) was evaluated.
Carbon monoxide (CO): 0.3%
Oxygen (O2): 8%
Helium (He): Remainder
In the temperature change during the repeated steps of heating and cooling, as shown in
During the repeated steps of heating and cooling, the temperature of the evaluation gas was evaluated while increasing the peak heating temperature, i.e. during temperature increase. Similarly, during the repeated steps of heating and cooling, the temperature of the evaluation gas was evaluated while lowering the peak heating temperature, i.e. during temperature decrease.
For reference, a commercially available exhaust gas purifying catalyst (Rh/Al2O3—CeO2—ZrO2), as Reference Comparative Example 2, was evaluated with temperature increase and temperature decrease in the same manner as Reference Example 4.
<Evaluation: Durability>
The evaluation results with temperature increase and temperature decrease are shown in
From
Without being limited to theory, it is possible that with the catalyst of Reference Comparative Example 2, random sintering of the rhodium particles took place as a result of heating at the peak heating temperature, since rhodium of various sizes from the single atom level to the submicrometer level was supported on the carrier, thus leading to degradation, whereas with the catalyst of Reference Example 4, the rhodium clusters were stably supported within the zeolite pores, such that degradation did not take place by the heat at the peak heating temperature.
The changes occurring when the peak heating temperature was 640° C. and 660° C. are changes in the firing process in which water molecules adsorbed to the zeolite were removed, and therefore it is essentially necessary to evaluate the catalytic activity from the change when the peak heating temperature is 700° C. or higher.
With Reference Example 5 and Reference Comparative Example 3, catalysts having rhodium clusters supported on zeolite carrier particles or fumed silica carrier particles were obtained, and the obtained catalysts were evaluated for their catalyst durability.
Specifically, Reference Example 5 and Reference Comparative Example 3 were carried out in the following manner.
For Reference Example 5, rhodium clusters were supported on zeolite carrier particles in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the zeolite carrier particles used were beta zeolite carrier particles (BEA) (Si/Al ratio: 40).
For the obtained rhodium cluster-supported catalyst (Rhcluster/BEA), the temperature at which 50% of the supplied carbon monoxide was consumed (TCO(50%)) was evaluated during temperature increase and temperature decrease, in the same manner as Reference Example 4.
For Reference Comparative Example 3, rhodium clusters were supported on fumed silica particles in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the carrier particles used were fumed silica particles.
For the rhodium cluster-supported catalyst (Rhcluster/silica), the temperature at which 50% of the supplied carbon monoxide was consumed (TCO(50%)) was evaluated during temperature increase and temperature decrease, in the same manner as Reference Example 4.
<Evaluation: Durability>
The evaluation results with temperature increase and temperature decrease are shown in
From
Without being limited to theory, it is possible that this is due to the fact that the fumed silica used in the catalyst of Reference Comparative Example 3 did not have pores, the rhodium clusters therefore being supported only on the surfaces, and consequently the rhodium clusters aggregated or underwent particle growth during loading of the rhodium clusters onto the carrier and/or during accelerated degradation. In other words, it is possibly due to the fact that the rhodium clusters of the catalyst of Reference Example 5 were stably supported within the pores of the zeolite carrier, whereas the rhodium clusters of the catalyst of Reference Comparative Example 3 were present on the outer surfaces of the fumed silica carrier.
In Reference Example 6 and Reference Comparative Example 4, catalysts were obtained having rhodium clusters supported on zeolite carrier particles, or not supported, and the obtained catalysts were evaluated for their catalyst durability.
Specifically, Reference Example 6 and Reference Comparative Example 4 were carried out in the following manner.
For Reference Example 6, rhodium clusters were supported on zeolite carrier particles in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (MFI) (Si/Al ratio: 40).
For the obtained rhodium cluster-supported catalyst (Rhcluster/MFI), the temperature at which 50% of the supplied carbon monoxide was consumed (TCO(50%)) was evaluated during temperature increase and temperature decrease, in the same manner as Reference Example 4.
In Reference Comparative Example 4, rhodium clusters were dispersed in acetone in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and no carrier particles were used. Next, at the stage where the rhodium clusters aggregated to form aggregated particles of rhodium clusters, type ZSM-5 zeolite carrier particles (MFI) (Si/Al ratio: 40) as zeolite carrier particles were added to acetone to support the aggregated particles of rhodium clusters on the type ZSM-5 zeolite carrier particles (MFI), thereby preparing a catalyst for Reference Comparative Example 4 (Rhparticle/MFI).
For the obtained rhodium aggregated particle-supported catalyst (Rhparticle/MFI), the temperature at which 50% of the supplied carbon monoxide was consumed (TCO(50%)) was evaluated during temperature increase and temperature decrease, in the same manner as Reference Example 4.
<Evaluation: Durability>
The evaluation results with temperature increase and temperature decrease are shown in
From
Without being limited to theory, it is possible that this is due to the fact that the particle sizes of the rhodium clusters used in the catalyst of Reference Example 6 were significantly smaller than the particle sizes of the aggregated particles of rhodium clusters used in the catalyst of Reference Comparative Example 4, whereby the low-temperature catalytic activity characteristic of clusters was exhibited, and a relatively large surface area could be provided for catalytic reaction.
For Reference Examples 7 to 10, catalysts were obtained having rhodium clusters supported on zeolite carrier particles, and the obtained catalysts were evaluated for their catalyst durability.
Specifically, Reference Examples 7 to 10 were carried out in the following manner.
For Reference Examples 7 to 10, rhodium clusters were supported on zeolite carrier particles in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the following carrier particles were used as the respective zeolite carrier particles.
Reference Example 7: Type ZSM-5 zeolite carrier particles (MFI) (Si/Al ratio: 1500)
Reference Example 8: Beta zeolite carrier particles (BEA) (Si/Al ratio: 1500)
Reference Example 9: Beta zeolite carrier particles (BEA) (Si/Al ratio: 40)
Reference Example 10: Type ZSM-5 zeolite carrier particles (MFI) (Si/Al ratio: 40)
For the obtained rhodium cluster-supported catalysts of Reference Examples 7 to 10, the temperature at which 50% of the supplied carbon monoxide was consumed (TCO(50%)) was evaluated during temperature increase and temperature decrease, in the same manner as Reference Example 4.
<Evaluation: Durability>
The evaluation results with temperature increase and temperature decrease are shown in
From
Without being limited to theory, it is possible that with the catalyst of Reference Comparative Example 2, random sintering of the rhodium particles took place as a result of heating at the peak heating temperature, since rhodium of various sizes from the single atom level to the submicrometer level was supported on the carrier, thus leading to degradation, whereas with the catalysts of Reference Examples 7 to 10, the rhodium clusters were stably supported within the zeolite pores, such that degradation did not take place by the heat at the peak heating temperature.
Incidentally, while the catalyst of Reference Example 7 exhibited inferior catalyst performance compared to the catalyst of Reference Comparative Example 2 in the temperature range of up to 800° C., it can be clearly seen from the curves in
Examining Reference Examples 7 and 10, which used type ZSM-5 zeolite carrier particles (MFI) as the carrier, shows that the catalyst of Reference Example 10, which used type ZSM-5 zeolite carrier particles having a Si/Al ratio of 40 (MFI(40)), had satisfactory catalyst performance compared to the catalyst of Reference Example 7 which used type ZSM-5 zeolite carrier particles with a Si/Al ratio of 1500 (MFI (1500)). This is thought to be because the type ZSM-5 zeolite carrier particles with a Si/Al ratio of 40 (MFI(40)) had more acid sites than the type ZSM-5 zeolite carrier particles with a Si/Al ratio of 1500 (MFI(1500)), whereby supporting of the rhodium clusters on the zeolite carrier particles was accomplished more satisfactorily via electrostatic interaction.
In addition, upon examining Reference Examples 8 and 9 which used beta zeolite as the carrier, the catalyst of Reference Example 9 which used beta zeolite carrier particles with a Si/Al ratio of 40 (BEA(40)), i.e. zeolite carrier particles with relatively numerous acid sites, was found. similar to MFI zeolite, to exhibit more satisfactory catalyst performance compared to the catalyst of Reference Example 8 which used beta zeolite carrier particles with a Si/Al ratio of 1500 (BEA(1500)), i.e. zeolite carrier particles with relatively few acid sites.
When using beta zeolite carrier particles (BEA), however, the difference in catalyst performance due to the difference in Si/Al ratio was not as notable as when using type ZSM-5 zeolite carrier particles (MFI). This is believed to be because beta zeolite carrier particles (BEA) have intrinsically greater surface solid acid strength, such that the effect of the difference due to different numbers of acid sites was less prominent.
For reference, the zeta potentials of the zeolite carrier particles used in Reference Examples 7 to 10 (as an index of solid acid strength), were as follows.
Reference Example 7: Type ZSM-5 zeolite carrier particles (MFI(1500)): −72.7 mV
Reference Example 8: Beta zeolite carrier particles (BEA(1500)): −96.8 mV
Reference Example 9: Beta zeolite carrier particles (BEA(40)): −117 mV
Reference Example 10: Type ZSM-5 zeolite carrier particles (MFI(40)): −87 mV
In other words, it is believed that with beta zeolite carrier particles (BEA), the zeta potential is low even with a large Si/Al ratio, whereby supporting of the rhodium clusters on the zeolite carrier particles is accomplished more satisfactorily via electrostatic interaction.
In order to confirm this belief, rhodium particles were supported on MFI(40) (zeta potential: −87 mV) and (MFI(1500)) (zeta potential: −72.7 mV) by submerged laser ablation, and it was found that coloration of the carrier particles by supporting of the rhodium particles in the carrier particles was more notable with MFI(40) than with MFI(1500).
This is understood to be because the rhodium particles were more satisfactorily supported in the carrier particles by electrostatic interaction between the rhodium particles and the acid sites of the carrier particles, compared to the MFI(40) which had relatively low zeta potential, i.e. relatively high acid strength.
In Reference Examples 11 and 12, copper cluster-supported catalysts were obtained by submerged reduction, and the obtained catalysts were evaluated using fluorescence.
In Reference Example 11, zeolite carrier particles were dispersed in 2-propanol, to form a zeolite carrier particle dispersion, and then copper(II) chloride as a copper ion source and sodium borohydride (NaBH4) as a reducing agent were mixed with the dispersion to synthesize copper clusters in the dispersion. The copper clusters synthesized in this manner were positively charged, whereby they were electrically drawn in and supported at the acid sites of the zeolite carrier particles.
Specifically, mixing of the copper(II) chloride and sodium borohydride was carried out using an apparatus such as illustrated in
That is, a water bath 82 at approximately 10° C. was set on a magnetic stirrer 81, a flask 83 was placed inside it, a dropping funnel 84 was set on the flask 83, and the contents 84a of the dropping funnel 84 were dropped onto the contents 83a of the flask 83 while stirring with a stirrer 81a. The dropping was over a period of 1 hour while maintaining the temperature with the water bath, and upon completion of the dropping, stirring was continued for 1 hour which maintaining the temperature with the water bath, and then stirring was continued for another 2 hours at room temperature. The contents of the flask were then filtered and fired for 2 hours in air at a temperature of 300° C., to obtain a copper cluster-supported catalyst for Reference Example 11.
The contents 84a of the dropping funnel 84 and the contents 83a of the flask 83 for Reference Example 11 are shown in Table 2.
A copper cluster-supported catalyst was obtained for Reference Example 12 in the same manner as Reference Example 11, except that the contents 84a of the dropping funnel 84 and the contents 83a of the flask 83 were changed as shown in Table 2.
<Evaluation: Fluorescence Spectra>
The fluorescence spectra at an excitation wavelength of 350 nm were measured for the copper cluster-supported catalysts prepared in Reference Examples 11 and 12, as well as for copper ion-exchanged zeolite carrier particles and protonated zeolite carrier particles as reference samples. The results are shown in
In
As seen from
<Evaluation: Fluorescence Spectra>
Also, the copper cluster-supported catalyst obtained in Reference Example 11 was measured to obtain the fluorescence spectrum with an excitation wavelength of 350 nm, and the excitation spectrum with fluorescence monitoring wavelengths of 440 nm and 520 nm. The results are shown in
In
The characteristic fluorescence of the copper clusters is seen in
In Reference Example 13 and Reference Comparative Example 5, submerged laser ablation and ion-exchange/reduction, respectively, were used to obtain the rhodium cluster-supported catalysts.
For Reference Example 13, rhodium clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (Si/Al ratio: 40).
For Reference Comparative Example 5, rhodium ions were supported on type ZSM-5 zeolite carrier particles (Si/Al ratio: 40) by ion-exchange, after which the rhodium ions were reduced to support the metal rhodium particles in the zeolite carrier particles, thereby supporting rhodium clusters in the zeolite carrier particles (ion-exchange/reduction). The rhodium ion source used was Rh(NO3)3, and the reducing agent used was NaBH4.
<Evaluation: Fluorescence Spectra>
The fluorescence spectra of the supported catalysts of Reference Example 13 and Reference Comparative Example 5 were measured (excitation wavelength: 350 nm). The evaluation results for the fluorescence spectra are shown in
From
In Reference Example 14 and Reference Comparative Example 6, submerged laser ablation and ion-exchange/reduction, respectively, were used to obtain the gold cluster-supported catalysts.
For Reference Example 14, gold clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (MFI) (Si/Al ratio: 1500).
For Reference Comparative Example 6, gold ions were supported on type ZSM-5 zeolite carrier particles (MFI) (Si/Al ratio: 1500) by ion-exchange, after which the gold ions were reduced to support the gold clusters in the zeolite carrier particles (ion-exchange/reduction). The gold ion source used was chloroauric acid (HAuCl4), and the reducing agent used was NaBH4.
<Evaluation: Overall Composition Evaluation (ICP-OES)>
The overall elemental compositions of the supported catalysts of Reference Example 14 and Reference Comparative Example 6 were evaluated using inductively coupled plasma spectrometers (ICP-OES) (Agilent5100 by Agilent Technologies and SPS3000 by Hitachi High-Tech Science). The results are shown in Table 3 below.
<Evaluation: Surface composition evaluation (TEM-EDX)>
The supported catalyst surface elemental compositions of the supported catalysts of Reference Example 14 and Reference Comparative Example 6 were evaluated using a transmission electron microscope-energy dispersive X-ray spectroscope (TEM-EDX) (JEM-2100F and JED-2300 by JEOL Corp.). The results are shown in Table 3 below.
From Table 3 it is implied that the supported catalyst of Reference Example 14 obtained by submerged laser ablation had a lower ratio between the overall proportion of gold atoms and the proportion of gold atoms on the surface, compared to the supported catalyst of Reference Comparative Example 6 obtained by ion-exchange/reduction, or in other words, that the gold clusters were dispersed more evenly in the supported catalyst.
In Reference Example 15 and Reference Comparative Example 7, submerged laser ablation and ion-exchange/reduction, respectively, were used to obtain the rhodium cluster-supported catalyst.
For Reference Example 15, rhodium clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (Si/Al ratio: 40). The loading mass of rhodium with respect to the zeolite carrier particles was 0.1 mass %.
For Reference Comparative Example 7, rhodium ions were supported on type ZSM-5 zeolite carrier particles (Si/Al ratio: 40) by ion-exchange, after which the metal ions were reduced to carrier the metal rhodium particles in the zeolite carrier particles, thereby supporting rhodium clusters in the zeolite carrier particles (ion-exchange/reduction). The rhodium ion source used was Rh(NO3)3, and the reducing agent used was NaBH4. The loading mass of rhodium with respect to the zeolite carrier particles was 0.051 mass %.
<Evaluation: H2-TPR Test (Before Heat Endurance)>
The supported catalysts of Reference Example 15 and Reference Comparative Example 7 were pretreated by adsorbing oxygen in a 100 vol % oxygen atmosphere at 30° C. over a period of 1 hour, and then removing the excess oxygen in a helium atmosphere at 500° C. over a period of 1 hour.
The pretreated supported catalysts were subjected to a hydrogen temperature-programmed reduction (H2-TPR) test by circulating reducing gas containing 0.5 vol % hydrogen and the remainder helium, with a space velocity of 10,000 h−1, while raising the temperature from 20° C. at a rate of 10° C./min.
The results for the supported catalyst of Reference Example 15 are shown in
From this graph it is implied that the supported catalysts of Reference Example 15 and Reference Comparative Example 7 both had a relatively large reaction peak between the supplied hydrogen and the oxygen adsorbed onto the cluster-supported catalysts i.e. a peak with a peak/noise ratio of 2.0 or greater, in a temperature range of 150° C. or below, or in other words, that they exhibited low-temperature activity.
<Evaluation: H2-TPR Test (after Heat Endurance)>
The supported catalysts of Reference Example 15 and Reference Comparative Example 7 were subjected to heat endurance treatment in which they were heated for 2 hours in an atmosphere at 800° C. containing 20 vol % oxygen and the remainder helium, and then heated for 1 hour in an atmosphere at 800° C. containing 0.5 vol % hydrogen and the remainder helium.
The supported catalysts subjected to this heat endurance treatment were pretreated in the manner described above.
The pretreated supported catalysts were subjected to a H2-TPR test in the manner described above.
The results for the supported catalyst of Reference Example 15 are shown in
From
In Reference Example 16 and Reference Comparative Example 8, submerged laser ablation and ion-exchange/reduction, respectively, were used to obtain palladium cluster-supported catalysts.
For Reference Example 16, palladium clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a palladium target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (Si/Al ratio: 40). The loading mass of palladium with respect to the zeolite carrier particles was 0.09 mass %.
For Reference Comparative Example 8, palladium ions were supported on type ZSM-5 zeolite carrier particles (Si/Al ratio: 40) by ion-exchange, after which the palladium ions were reduced to support the metal palladium particles in the zeolite carrier particles, thereby supporting palladium clusters in the zeolite carrier particles (ion-exchange/reduction). The palladium ion source used was Pd(NH3)4Cl2—H2O (tetramine palladium(II) chloride monohydrate), and the reducing agent used was NaBH4. The loading mass of palladium with respect to the zeolite carrier particles was 0.86 mass %.
<Evaluation: Carbon Monoxide Oxidation Test>
The supported catalysts of Reference Example 16 and Reference Comparative Example 8 were subjected to heat endurance treatment by heating for 10 hours in an atmosphere at 800° C. containing 20 vol % oxygen and the remainder helium.
A model gas containing 0.3 vol % carbon monoxide, 8.0 vol % oxygen and the remainder helium was circulated through the aforementioned supported catalysts that had been subjected to heat endurance treatment, at a rate of 10° C./min with a space velocity of 10,000 h−1, and the temperature was increased from room temperature to 800° C., after which the temperature was decreased to room temperature, and the number of carbon monoxide molecules that could be oxidized to carbon dioxide molecules by one palladium atom at a temperature of 100° C. during the temperature decrease was evaluated.
The number of molecules can be determined by dividing the number of moles of carbon dioxide molecules in the post-reaction model gas flowing per second by the number of moles of palladium as the catalyst metal in the supported catalyst.
In Reference Example 17 and Reference Comparative Example 9, submerged laser ablation and ion-exchange/reduction, respectively, were used to obtain platinum cluster-supported catalysts.
For Reference Example 17, platinum clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a platinum target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (Si/Al ratio: 40). The loading mass of platinum with respect to the zeolite carrier particles was 1.1 mass %.
For Reference Comparative Example 9, platinum ions were supported on type ZSM-5 zeolite carrier particles (Si/Al ratio: 40) by ion-exchange, after which the platinum ions were reduced to carrier the metal platinum particles in the zeolite carrier particles, thereby supporting platinum clusters in the zeolite carrier particles (ion-exchange/reduction). The platinum ion source used was Pt(NH3)4Cl2.xH2O (tetramine platinum(II) chloride hydrate), and the reducing agent used was NaBH4. The loading mass of platinum with respect to the zeolite carrier particles was 1.9 mass %.
<Evaluation: Carbon Monoxide Oxidation Test>
The supported catalysts of Reference Example 17 and Reference Comparative Example 9 were subjected to heat endurance treatment by heating for 10 hours in an atmosphere at 800° C. containing 20 vol % oxygen and the remainder helium.
A model gas containing 0.3 vol % carbon monoxide, 8.0 vol % oxygen and the remainder helium was circulated through the aforementioned supported catalysts that had been subjected to heat endurance treatment, at a rate of 10° C./min with a space velocity of 10,000 h−1, and the temperature was increased from room temperature to 800° C., after which the temperature was decreased to room temperature, and the number of carbon monoxide molecules that could be oxidized to carbon dioxide molecules by one platinum atom at a temperature of 60° C. during the temperature decrease was evaluated.
In Reference Example 18 and Reference Comparative Example 10, submerged laser ablation and ion-exchange/reduction, respectively, were used to obtain copper cluster-supported catalysts.
For Reference Example 18, copper clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a copper target was used instead of the gold target, and the zeolite carrier particles used were chabazite (CHA) zeolite carrier particles. The loading mass of copper with respect to the zeolite carner particles was 0.9 mass %.
For Reference Comparative Example 10, copper ions were supported on chabazite (CHA) zeolite carrier particles by ion-exchange, after which the copper ions were reduced to carrier the metal copper particles in the zeolite carrier particles, thereby supporting copper clusters in the zeolite carrier particles (ion-exchange/reduction). The copper ion source used was copper nitrate, and the reducing agent used was NaBH4. The loading mass of copper with respect to the zeolite carrier particles was 0.9 mass %.
<Evaluation: Nitrogen Monoxide Heating Desorption Test>
The supported catalysts of Reference Example 18 and Reference Comparative Example 10 were heated at 800° C. for 1 hour in an atmosphere containing 10 vol % oxygen and the remainder helium and heated at 800° C. for 30 minutes in an atmosphere containing 100 vol % helium, and the temperature of the atmosphere was raised to 25° C., after which they were held for 1 hour in an atmosphere containing 500 ppm by volume of nitrogen monoxide and the remainder helium and held for 1 hour in an atmosphere containing 100 vol % helium, to adsorb nitrogen monoxide onto the supported catalyst.
The supported catalyst with nitrogen monoxide adsorbed in this manner was heated to 800° C. at a temperature-elevating rate of 10° C./min in an atmosphere containing 100 vol % helium, and the amount of nitrogen monoxide desorbed during that time was detected with a mass spectrometer to obtain a nitrogen monoxide temperature-increase desorption spectrum. The gas flow rate of the atmosphere was 10 sccm for both.
The difference in maximum peak temperatures shown in
In Reference Example 19 and Reference Comparative Example 11, plus-minus inversion and ion-exchange/reduction, respectively, were used to obtain platinum cluster-supported catalysts.
In Reference Example 19, zeolite MFI (40) was added to 200 ml of an aqueous solution containing 10 mM H2[PtCl6] in purified water and a pulse laser was focused to introduce it into the aqueous solution, decomposing the H2[PtCl6] to form positively charged platinum clusters, and the positively charged platinum clusters were supported on the zeolite acid sites by electrostatic interaction.
In Reference Comparative Example 11, H2[PtCl6] in purified water was supported on zeolite MFI (40) by ion-exchange. The loading mass of platinum with respect to the zeolite carrier particles was 0.003 mass %.
<Evaluation: Fluorescence Spectra>
The fluorescence spectra of the platinum cluster-supported catalysts of Reference Example 19 and Reference Comparative Example 11 were measured (excitation wavelength: 350 nm). The fluorescence spectrum evaluation results are shown in
In
In Reference Example 20 and Reference Comparative Example 12, submerged laser ablation and ion-exchange/reduction, respectively, were used to obtain the rhodium cluster-supported catalyst.
For Reference Example 20, rhodium clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (Si/Al ratio: 40). The loading mass of rhodium with respect to the zeolite carrier particles was 0.1 mass %.
For Reference Comparative Example 12, rhodium ions were supported on type ZSM-5 zeolite carrier particles (Si/Al ratio: 40) by ion-exchange, after which the rhodium ions were reduced to carrier the rhodium clusters in the zeolite carrier particles. The rhodium ion source used was Rh(NO3)3, and the reducing agent used was NaBH4. The loading mass of rhodium with respect to the zeolite carrier particles was 0.051 mass %.
<Evaluation: Nitrogen Monoxide Reduction Test>
Heating was carried out for 1 hour in an atmosphere at 800° C. containing 8 vol % oxygen, 0.3 vol % carbon monoxide and the remainder helium, for heat endurance treatment.
A model gas containing 0.1 vol % 15NO, 0.65 vol % CO and the remainder helium was circulated through the supported catalyst that had been subjected to heat endurance treatment, with a space velocity of 10,000 h−1, the temperature was increased from room temperature to 800° C. at a rate of 10° C./min (temperature increase) and then decreased to room temperature (temperature decrease), and the nitrogen monoxide reduction reaction was measured.
The evaluation results for the catalyst of Reference Example 20 are shown in
In
The reaction temperature at which half of the supplied nitrogen monoxide was reduced to nitrogen, i.e. the reaction temperature at which the nitrogen concentration reached 0.05 vol %, was approximately 272° C. during the temperature increase and 254° C. during the temperature decrease with the catalyst of Reference Example 20, wile it was approximately 321° C. during temperature increase and 279° C. during temperature decrease with the catalyst of Reference Comparative Example 12. Therefore, the catalyst of Reference Example 20 which was obtained by submerged laser ablation clearly had superior low-temperature activity compared to the catalyst of Reference Comparative Example 12 which was obtained by ion-exchange/reduction.
From
In Reference Examples 21 and 22, submerged laser ablation was used to obtain a platinum cluster-supported catalyst and a rhodium cluster-supported catalyst, respectively. In Reference Comparative Example 13, a common three-way catalyst was used having platinum, rhodium and palladium supported on a mixed powder of alumina carrier particles and ceria/zirconia carrier particles.
For Reference Example 21, platinum clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a platinum target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (Si/Al ratio: 40). The loading mass of platinum with respect to the zeolite carrier particles was 0.59 mass %.
For Reference Example 22, rhodium clusters were supported on zeolite carrier particles by submerged laser ablation in the same manner as Reference Example 1, except that a rhodium target was used instead of the gold target, and the zeolite carrier particles used were type ZSM-5 zeolite carrier particles (Si/Al ratio: 40). The loading mass of rhodium with respect to the zeolite carrier particles was 0.1 mass %.
For Reference Comparative Example 13, a common three-way catalyst was used having platinum, rhodium and palladium supported on a mixed powder of alumina carrier particles and ceria/zirconia carrier particles. The loading masses of platinum, rhodium and palladium with respect to the carrier powder were 0.2 mass %, 0.19 mass % and 0.25 mass %, respectively.
<Evaluation: Oxygen Oxidation Reaction Test for Adsorbed Carbon Monoxide>
The catalysts of Reference Examples 21 and 22 and Reference Comparative Example 13 were held for 1 hour at 800° C. in an atmosphere containing 500 ppm by volume carbon monoxide and the remainder helium, adsorbing the carbon monoxide onto each supported catalyst, and then the carbon monoxide-adsorbed supported catalyst was heated to 800° C. at a temperature increase rate of 10° C./min in an atmosphere containing 10 vol % oxygen and the remainder helium, for an oxygen oxidation reaction test of the adsorbed carbon monoxide. The space velocity during the treatment was 10,000 h−1.
The following treatments (i) to (iv) were carried out to wash the catalysts of Reference Examples 21 and 22 and Reference Comparative Example 13.
(i) The catalyst is placed in a 1 M sodium chloride aqueous solution at a concentration of 4 mass % and stirred at 80° C. for a period of 10 days,
(ii) following (i), the catalyst is rinsed with ion-exchanged water,
(iii) following (ii), the catalyst is placed at a concentration of 4 mass % in an aqueous solution containing 6 mass % polyoxyethylenesorbitan monolaurate, 0.25 M trisodium ethylenediaminetetraacetate and 0.01 M sodium borohydride, and stirred at 80° C. for a period of 10 days, and
(iv) following (iii), the catalyst is rinsed with ion-exchanged water.
The washed catalysts of Reference Examples 21 and 22 and Reference Comparative Example 13 were subjected to an oxygen oxidation reaction test for adsorbed carbon monoxide, in the same manner as described above.
The results of the oxygen oxidation reaction test for adsorbed carbon monoxide before and after washing are shown in
As clearly seen from
This suggests that with the catalysts of Reference Examples 21 and 22 which were obtained by submerged laser ablation, the catalyst metal clusters were supported within the pores of the zeolite, such that the catalyst metal clusters were not lost even with washing, whereas with the common three-way catalyst, the catalyst metal particles were supported on the outer surfaces of the carrier particles, resulting in loss of the catalyst metal particle by washing.
Number | Date | Country | Kind |
---|---|---|---|
2017-125685 | Jun 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/024459 | 6/27/2018 | WO | 00 |