The field of the present invention is that of friction or driven disc assemblies. The present invention is particularly applicable in driven disc assemblies in clutches utilized to selectively connect an engine of a motorized vehicle with a transmission of the motorized vehicle, especially vehicles such as large trucks.
Many large motorized vehicles have a clutch assembly to selectively connect an engine of the vehicle with the vehicle transmission. The workings of such a clutch assembly can be discovered by a review of U.S. patent application Ser. No. 12/807,971, Franke, entitled Dry Clutch Having Solid Lubricant Friction Stabilization Inserts, filed Sep. 17, 2010 (the disclosure of which is incorporated by reference herein). Referring to
The overall axial width 29 (adjacent its outer diameter) of the driven disc assembly 9 based upon the design of the driven disc assembly 9 and a clutch intermediate plate and/or clutch cover assembly that the driven disc assembly interacts with. The overall axial width (sometimes also referred to as height) of the buttons 21 is determined by two factors. The first factor is the expected wear life of the button and is determined by a dimension 31. The second dimension is a dimension 33 that is a width of the friction material on the backing plate required for clearance of the rivet head 27 (or on the other side 25). Accordingly, the amount of friction material of a width 33 is essentially wasted material that cannot be utilized. Typically, the ceramic material making up the button is a very expensive material that typically far exceeds the cost of the backing plate 19. The backing plate is typically a metallic material.
One attempt to eliminate or to make more use wasted button material is provided in
Referring to
It is desirable to provide a driven disc assembly wherein the thickness of the friction button can be reduced to its effective use to minimize the costs of the driven disc assembly without compromising operational performance.
To meet the above-noted and other desires, a revelation of the present invention is brought forth. The present invention brings forth a driven disc assembly wherein the clutch disc has enlarged holes for connection of the backing plates. The backing plates have semi-pierced sections that are insertable within the clutch disc holes. The thickness of the backing plates are enlarged from their normal thickness causing a top surface of the backing plates to axially clear the head of a conventional rivet. The thickness of the friction buttons can then be reduced to their minimal effective thickness.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to
Between the semi-pierced section 120 of the backing plates and the mounting hole 114 of the disc is an installation gap 134. The installation gap is primarily to ensure the proper clearance needed for the assembly operation. The semi-pierced section 120 has an abutting lateral contact interface 131 with a tubular portion 133 of the rivet. The length of the lateral abutting contact of the semi-pierced section with the rivet noted as width 126 is greater than the width 31 of the button 128. The contact section 120 along its outer diameter has an abutting lateral interface 139 of an axial width 140. The axial width 140 in most instances will be at least equal or greater than the width 31 of the button minus 0.035 inches (or the width of the button 128 is no more than 0.035 inches more than that of the width 140) and in most applications will be between 0.040 to 0.055 inches in total width. The radial width 138 of the semi-pierced portion in most instances will be greater than the radial width 135 of the tubular wall 133 of the rivet. Due to the lateral interface 139 of the semi-pierced portions 120 with the disc hole 114 and also due to the fact that the radial width 138 of the semi-pierced portion 120 is greater than the radial width 135 of the tubular wall of the rivet, the sheer strength of the connection of the backing plate 116 to the disc 111 is significantly greater than the sheer strength of the connection of the backing plates 19 to the disc 11 of the driven disc assembly 9 which is the conventional design.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application is a continuation of U.S. application Ser. No. 13/873,626, filed Apr. 30, 2013 which claims priority to U.S. Provisional Application No. 61/645,885, filed May 11, 2012. The disclosures of these above-referenced applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2178527 | Wellman | Oct 1939 | A |
3685623 | Bradshaw | Aug 1972 | A |
3761231 | Dowell et al. | Sep 1973 | A |
3946192 | Allen et al. | Mar 1976 | A |
4860872 | Flotow | Aug 1989 | A |
5601174 | Schulz | Feb 1997 | A |
6662911 | Nugier | Dec 2003 | B1 |
8474588 | Franke | Jul 2013 | B2 |
20040040796 | Pham | Mar 2004 | A1 |
20130299301 | Allmandinger et al. | Nov 2013 | A1 |
20130299302 | Allmandinger et al. | Nov 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150292568 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61645885 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13873626 | Apr 2013 | US |
Child | 14740947 | US |