The invention refers to a clutch device for the couplable connection of a first shaft and a second shaft.
Clutches are known in a number of embodiments, and are described in technical literature, above all in machine element textbooks and clutch- and transmission atlases.
The object of the invention is to interconnect two rotatably mounted machine parts.
The clutch according to the invention, which is effective in both rotational directions, is a cone clutch with sprags, as are known from reverse locks, and freewheel- or override clutches, and are used as coupling elements. With sprags as coupling elements, the machine parts to be coupled can be coupled steplessly to one another in any optional rotational position. The characteristic of a positive clutch can be imparted to the torque transmission, since, depending upon the cone angle, with self-locking, the clutch can be constructed torsionally fixed, up to the breakage of the sprags or their surrounding parts.
With suitable matching of the cone angle and the axial shift force, a safety clutch can also be created, which begins to slip upon the exceeding of a predetermined maximum torque.
The invention is described in more detail with reference to exemplary embodiments in the drawing figures. In the drawings:
a, b show sectioned views A-A of a clutch according to
c shows an enlarged view of
The component parts of the clutch are shown in
The force application point for FA does not lie in the connecting lines 9, between the outer and inner contact point of the sprags 3 with the associated clamping faces 10 and 11, so that, in each case, a torque M ensues, which rolls the sprags 3 into spragging readiness. The sprags 3 are in pairs opposite one another, and are held in spragging readiness so that neither a right- nor a left-hand rotation of the clutch components 1 and 2 in relation to one another is possible.
a and 1b show an installed position of the sprags, rotated by 180°, and a spring element 6 with a larger diameter (
In
c shows that the clamping faces 10 and 11 are exactly parallel, and form an angle α of from 0 to about 10° in relation to the rotational axis. The radial spacing in the clamping faces 10 and 11 is equal to the maximum sprag height, minus the required radial roll-in travel of the inner and outer engagement curves of the sprags 3.
A stop 12 prevents the sprag cage 4 from axially sliding out. The coupling and decoupling of the two machine parts of the outer clutch ring 1 and the shaft 2, takes place by displacement axially in relation to one another by the amount s. The amount s must be large enough until the sprag engagement curve comes out of contact with one of the clamping faces 10 or 11. If L is this necessary clearance, then the amount s must be s ≧L/sinα. L consists of the radial roll-in travel of the sprags 3, and the desired clearance between untensioned sprags 3 and clamping face.
The selection of the cone angle α is of vital significance for the shift performance of the clutch. The two pieces of operating data, axial shift force and shift travel, are in a reciprocal relationship to one another. In the general application case, the clutch is designed so that the axial shift force Fs is sufficient to overcome the adjusting force FA of the springs on the sprags 3, and to ensure there is a contact force FK between engagement curve and clamping faces. FK counteracts the adjusting forces FA of the two clamping faces in relation to one another, and, in the first instance, depends upon the angle α.
The clutch, in general, is designed so that the clutch is self-locking, which is achieved with the current material pairing of steel on steel, with a coefficient of static friction of about μ=0.1 and, therefore, tan α<0.1, i.e. α<7°.
Since, in operation, the sprags mutually spread apart a little further during shock-like transmission of the rotational movement, the holding release force, with α <7°, must be greater than Fs. Angles of α≧7° are for clutches to be used with lower torques to transmit, with easy shiftability and short shift travels, but with greater shift force Fs.
In the
The simplest embodiment of a shaft clutch is shown in
In
The possibility of coupling two rotating machine parts by their end faces, in a small installation space, is demonstrated in
The two sprag rings 3 and 3′ are supported on the clamping faces 10 and 11 of the sliding sleeve 16, once by the outer spring element, and once by the inner spring element 6 and 6′. The sliding sleeve 16 does not rotate in the decoupled position (lower half of the illustration).
The clutch device can comprise one or more sprag rings 3, which are in a row, one behind the other, on the same inner- and outer cone (not illustrated).
Number | Date | Country | Kind |
---|---|---|---|
04007914.7 | Apr 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/00513 | 3/18/2005 | WO | 9/29/2006 |