Information
-
Patent Grant
-
6427821
-
Patent Number
6,427,821
-
Date Filed
Friday, October 20, 200024 years ago
-
Date Issued
Tuesday, August 6, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Christie, Parker & Hale, LLP
-
CPC
-
US Classifications
Field of Search
US
- 192 109 F
- 192 7019
- 192 702
- 192 85 AA
-
International Classifications
-
Abstract
A clutch assembly of an automatic transmission includes a clutch drum having a slanted inner surface at a corner formed by circumferentially bending an circumferential edge of the clutch drum, a plurality of friction members alternately arranged in the clutch drum, a piston for actuating the friction members, the piston contacting the friction members, and a cushion ring having a circumferentially slanted outer surface corresponding to the slanted inner surface of the clutch drum, the cushion ring being installed into the clutch drum so as to contact the slanted outer surface of the cushion ring with the slanted inner surface of the clutch drum.
Description
BACKGROUND OF THE INVENTION
(a) Field of the Invention
The present invention relates to a clutch assembly of an automatic transmission, and in particular, to a multi-plate clutch assembly capable of reducing shift shock of the transmission.
(b) Description of the Related Art
FIG. 1
schematically shows a conventional clutch assembly. The clutch assembly
2
comprises a plurality of clutch plates
6
and clutch discs
8
alternately installed in a clutch retainer
4
, a snap ring
10
mounted in a distal end portion of the retainer
4
so as to contact a last clutch plate, and a dished plate
14
interposed between a first clutch plate and a piston
12
so as to prevent the clutch plates and discs from abruptly being engaged. A return spring
16
is installed in the retainer
4
for returning the piston
12
.
Typically, an automatic transmission is equipped with a wet multi-plate clutch as a gear shift mechanism. A TCU (transmission control unit) determines a vehicle's conditions on the basis of parameters from various sensors and responsively operates friction elements such as clutches and brakes by controlling valves of a hydraulic mechanism.
The dished plate is an optional element for enhancing the shift quality of the vehicle by providing a smooth engagement and quick disengagement of the clutch assembly.
However, the dished plate occupies a relatively large amount of space, that is, the installment of the dished plate requires 5 mm per clutch set to secure the space for the plate's thickness and stroke displacement and this increases the transmission size and weight. Furthermore, the adaptation of the dished plate increases the whole manufacturing cost of the transmission because the dished plate is an expensive item.
SUMMARY OF THE INVENTION
The present invention has been made in an effort to solve the above problems of the prior art.
It is an object of the present invention to provide a clutch assembly capable of reducing shift shock of an automatic transmission without using additional parts such as a dished plate, which causes increases in the size and weight of the transmission as well as whole manufacturing costs.
To achieve the above object, a clutch assembly of an automatic transmission according to the present invention comprises a clutch drum having a slanted inner surface at a corner formed by circumferentially bending a circumferential edge of the clutch drum, a plurality of friction members alternately arranged in the clutch drum, a piston for actuating the friction members, the piston contacting the friction members, and a cushion ring having a circumferentially slanted outer surface corresponding to the slanted inner surface of the clutch drum, the cushion ring being installed into the clutch drum so as to contact the slanted outer surface of the cushion ring with the slanted inner surface of the clutch drum.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention, and, together with the description, serve to explain the principles of the invention:
FIG. 1
is a schematic view showing a conventional clutch assembly;
FIG. 2
is a schematic view showing a clutch assembly according to a preferred embodiment of the present invention; and
FIG. 3
is an enlarged view of a circled portion A in FIG.
2
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A preferred embodiment of the present invention will be described hereinafter with reference to the accompanying drawings.
FIG. 2
shows a sectional view showing a clutch assembly according to the preferred embodiment of the present invention.
A plurality of friction members, i.e. clutch plates
34
and discs
36
, are alternately arranged in an axial direction in a clutch drum
26
. Slidably disposed in the clutch drum
26
is a piston
35
so as to press the friction members
34
and
36
. The piston
35
is biased by a return spring
38
, and a cushion ring
30
is installed in the clutch drum
26
and is opposite to the piston
35
such that the clutch plates
34
are disposed therebetween.
As shown in
FIG. 3
, the clutch drum
26
is provided with a slanted inner surface
28
having a predetermined angle at a corner that is formed by circumferentially bending an edge of the clutch drum
26
.
The cushion ring
30
is also provided with a corresponding slanted surface
32
around its outer circumferential surface and installed in the clutch drum
26
with a radial elastic force. Since the slanted surface
32
of the cushion ring
30
contacts the slanted inner surface
28
of the clutch drum
26
, a friction force F affected to the slanted surface
28
against the cushion ring
30
consists of a force Fr and a force Fa.
Also, the radial and axial direction forces generated by the cushion ring
30
are respectively equal to the forces Fr and Fa. Accordingly, the radial direction force Fr and the axial direction force Fa have a relationship of equation 1 below:
<Equation1>
Fr=F cos θ: radial direction force
Fa=F sin θ: axial direction force
Fr=Fs
therefore,
Fa=Fs/cos=*sin θ=Fs tan θ
As shown in Equation 1, the radial and the axial direction forces Fr and Fa can be adjusted by changing the elastic force Fs of the cushion ring
30
and the slant angle θ.
The operation of the clutch assembly structured according to the preferred embodiment of the present invention will be described hereinafter.
Normally, the cushion ring
30
contacts to bias a reacting plate
22
because the elastic force of the cushion ring
30
generates the axial direction force Fa caused by the cushion ring
30
radically sliding on the slanted surface
28
of the clutch drum
26
.
When the clutch assembly is required to provide its engagement, the piston
35
is operated to press the friction members
34
and
36
such that the piston
35
overcomes the elastic force of the spring
38
so as to engage the friction members
34
and
36
to each other. In this case, the clutch plates
34
and discs
36
are smoothly engaged to each other because the cushion ring
30
absorbs a push load caused by the piston
35
by gradually retreating against its elastic force. Accordingly, the transmission can avoid a shift shock caused by an abrupt engagement of the friction members.
While the clutch assembly is required to provide a disengagement, the piston
34
retreats by the elastic force of the return spring
38
. In this case the cushion ring
30
helps prompt disengagement of the friction members
34
and
36
. Accordingly, the prompt disengagement of the friction members
34
and
36
prevents the clutch assembly from experiencing a shift shock caused by loose disengagement.
As described above, since the clutch assembly is provided with a cushion ring acting as a shift shock-absorbing member such as a dished plate as well as a snap ring at the same time, it is possible to reduce the shift shock of the transmission without using an expensive dished plate, and to furthermore minimize the size of the transmission and the whole manufacturing costs.
While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims
- 1. A clutch assembly of an automatic transmission comprising:a clutch drum having a slanted inner surface at a corner and extending from another inner surface of the drum; a plurality of friction members arranged in the clutch drum within said another inner surface of the drum for selectively engaging each other, said friction members rotate relative to each other about an axis; a piston for actuating the friction members, the piston contacting a friction member; and a cushion ring having a circumferentially slanted outer surface, the slanted outer surface of the cushion ring corresponding to the slanted inner surface to the clutch drum, wherein the slanted inner surface of the drum extends at an oblique angle relative to the axis, wherein the slanted outer surface of the cushion ring extends at an oblique angle relative to the axis, wherein the cushion ring is installed into the clutch drum, and wherein the slanted outer surface of the cushion ring engages the slanted inner surface of the clutch drum.
- 2. The clutch assembly of claim 1 further comprising a return spring for returning the piston to an initial position.
- 3. The clutch assembly of claim 1 wherein an angle θ of the slanted surface of the clutch drum and the cushion ring is defined by the following equation:tan θ=Fa/Fs, where,Fr=F cos θ: is a radial direction force, Fa: is an axial direction force, and Fs: is a radial direction force.
- 4. A clutch assembly to an automatic transmission comprising:a clutch drum having a siltnted inner surface at a corner formed by circumferentially bending a circumferential edge of the clutch drum; a plurality of friction members arranged in the clutch drum for selectively engaging each other; a piston for actuating the friction members, the piston contacting a friction member: and a cushion ring having a circumferentially slanted outer surface corresponding to the slanted inner surface of the clutch drum, the cushion ring being installed into the clutch drum such that the slanted outer surface of the cushion ring contacts the slanted inner surface of the clutch drum, wherein an angle θ of the slanted surface of the clutch drum and the cushion ring is defined by the following equation: tan θ=Fa/Fs, where,Fr=F cos θ: is a radial direction force, Fa: is an axial direction force, And Fs: is a radial direction force.
- 5. The clutch assembly of claim 4 further comprising a return spring for returning the piston to an initial position.
- 6. A clutch assembly of an automatic transmission comprising:a clutch drum having a slanted inner surface extending at an angle from another inner surface of the clutch drum; a plurality of friction members arranged in the clutch drum within said another inner surface of the drum for selectively engaging each other, wherein said friction members rotate relative to each other about an axis; an actuator for exerting a force against a friction member; and a cushion ring having a slanted outer surface extending at an angle from another outer surface of the cushion ring, wherein the slanted inner surface of the drum extends at an oblique angle relative to the axis, wherein the slanted outer surface of the cushion ring extends at an oblique angle relative to the axis, wherein the cushion ring is installed into the clutch drum, and wherein the slanted outer surface of the cushion ring engages the slanted inner surface of the clutch drum.
- 7. The clutch assembly of claim 6 wherein the actuator moves from an initial position for exerting a force against a friction member, the assembly further comprising a return spring for returning the piston to the initial position.
- 8. The clutch assembly of claim 6 wherein an angle θ of the slanted surface of the clutch drum and the cushion ring is defined by the following equation:tan θ=Fa/Fs, where,Fr=F cos θ: is a radial direction forces Fa: is an axial direction force, and Fs: is a radial direction force.
- 9. The clutch assembly of claim 6 wherein the friction members are disposed between the actuator and the cushion ring.
- 10. The clutch assembly of claim 6 wherein the actuator is a piston.
Priority Claims (1)
Number |
Date |
Country |
Kind |
99-60981 |
Dec 1999 |
KR |
|
US Referenced Citations (8)