The present application is based on and claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2002-135667, filed on May 10, 2002, and PCT Application No. PCT/JP03/05609, filed on May 2, 2003 the entire contents of both of which are expressly incorporated by reference herein.
1. Field of the Invention
The present inventions relate to a clutch engagement control system, and more specifically, to a clutch engagement control system that can reduce the time required for engaging the friction clutch by increasing velocity to engage the friction clutch until the friction clutch starts transmitting power.
2. Background Art
The conventional clutch engagement control system 200 controls engagement of a friction clutch 1 used for motorcycles by means of an actuator 3 The friction clutch 1 is engaged or disengaged to transmit or not to transmit torque from an engine crankshaft (not shown) to a mission shaft 7 made up of a drive shaft of a multistage transmission 5, a type of transmission. Torque transmitted to the mission shaft 7 is transmitted to a countershaft 9 interlocked with the mission shaft 7 via the multistage transmission 5.
The torque transmitted to the countershaft 9 is further transmitted to a rear wheel 13, which is a drive wheel of the motorcycle, via a countershaft sprocket 11. The countershaft sprocket 11 is integrally provided with the countershaft 9 on one end of the countershaft 9. A rear wheel sprocket 17 supporting the rear wheel 13 and integrally provided with a rear wheel shaft 15 transmits drive torque to the rear wheel 13. A chain 19 wrapped around the countershaft sprocket 11 and the rear wheel sprocket 17 transmits torque from the countershaft sprocket 11 to the rear wheel sprocket 17.
The mission shaft 7 and the countershaft 9 are rotatably disposed in an engine gearcase CS1 for the motorcycle while the shaft of the rear wheel 13 is rotatably disposed for free rotation on a frame body (see
The friction clutch 1 is configured to gradually transmit the drive force (torque) produced by the engine to the multistage transmission 5 to allow the motorcycle to smoothly start, and to temporarily disengage the power transmitted between the engine and the multistage transmission 5 to allow gear changes.
The friction clutch 1 may be a multiplate friction clutch For example, friction clutch 1 can comprise an outer driver 23 integrally provided with a gear 21 that engages with a gear (not shown) integrally supported by the engine crankshaft and that is disposed for free rotation around the mission shaft 7. As such, the mission shaft 7 receives torque transmitted from the crankshaft A plurality of friction discs 25 or friction plates are integrally mounted to the outer driver 23. A plurality of clutch plates 29 or friction plates are integrally mounted to an inner driver 27. The inner driver 27 receives torque transmitted from the outer driver 23 by frictional force generated between the plurality of friction discs 25 and the plurality of clutch plates 29.
The gear 21 is provided for free rotation on one end of the mission shaft 7. The outer driver 23, mounted integrally to a boss portion of the gear 21, is restricted to displace the mission shaft 7 in the rotational axis direction while being rotatable around the mission shaft 7. The inner driver 27 is mounted integrally to one end of the mission shaft 7 (furthest end from the gear 21).
In this configuration, the inner driver 27 is disposed inside the cylindrical outer driver 23 while the gear 21, the outer driver 23, the inner driver 27 and the mission shaft 7 rotate around the same center, and all are concentrically located.
The cylindrical outer driver 23 has an opening on its one end, which is provided with an engaging portion 23B having an engaging hole 23A that engages with a circular engaging projection 21A disposed in the boss portion of the gear 21. The engaging portion 23B having the engaging hole 23A allows the outer driver 23 to be fixed concentrically to the gear 21.
The friction discs 25 are ring-shaped thin plates and an outer peripheral edge of each friction disc 25 is supported by an inner periphery of the cylindrical outer driver 23 such that the plane of each friction disc 25 is generally perpendicular to the rotational axis direction of the mission shaft 7. Such support allows each friction disc 25 to be slightly movable in the rotational axis direction of the mission shaft 7 relative to the outer driver 23 while its rotation in the rotational direction of the mission shaft 7 relative to the outer driver 23 is restricted
A predetermined space (with a little longer length than the thickness of the clutch plate 29) is defined between the adjacent planes of the friction discs 25.
The cylindrical inner driver 27 has an opening on one end provided with a circular flange 27A having approximately same outside diameter as the clutch plate 29, and also supports the plurality of clutch plates 29 with its cylindrical outer periphery. Such support allows each clutch plate 29 to be slightly movable in the rotational axis direction of the mission shaft 7 relative to the inner driver 27 while restricts its rotation in the rotational direction of the mission shaft 7 relative to the inner driver 27.
The inner driver 27 is fixed to one end of the mission shaft 7 with its flange 27A located on the side of the engaging portion 23B of the outer driver 23.
The clutch plates 29 are ring shaped thin plates, and an inner peripheral edge of each clutch plate 29 is supported with an outer periphery of the cylindrical inner driver 27 as described above such that the plane of each clutch plate 29 is generally perpendicular to the rotational axis direction of the mission shaft 7.
A predetermined space (with a little longer length than the thickness of the friction disc 25) is defined between the adjacent planes of the clutch plates 29.
Each of the clutch plates 29 has an outside diameter slightly smaller than the inside diameter of the cylindrical outer driver 23. Each of the friction discs 25 has an inner diameter slightly larger than the outside diameter of the cylindrical inner driver 27.
The friction discs 25 and the clutch plates 29 are alternately located in the rotational axis direction of the mission shaft 7. A small space is defined in the rotational axis direction of the mission shaft 7 between each friction disc 25 and clutch plate 29.
A pressing portion 27B including the flange 27A of the inner driver 27, is provided on outer sides of each friction disc 25 and clutch plate 29 located alternately as described above as well as on outer sides of the rotational axis direction of the mission shaft 7 and on the side of the engaging portion 23B of the outer driver 23. The friction discs 25 and the clutch plates 29 are interposed between the pressing portion 27B and a pressure plate 31, to be discussed later, in the rotational axis direction of the mission shaft 7 to generate frictional force between each friction disc 25 and clutch plate 29. The pressing portion 27B is generally a plane approximately parallel to each plane of the friction discs 25 and the clutch plates 29.
The friction clutch 1 is provided with a circular pressure plate 31 on the outsides of each friction disc 25 and clutch plate 29 located alternately as described above as well as on the outer sides of the rotational direction of the mission shaft 7 and on the opposite side of the engaging portion 23B of the outer driver 23.
The pressure plate 31 is provided with a plurality of guide portions 31A disposed integrally with the cylindrical inner driver 27 inside of the inner driver 27 and engaging with plural cylindrical guide portions 27C which extend in the rotational axis direction of the mission shaft 7. The guide portions 27C and the guide portions 31A allow the pressure plate 31 to be located movably in the rotational axis direction of the mission shaft 7 relative to the inner driver 27 as well as to rotate together with the inner driver 27.
The pressure plate 31 has a plane pressing portion 31B approximately parallel to each plane of the friction discs 25 and the clutch plates 29.
Plural compression springs 33 are provided so as to respectively enclose the plurality of cylindrical guide portions 27C. The pressure plate 31 is urged by each compression spring 33 in the direction in which the pressing portion 31B of the pressure plate 31 approaches the pressing portion 27B of the inner driver 27.
When the friction clutch I is being engaged, the pressure plate 31 is displaced and urged toward the flange 27A of the inner driver 27 by the compression springs 33. The friction discs 25 and the clutch plates 29 are interposed and pressed between the pressing portion 27B of the inner plate 27 and the pressing portion 31B of the pressure plate 31 to generate frictional force between each friction disc 25 and clutch plate 29. This allows torque to be transmitted from the outer driver 23 to the inner driver 27.
On the other hand, when the friction clutch 1 is being disengaged (being disconnected and with no torque transmitted), the pressure plate 31 is displaced rightward in
Thus, each friction disc 25 and clutch plate 29 are not pressed to each other. A small space is defined in the rotational axis direction of the mission shaft 7 therebetween. No frictional force allowing torque to be transmitted is generated between each friction disc 25 and clutch plate 29. The pressure plate 31 is adapted to be displaced and controlled by the clutch engagement control system 200.
Next will be described the conventional clutch engagement control system 200.
The conventional clutch engagement control system 200 comprises the actuator 3. The actuator 3 and the compression springs 33 displace the pressure plate 31 in the rotational axis direction of the mission shaft 7. Based on the displacement, the friction clutch 1 is engaged (with torque transmitted) or disengaged (with no torque transmitted).
The pressure plate 31 has a center portion engaging with one end of the push rod 35 via a deep groove ball bearing 37, for example, and also can rotate around the push rod 35. The other end of the push rod 35 engages with one end of the cylindrical mission shaft 7 positioned inside thereof.
When force larger than the urging force produced by the compression springs 33 displaces the push rod 35 rightward in
On the other hand, when the push rod 35 is displaced leftward in
Inside the cylindrical mission shaft 7, a ball 39 is disposed adjacent to the other end of the push rod 35 and a push rod 41 is disposed adjacent to the ball 39.
The push rod 41 has one end 41A protruding from the other end (the end opposite to the one provided with the inner driver 27) of the cylindrical mission shaft 7.
The protruding end 41A of the push rod 41 is integrally provided with a piston 43 which is included in the actuator 3. The piston 43 is guided by a cylinder body 45 and is slidable in the rotational axis direction of the mission shaft 7.
When hydraulic oil as compressed fluid is supplied to a space 47 enclosed by the piston 43 and the cylinder body 45, the piston 43 is pressed and displaced rightward in
As described above, when the pressure plate 31 is pressed rightward in
When the hydraulic oil supplied is gradually drained out of the enclosed space 47 with the friction clutch 1 being disengaged, the piston 43 is gradually displaced leftward in
The reason for this displacement is because the pressure plate 31 is normally urged by the compression springs 33 so as to be displaced leftward in
When the piston 43 is gradually displaced leftward in
When the piston 43 is further displaced leftward in
Decreasing the pressure of the hydraulic oil in the space 47 enclosed by the piston 43 and the cylinder body 45 with the friction clutch 1 fully engaged allows the piston 43 and the push rod 41 to be further displaced leftward in
Supply or drainage of hydraulic oil to or from the space 47 enclosed by the piston 43 and the cylinder body 45 is performed through a master cylinder 53 comprising a reserve tank 51 and connected to the space 47 via a hydraulic oil passage 49 made up of pipes.
The master cylinder 53 comprises a master cylinder body 57 and a piston 55 engaging and sliding with the master cylinder body 57. The piston 55 has one end protruding outward of the master cylinder body 57. The piston 55 also has an end face of the end touching one end face of an output shaft 61 of a small actuator 59.
The small actuator 59 including a small hydraulic cylinder and a small control motor operates under the control of a control device (not shown) comprising, for example, a ROM and a CPU for controlling the operations of the small actuator 59 based on the control patterns preset therein.
When the friction clutch 1 is disengaged, the output shaft 61 of the small actuator 59 is displaced leftward in
The rightward displacement of the piston 43 allows the pressure plate 31 to be pressed rightward in
Next, description will be made of the example in which the friction clutch 1 is reengaged.
When the friction clutch 1 is being disengaged, the piston 43 of the actuator 3 presses the pressure plate 31 rightward in
The urged piston 43 further allows the piston 55 of the master cylinder 53 to be urged rightward in
When the output shaft 61 of the small actuator 59 is gradually displaced rightward in
The displacement of hydraulic oil allows the piston 43 urged by the pressure plate 31 and the compression springs 33 to be gradually displaced leftward in
The cylinder body 45 of the actuator 3, the master cylinder body 57 of the master cylinder 53, and the small actuator body 65 of the small actuator 59 are fixed integrally, for example, to the engine gear case CS1 respectively.
The piston 43 of the actuator 3 has diameter larger than that of the piston 55 of the master cylinder 53. According to Pascal's law, displacing the piston 55 requires less force than the one to displace the piston 43. Therefore, displacing the output shaft 61 of the small actuator 59 results in increased force to displace the pressure plate 31.
Next will be described the engagement velocity at which the conventional clutch engagement control system 200 reengages the friction clutch 1.
The horizontal axis and the vertical axis of
For example, when the friction clutch I is reengaged to start the motorcycle moving, the output shaft 61 starts to be displaced rightward in
When the friction clutch 1 is being disengaged, normally there is a gap of approximately 2 mm between the pressing portion 31B of the pressure plate 31 shown in
The displacement velocity of the output shaft 61 is then decreased at time t12 to a velocity, for example, V12 that is approximately the same as the displacement velocity at which the clutch is half-engaged.
The rightward displacement of the output shaft 61 in
At the point to start engaging the clutch, P11, the pressing portion 31B of the pressure plate 31 touches the friction disc 25 (positioned adjacent to the pressing portion 31B) and torque starts to be transmitted between the friction discs 25 and the pressure plates 29.
Then, the rightward displacement of the output shaft 61 in
The point to start engaging the clutch, P11, varies depending on temperature as well as on how much the friction discs 25 and the clutch plates 29 wear out by engaging and disengaging the friction clutch 1.
If the point to start engaging the clutch varies from P11 at time t13 to P21 at t21, the point at which the clutch is fully engaged, P22, is also reached earlier, at time t22 before the point P12, due to the earlier start of clutch engagement. Thus, the displacement velocity of the output shaft 61 may be increased at time t23 to velocity V13 as shown by dashed lines in
However, the point to start engaging the clutch varies depending on temperature as described above, there may be a case where the point to start engaging the clutch is delayed to P31 at time t31. In this case, if the output shaft 61 of the small actuator 59 is still displaced at high velocity, V13, at time t23 as shown by dashed lines in
In other situations, the engine can be stopped due to a sharp increase in load applied to the engine.
Therefore, the conventional clutch engagement control system 200 allows sufficient time between times t12 and t15, by using a long preset time period between times t12 and t15.
The above description of
For example, the graph of
However, using parameters other than the displacement of the output shaft 61 of the small actuator 59 to indicate the engagement velocity of the friction clutch 1 results in almost no positive value of the velocity V13 in
The reason for an almost zero value is because the pressure plate 31 is no longer displaced after the friction clutch 1 is fully engaged. Accordingly, the push rod 35 is no longer pressed and displaced by the pressure plate 31.
In order to allow the conventional clutch engagement control system 200 to perform engagement control of the friction clutch 1 without shock for engaging the clutch, even if the point to start engaging the friction clutch varies depending on temperature, a relatively long time is required to slowly displace the pressure plate 31 at around the point to start engaging the clutch.
In the example of the conventional system, the description is made of the problems when the motorcycle starts, however, using the multistage transmission 5 for shifting gears also causes the same problems.
An aspect of at least one of the inventions disclosed herein includes the realization that a clutch engagement control system can be improved by controlling the engagement of the clutch based on the detection of the beginning of power output from the clutch.
In accordance with one embodiment, a clutch engagement control system for engaging a friction clutch by means of an actuator, comprises detecting means for detecting the state of power transmission from the friction clutch, and control means for controlling the actuator so as to engage the friction clutch at first engagement velocity until the detecting means detects the start of power transmission from the clutch, and to change the engagement velocity to second engagement velocity lower than the first engagement velocity when the detecting means detects the start of the power transmission such that the friction clutch starts transmitting power after no power transmitted from the friction clutch, and the power transmissibility is gradually enhanced.
In accordance with another embodiment, a clutch engagement control system for engaging a friction clutch with an actuator, comprising a sensor configured to detect power output from the friction clutch, and a controller configured to control the actuator so as to engage the friction clutch at first engagement velocity until the sensor detects the start of the power output, and to change the engagement velocity to second engagement velocity lower than the first engagement velocity when the sensor detects the start of the power output.
In accordance with another embodiment, a method for engaging a friction clutch with an actuator is provided. The method comprises detecting power output from the friction clutch, engaging the friction clutch at first engagement velocity until the start of the power output from the friction clutch, and changing the engagement velocity to second engagement velocity lower than the first engagement velocity when the sensor detects the start of the power output
The clutch engagement control system 100 is constructed almost the same as the conventional clutch engagement control system 200 except having a sensor 71 for detecting torque generated on the mission shaft 7.
Description will here be made of a magnetostrictive sensor 71 as an example of a torque sensor for detecting torque generated on the mission shaft 7. However, other sensors can also be used.
Ferromagnetic materials such as iron or nickel are placed in a magnetic field, which causes distortion and change in dimension thereof. On the other hand, when ferromagnetic materials are subjected to distortion, the magnetization characteristics thereof change. The magnetostrictive sensor detects load and torque applied to the ferromagnetic materials by means of the phenomenon through which the magnetization characteristics thereof change.
The mission shaft 7 can be comprised of ferromagnetic materials made of iron, steel, nickel or their alloys. The mission shaft 7 can also be magnetized in the rotational axis direction. When the motorcycle starts, for example, engagement of the friction clutch 1 starts, which generates torque on the mission shaft 7 and accordingly torsion on the mission shaft 7. The magnetostrictive sensor 71 detects magnetization components in the circumferential direction of the mission shaft 7 resulted from the torsion described above, thereby detecting the torque generated on the mission shaft 7. The magnetostrictive sensor, in such a configuration, can be referred to as a magnetostrictive torque meter.
In
The clutch engagement control system 100 operates almost in the same manner as the conventional clutch engagement control system 200. However, under the control of the clutch engagement control system 100, the friction clutch 1 is engaged at a first engagement velocity higher than the conventional engagement velocity, V12 (phantom line in
The clutch engagement control system 100 can control drive velocity of the actuator 3 for displacing the pressure plate 31, clamping together the inner driver 27 and the friction plates, or the plural friction discs 25 and the plural clutch plates 29, on which frictional force to transmit torque over the friction clutch 1 is generated, in the direction in which the friction plates are engaged In other words, it controls leftward displacement velocity of the piston 43 included in the actuator 3 in
Under the control described above, the piston 43 is displaced leftward in
In addition, under the above control, the piston 43 is displaced leftward in
Displacement velocity of the cylinder 43 of the actuator 3 is controlled based on the displacement velocity of the output shaft 61 of the small actuator 59 in the embodiment described above.
Description will further be made of operations of the clutch engagement control system 100 in
The horizontal axis of
For example, when the friction clutch I is reengaged to start the motorcycle 1, the output shaft 61 starts to be displaced rightward in
The displacement velocity of the output shaft 61 is then decreased at time t2 to velocity V1, at which the output shaft 61 is displaced rightward in
Following that, the point to start engaging the clutch, P11, is reached at time t3. In other words, the magnetostrictive sensor 71 detects the start of engagement of the friction clutch 1. Then, the output shaft 61 is displaced rightward in
Continuing to displace the output shaft 61 rightward in
The engagement velocity, V1, V12 and V13 shown in
Thus, it should be understood that the clutch engagement control system 100 according to the embodiment of the present invention can reduce the time required for engaging the friction clutch 1 by the difference between times t6 and t5 compared to the conventional clutch engagement control system 200.
According to the clutch engagement control system 100, the friction clutch 1 is reengaged at the first engagement velocity, which is relatively high, until engagement of the friction clutch 1 starts (start transmitting power), and the engagement velocity is changed to the second engagement velocity lower than the first engagement velocity after the engagement of the friction clutch 1 started. This results in a moderate enhancement of power transmissibility, which reduces time required for engaging the friction clutch 1.
The clutch engagement control system 100 also employs engagement velocity that causes less shock even at the start of engagement of the friction clutch 1 as the first engagement velocity, allowing reduction in shock caused by the friction clutch engagement.
The magnetostrictive sensor 71 in the clutch engagement control system 100 detects the start of engagement of the friction clutch 1 and changes the engagement velocity of the friction clutch 1 based on the detection results. This allows precise detection of the point to start engaging the friction clutch 1 even when this point varies depending on temperature while allowing reduction in time required for engaging the friction clutch 1.
The clutch engagement control system 100 detects the point at which the friction clutch 1 starts to engage by means of the magnetostrictive sensor 71. However, at least either one of the magnetostrictive sensor 71, a magnetostrictive sensor 73 and a magnetostrictive sensor 75 both shown in
The magnetostrictive sensor 73 can detect torque generated on the counter shaft 9 interlocked with the mission shaft 7 via the multistage transmission 5 to receive torque transmission. The sensor 73 can be placed on the end of the countershaft 9 protruding outward of the engine gearcase CS1. Here, the position where the magnetostrictive sensor 73 is placed is not limited to the position described above as long as the magnetostrictive sensor 73 can detect torque generated on the countershaft 9.
The magnetostrictive sensor 75 can be interlocked with the countershaft 9 via a chain 19, and can detect torque generated on the rear wheel shaft 15 transmitting drive torque to the rear wheel 13.
The chain tension detecting sensor 81 detects the tension in the upper portion of the chain 19 wound around the countershaft sprocket 11 and the rear wheel sprocket 17 to transmit torque to the rear wheel 13 as shown in
Since no or an insubstantial amount of tension may be applied to the chain 19 in the state that the friction clutch 1 is disengaged and no torque is transmitted from the countershaft 9 to the rear wheel shaft 17, the upper middle part of the chain 19 (
When engagement of the friction clutch 1 starts under this condition, torque starts to be transmitted from the countershaft 9 to the rear wheel shaft 15, which results in tension applied to the chain 19. This causes the upper middle part of the chain 19, which may have been previously loosened and sagging downwardly, to be stretched, in other words, pulled generally straight, thereby moving it upwardly, as viewed in
The chain tension detecting sensor 81 can thus detect the start of engagement of the friction clutch 1 by detecting the movements of the chain 19.
Description will here be made of configuration of the chain tension detecting sensor 81.
The chain tension detecting sensor 81 can comprise an arm member 85 having one end rotatably mounted to a motorcycle frame via a pin 83 on a surface perpendicular to the rotational axis of the rear wheel sprocket 17. A circular roller 89 can be mounted to the other end of the arm member 85 via a pin 87 so also to be rotatable around the rotational axis parallel to the rotational axis of the rear wheel sprocket 17. A pressing member 91 can have one end rotatably mounted to the motorcycle frame and the other end rotatably mounted to the middle part of the arm member 85. Compression springs 93 can be used to bias the roller 89 to press against the chain 19 in the longitudinal direction.
When engagement of the friction clutch 1 starts, tension is applied to the chain 19, which allows the upper middle part of the chain 19 to be stretched and thus raised upwardly. The arm member 85 then rotates upward around the pin 83, which is detected by a limit switch (not shown) or a proximity switch (not shown).
In the above embodiment, the rear wheel 13 is driven by using the chain 19, however, a belt such as a timing belt, e.g., a toothed belt, can be used instead of the chain 19.
A bar-shaped drive shaft having bevel gears integrally provided on its both ends can also be substituted for the chain or belt to transmit torque from the countershaft 9 to the rear wheel shaft 15 to drive the rear wheel 13. In this case, the magnetostrictive sensor can be configured to detect torque generated on the bar-shaped drive shaft to detect the start of engagement of the friction clutch 1.
In
Means for detecting the engine rotational speed (crankshaft rotational speed) can be provided to determine the point to start engaging the friction clutch 1 based on variations in rate of change of the engine rotational speed as described above and to change the engagement velocity of the friction clutch 1.
The description is made of the example in which the motorcycle starts in the above embodiment of the present invention. However, substantially the same control can be performed during gear shifting by means of the multistage transmission 5.
According to the above embodiment, the engagement velocity of the friction clutch 1 can be decreased immediately after the magnetostrictive sensor 71 detected the start of engagement of the friction clutch 1. However, in some embodiments, the engagement velocity of the friction clutch 1 may be decreased after a short predetermined time period in the event that the magnetostrictive sensor 71 detects the start of engagement of the friction clutch 1.
Torque generated on the mission shaft 7 may be too low to be detected by the magnetostrictive sensor 71 even though engagement of the friction clutch 1 has already started. Thus, the magnetostrictive sensor 71 detects the start of engagement of the friction clutch at time a little later than the engagement of the friction clutch 1 actually started, although this timing also depends on detection accuracy for the magnetostrictive sensor 71.
In addition, the rotational speed of the rotational shaft of the gear 21, which is directly connected to the engine crankshaft, can be detected. The rotational speed of the rotational shaft of the mission shaft 7, which is connected to the engine crankshaft via the friction clutch 1, can also be detected. These two detected rotational speeds can be compared to each other, and detecting that no slipping or little slipping is made between the friction discs 25 and the clutch plates 29 of the friction clutch 1 based on the result of the comparison. Thus, the point at which the friction clutch 1 is fully engaged can also be detected.
The output shaft 61 of the small actuator 59 shown in
Also as shown in
In the above embodiment, controlling displacement velocity of the pressure plate 31 of the friction clutch 1 by means of the small actuator 59 and the actuator 3 allows the engagement velocity of the friction clutch 1 to be controlled. However, any method may be employed if the method is configured to control displacement velocity of the pressure plate 31.
The clutch engagement control system 100 as the embodiment of the present invention can be employed for clutch engagement control for motorcycles with full automatic or semi-automatic transmissions.
The clutch engagement control system 100 as the embodiment of the present invention can also be employed for vehicles or industrial machines (including automobiles, tractors and bulldozers) with the clutch engagement control system other than for motorcycles.
Furthermore, in
Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combination or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
2002-135667 | May 2002 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP03/05609 | May 2003 | US |
Child | 10985230 | Nov 2004 | US |