This application is a national phase application of PCT Application No. PCT/CN2008/071049, filed May 22, 2008, which claims priority from Chinese Patent Application No. 2007-10129745.8, filed Jul. 25, 2007, both contents of which are incorporated herein by reference in their entirety.
The present invention relates to a clutch engaging control method in a hybrid power output device, which can improve engine response rate and suppress impact in the clutch engaging process. The present invention further relates to a clutch engaging control system in a hybrid power output device.
In a conventional control method, in order to attain the condition for clutch engaging, in the process that the rotation speed of the engine is regulated solely by the engine itself, it will take a long time to attain the target rotation speed because the rotation speed control by the engine itself is lagged; in addition, severe over-control may occur in the process, i.e., oscillation of rotation speed near the ideal rotation speed for clutch engaging will occur, which will have some adverse effect to the driving comfort. During the process the engine speed increases, if the clutch is engaged when the target rotation speed is just attained but the rotation speed is still in the oscillation period, the huge impact may cause damage to the clutch even though the system response time can be shortened to a certain degree; however, if the clutch is engaged after the rotation speed of the engine is self-regulated, the dynamic system response time will be increased, i.e., a long time is required.
An object of the present invention is to provide a clutch engaging control method in a hybrid power output device, which can improve engine response time and suppress impact in the clutch engaging process.
In one aspect, the present invention provides a clutch engaging control method in a hybrid power output device, wherein the device comprises an engine, a first motor, a clutch and a second motor that are connected in sequence, a battery electrically connected to the first motor and the second motor, and a speed reducing mechanism and a drive shaft that are connected to the output end of the second motor; the method comprises the following steps:
(a) detecting the rotation speed ω2 of the second motor and setting the rotation speed ω2 as the target rotation speed ω0 of the first motor, when the vehicle is driven by the second motor and the engine is required to be started to provide assistance to the second motor;
(b) starting the first motor to drive the engine, and controlling the actual rotation speed ω1 of the first motor to be close to the target rotation speed ω0 of the first motor;
(c) switching the state of the first motor from a driving motor to a power generator to provide load to the engine and thereby stabilize the rotation speed of the engine, when the actual rotation speed ω1 of the first motor is approximately equal to the target rotation speed ω0 of the first motor;
(d) engaging the clutch.
In the above method, when the clutch is to be engaged to enable the engine to provide assistance for driving, the first motor can drive the engine to reach to the target rotation speed quickly because the engine is in unloaded state. Then, by changing the first motor into a generator to provide certain load to the engine, the rotation speed of the engine can be stabilized, and speed over-control of the engine (i.e., the engine speed exceeds the target rotation speed) can be prevented. Next, the clutch can be engaged quickly. Therefore, the method can improve the dynamic response time of the engine and suppress impact in the clutch engaging process.
In another aspect, the present invention provides a clutch engaging control system in a hybrid power output device, wherein the hybrid power output device comprises an engine, a first motor, a clutch and a second motor that are connected in sequence, a battery electrically connected to the first motor and the second motor, and a speed reducing mechanism and a drive shaft that are connected to the output end of the second motor; the system further comprises a speed transducer and a controller, wherein the speed transducer is designed to detect the rotation speed ω2 of the second motor and send the signal of rotation speed to the controller when the vehicle is driven by the second motor and the engine is required to be started to provide assistance to the second motor; the controller is designed to set the rotation speed ω2 as the target rotation speed ω0 of the first motor according to the signal and control the first motor to start and drive the engine, so as to control the actual rotation speed ω1 of the first motor to be close to the target rotation speed ω0 of the first motor; the controller is further designed to switch the state of the first motor from a driving motor to a power generator to provide load to the engine to stabilize the rotation speed of the engine and control the clutch to engage when the actual rotation speed ω1 of the first motor is approximately equal to the target rotation speed ω0 of the first motor.
Hereunder the present invention will be described in detail, with reference to the accompanying drawings.
The first motor 2 can convert the mechanical power output from the engine 1 into electric power and store the electric power in the battery 5 when the hybrid power output device is in purely serially connected state. The second motor 3 provides power output to the entire vehicle, and it is powered by the battery 5. When the hybrid power output device is in purely serially connected state, the power output from the engine 1 is only converted by the first motor 2 into electric power and stored in the battery 5. If the power output from the second motor 3 is not sufficient to meet the power requirement of the entire vehicle and thereby the clutch 4 must be engaged, the engine 1 will provide power to the drive shaft 9; if the engine has redundant power output, it can charge the battery 5 via the first motor 2 while it provides power to the drive shaft 9.
Step 1: the second motor controller 11 first calculates the power demand of the entire vehicle according to the signals, and then determines whether to engage the clutch 4 so that the power output from the engine 1 can be used directly to drive the vehicle according to the power demand of the entire vehicle. When the power from the engine 1 is required, the second motor controller 11 will detect the rotation speed ω2 of the second motor 3 in real time. For example, a rotary transformer can be mounted on the second motor 3 to detect the position of the rotor in real time, and then the current rotation speed ω2 of the motor rotor can be calculated according to the position of the rotator and the sampling interval, and thereby the current acceleration a2 of the rotator can be calculated from the rotation speed (the acceleration can be used in the following embodiment).
Step 2: send the actual rotation speed ω2 of the second motor 3 to the first motor controller 10. The first motor controller 10 sets the actual rotation speed ω2 of the second motor 3 as the target rotation speed ω0 of the first motor 2.
Step 3: the battery 5 supplies electric power to the first motor 2, so that the first motor 2 functions as a driving motor. The first motor controller 10 controls the actual rotation speed ω1 of the first motor 2 to be close to the given target rotation speed ω0 via the power converter 6. In that process, since the engine 1 is free of load, the actual rotation speed ω1 of the first motor 2 can increase quickly when the first motor 2 drives the engine 1.
Step 4: the first motor controller 10 calculates the actual rotation speed ω1 of the first motor 2, and compares the actual rotation speed ω1 with the target rotation speed ω0 (=ω2) to obtain the speed difference Δω, i.e., Δω=|ω1−ω0|.
Step 5: when the speed difference Δω is in the preset range (i.e., the actual rotation speed ω1 of the first motor is approximately equal to the target rotation speed ω0 of the first motor), e.g., 50-200 rpm, preferably <100 rpm (in this embodiment, it is 100 rpm, and the value can be set according to the condition of the entire vehicle, there is no limitation to it in the present invention), i.e., Δω<100 rpm, it is deemed that the condition of speed for engaging the clutch 4 is met. If the condition is not met, the above steps would be repeated from step 1.
Step 6: the first motor controller 10 switches the running state of the first motor 2 from a driving motor to a power generator, to absorb the output torque of the engine 1 and generate power to charge the battery 5. Now, since the first motor 2 functions as a power generator, it provides load to the engine 1 and thereby can keep the rotation speed of the engine 1 stable, without speed over-control or oscillation near the target rotation speed.
Step 7: when the first motor 2 functions as a power generator and the rotation speed of the engine 1 is kept stable, the clutch 4 is engaged quickly.
In that way, the clutch can be engaged quickly; in addition, since the speed difference between both sides of the clutch is very small, i.e., the speed difference between the first motor and the second motor is very small, the impact can be suppressed effectively during the clutch engaging process.
Hereunder the control method will be described with reference to
Step 1: the second motor controller 11 acquires or calculates the rotation speed ω2 and acceleration a2 of the second motor 3 in real time.
Step 2: the first motor controller takes the actual rotation speed ω2 of the second motor as the target rotation speed ω0 of the first motor.
Step 3: the first motor controller controls the actual rotation speed ω1 of the first motor to be close to the target rotation speed ω0.
Step 4: the first motor controller 10 calculates the actual rotation speed ω1 of the first motor 2, and compares the actual rotation speed ω1 with the target rotation speed ω0 (=ω2) to obtain the speed difference Δω.
Step 5: when the speed difference Δω is within the preset range, it is deemed that the condition of speed for engaging the clutch 4 is met. If the condition is not met, the above steps are repeated from step 1.
Step 6: the first motor controller switches the first motor from a driving motor to a power generator.
Step 7: the acceleration a1 of the first motor calculated by the first motor controller is compared with the acceleration a2 of the second motor determined in step 1, to control the acceleration a1 of the first motor to be slightly higher than the acceleration a2 of the second motor, i.e., a1>a2. For example, the acceleration a1 of the first motor can be higher than the acceleration a2 of the second motor by 10˜200 rpm/min.
Step 8: if the acceleration condition is not met, the first motor controller will adjust the power generation load to regulate the acceleration a1 of the first motor, and then compares the two acceleration values, till the acceleration condition is met.
Step 9: if the acceleration condition for engaging the clutch is met, the rotation speeds at both sides 41 and 42 of the clutch 4 will be approximately equal to each other, and the rotator acceleration of the first motor will be slightly higher than the rotator acceleration of the second motor; then, the clutch 4 can be engaged quickly and the impact to the vehicle can be minimized, so that the power output from the engine is supplied to the drive shaft.
In an embodiment of the present invention, a clutch engaging control system in a hybrid power output device is provided, wherein the hybrid power output device comprises an engine 1, a first motor 2, a clutch 4 and a second motor 3 that are connected in sequence, a battery 5 electrically connected to the first motor 2 and the second motor 3, and a speed reducing mechanism 8 and a drive shaft 9 that are connected to the output end of the second motor; the system further comprises a speed transducer and a controller, wherein the speed transducer is designed to detect the rotation speed ω2 of the second motor and send the detected signal to the controller when the vehicle is driven by the second motor and the engine is required to be started to provide assistance to the second motor; the controller is designed to set the rotation speed ω2 as the target rotation speed ω0 of the first motor according to the signal and control the first motor to start and drive the engine, so as to control the actual rotation speed ω1 of the first motor to be close to the target rotation speed ω0 of the first motor; the controller is further designed to switch the state of the first motor from a driving motor to a power generator to provide load to the engine and stabilize the rotation speed of the engine and control the clutch to engage when the actual rotation speed ω1 of the first motor is approximately equal to the target rotation speed ω0 of the first motor.
As an example, the actual rotation speed ω1 of the first motor is approximately equal to the target rotation speed ω0 of the first motor can be defined that the difference between the actual rotation speed ω1 of the first motor and the target rotation speed ω0 of the first motor is smaller than 200 rpm, preferably smaller than 100 rpm.
In addition, the controller can calculate the acceleration a2 of the second motor from the rotation speed ω2 of the second motor, and set the acceleration a2 as the target acceleration a0 of the first motor. When the actual rotation speed ω1 of the first motor is approximately equal to the target rotation speed ω0 of the first motor, the controller controls the first motor to switch from the driving motor to the power generator so as to provide load to the engine and thereby stabilize the rotation speed of the engine, controls the load of the first motor to regulate the actual acceleration a1 of the first motor to be slightly higher than the target acceleration a0, and then controls the clutch to engage.
Preferably, the actual acceleration a1 may be higher than the target acceleration a0 by 10˜200 rpm/min.
While the present invention has been illustrated and described with reference to some embodiments, the present invention is not limited to these. For example, the control method provided in the present invention can be applied to other similar hybrid power output devices, or some modifications or embellishments can be made to the control method and the control system provided in the present invention, without departing from the spirit and scope of the present invention; however, such modifications or embellishments shall fall into the protected domain of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2007 1 0129745 | Jul 2007 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2008/071049 | 5/22/2008 | WO | 00 | 1/25/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/012671 | 1/29/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6166499 | Kanamori et al. | Dec 2000 | A |
6190282 | Deguchi et al. | Feb 2001 | B1 |
7117963 | Saito et al. | Oct 2006 | B2 |
20040065490 | Saito et al. | Apr 2004 | A1 |
20050038577 | Dreibholz et al. | Feb 2005 | A1 |
20100181125 | Wang et al. | Jul 2010 | A1 |
20100282530 | Wang et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
1915702 | Feb 2007 | CN |
69801854 | Apr 2002 | DE |
10337002 | Mar 2005 | DE |
0866544 | Sep 1998 | EP |
10271749 | Oct 1998 | JP |
11165566 | Jun 1999 | JP |
3000953 | Nov 1999 | JP |
3341659 | Aug 2002 | JP |
2004129411 | Apr 2004 | JP |
2005065492 | Mar 2005 | JP |
2007001573 | Jan 2007 | JP |
3964446 | Jun 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20100210411 A1 | Aug 2010 | US |