Clutch mechanism of outboard engine

Information

  • Patent Grant
  • 6386350
  • Patent Number
    6,386,350
  • Date Filed
    Thursday, June 29, 2000
    24 years ago
  • Date Issued
    Tuesday, May 14, 2002
    22 years ago
Abstract
A clutch mechanism of an outboard engine provides improved feel of shifting operation while allowing a detent mechanism and a stopper to fully perform their functions. The clutch mechanism has a shift cam which is remotely operable through a clutch rod and a shift rod, so as to switch the direction of rotation of a propeller shaft within a gear case. The clutch mechanism has an assist device acting between the clutch rod and the shift rod. The assist device has a rotary drive member connected to the clutch rod, a rotary driven member connected to the shift rod and driven by the drive member, and an elastic member disposed to act between the drive member and the driven member.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a clutch mechanism of an outboard engine.




2. Description of the Related Art




In general, an outboard engine has a clutch mechanism which is remotely-operable to change over the direction of rotation of a propeller shaft between “forward” and “reverse” passing through a “neutral” state. To enable such a change-over of direction of rotation, the propeller shaft has a push rod incorporated therein. The push rod is moved back and forth to bring a clutch dog into and out of engagement with the propeller shaft. This arrangement is generally known as “shift-in and shift-out” structure. A shift cam is typically used as means for effecting the back-and-forth movement of the push rod.




The shift cam has a cam profile which is defined by three curved recesses that are smoothly connected one to another. These three recesses have different depths corresponding to three shift positions, i.e., the “forward”, “reverse” and “neutral” states, of the clutch mechanism. The above-mentioned push rod is normally spring-biased towards the cam, so as to rest in one of the three recesses, thus selecting one of the three shift positions.




There are two types of the shift cam: a vertically-movable shift cam which moves up and down to bring different recesses into engagement with the push rod; and a rotational shift cam which rotates within a horizontal plane. The rotational shift cam imparts to the operator a better feel of manipulation and is used mainly for large-sized outboard engines.




The shift cam is associated with a suitable means which retains the shift cam in the neutral position. For instance, a linearly-movable shift cam may have a detent mechanism with a rigid ball spring-biased into a dent formed in the back side, i.e., the side opposite to the recesses, of the shift cam.




Thus, the detent mechanism can easily be located in the vicinity of the shift cam, when the cam is of the linearly movable type. With the rotational shift cam, however, it is not easy to find a space in the close proximity of the shift cam for accommodating the detent mechanism. The detent mechanism therefore has to be disposed at a location spaced away from the shift cam, e.g., on a portion of a clutch rod.




The rotational shift cam has a stopper for preventing the cam from rotating beyond limit rotational positions. As in the case of the detent mechanism, the stopper cannot be disposed in the vicinity of the shift cam. The stopper is therefore arranged at a position remote from the shift cam, e.g., on a portion of the clutch rod.




During shifting from the forward position to the neutral position and from the neutral position to the reverse position, and vice versa, the end of the push rod engaging the shift cam has to slide along a peak or a crest between the two recesses of the cam profile, thus encountering a significant resistance or load, which impairs the feel of the shifting operation.




Locating the detent mechanism at a position remote from the shift cam allows the detent mechanism to act on the shift cam only indirectly. This leads to problems such as a time lag until the detent force is actually exerted on the shift cam. In addition, there is a risk that the clutch mechanism may be erroneously brought back into the shift-in condition even when the detent mechanism is operative.




It is also to be noted that assembly or setup of the clutch mechanism cannot be performed unless the shift cam is fixed exactly in the neutral position by the detent function. Fixing of the shift cam exactly at the neutral position is also essential for enabling confirmation of the shift-in and shift-out positions after the setup.




Likewise, locating the stopper at a place remote from the shift cam may lead to troubles such as unintentional continuation of the shift-in state despite safe functioning of the stopper.




SUMMARY OF THE INVENTION




In view of the foregoing, it is an object of the present invention to provide a clutch mechanism which is used in an outboard engine and which ensures full functioning of a detent mechanism and a stopper, while offering improved feel of the shifting operation.




To this end, according to the present invention, there is provided a clutch mechanism of an outboard engine, comprising: a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod through which the shift cam is remotely operated; and an assist device provided to act between the clutch rod and the shift rod, the assist device including a drive member connected to the clutch rod, a driven member connected to the shift rod and driven by the drive member, and a resilient member disposed to act between the drive member and the driven member.




The drive member and the driven member may be rotary members, and the assist device may have a shift housing which rotatably supports and receives the rotary drive member and the rotary driven member. With this arrangement, the clutch mechanism may have a detent mechanism on the shift housing and which includes a rigid ball, a spring for urging the rigid ball against the outer peripheral surface of the rotary driven member, and a plurality of recesses formed in the outer peripheral surface of the rotary driven member, the spring urging and pressing the rigid ball into engagement with one of the recesses.




Preferably, the driven member is provided with a stopper projecting from the outer peripheral surface thereof, while the shift housing has a cylindrical hub surrounding and supporting the driven member, the cylindrical hub having a cutout portion which receives the stopper such that the range of rotational movement of the stopper is limited by both ends of the cutout portion, whereby the range of rotation of the driven member is limited.




Preferably, a projection for retaining the elastic member is provided on the drive member.




Preferably, the projection has an arcuate form concentric with the drive member.




The arrangement may be such that the end of the projection makes surface contact with a portion of the driven member.




Preferably, the spring which urges the rigid ball against the outer peripheral surface of the driven member is arranged to extend obliquely downward within the shift housing when viewed in side elevation.




The above and other objects, features and advantages of the present invention will become clear from the following description of a preferred embodiment with reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an elevational view of an outboard engine incorporating an embodiment of the clutch mechanism of the present invention, as viewed from the port side.





FIG. 2

is an enlarged sectional view of the gear case of FIG.


1


.





FIG. 3

is a sectional view taken along the line III—III of FIG.


2


.





FIG. 4

is a longitudinal sectional view of an assist device which interconnects a clutch rod and a shift rod.





FIG. 5

is a sectional view taken along the line V—V of FIG.


4


.





FIG. 6

is a bottom plan view of the assist device in a “shift-in” condition.





FIG. 7

is a longitudinal view of a structure of the assist device used in a second embodiment of the present invention.





FIG. 8

is a longitudinal view of a structure of the assist device used in a third embodiment of the present invention.





FIG. 9

is an illustration of the assist device as viewed in the direction of the arrow IX of FIG.


8


.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring first to

FIG. 1

, an outboard engine


1


has an engine holder


2


on which is mounted an engine unit


3


. The engine unit


3


is a so-called vertical engine with a crankshaft


4


extending substantially vertically.




An oil pan


5


is disposed beneath the engine holder


2


. A clamp bracket


6


, attached to the engine holder


2


for example, clamps a transom of the boat's hull (not shown), whereby the outboard engine


1


is secured to the hull. The engine unit


3


and the engine holder


2


are covered by an engine cover


7


.




A drive shaft housing


8


is provided under the oil pan


5


. A drive shaft


9


extends substantially vertically through the engine holder


2


, oil pan


5


and the drive shaft housing


8


. The drive shaft


9


is connected at its upper end to the lower end of the crankshaft


4


. The drive shaft


9


extends downward through the drive shaft housing


8


. Drive shaft


9


drives, through bevel gears


11


disposed in a gear case


10


provided under the drive shaft housing


8


and through a propeller shaft


12


, a propeller


13


which propels a boat or the like.




The outboard engine


1


is provided with a remote-controlled clutch mechanism


14


which changes the direction of rotation of the propeller shaft


12


from “forward” to “reverse” via a “neutral” state, and vice versa.




Referring to

FIGS. 2 and 3

, the clutch mechanism


14


has major parts including a clutch rod


15


, a shift rod


16


, an assist device


17


, a shift cam


18


, a push rod


19


and a clutch dog


20


. The clutch rod


15


extends towards the gear case


10


from, for example, a position in the engine cover


7


near the engine unit


3


, and is connected to the shift rod


16


via the assist device


17


which is disposed in the portion of the gear case


10


adjoining the drive shaft housing


8


. The arrangement is such that, when an operator on board manipulates a shift lever (not shown) or the like, the motion of the shift lever is converted into a rotational motion of the clutch rod


15


which is then transmitted to the shift rod


16


.




The shift cam


18


is fixed to the lower end of the shift rod


16


so as to rotate together with the shift rod


16


. As will be seen from

FIG. 3

, the shift cam


18


has a cam profile composed of three consecutive curved recesses


21


which respectively correspond to the “forward” (F), “neutral” (N) and the “reverse” (R) shift positions. These recesses have bottoms that are at different radial directions from the axis of rotation of the shift cam


18


. The push rod


19


is received in a bore formed in the propeller shaft


12


, so as to be movable in the direction of the axis of the propeller shaft


12


. The push rod


19


is always biased by a spring


23


A against the shift cam


18


, so that the end of the push rod


19


rests in one of the recesses


21


of the shift cam


18


, whereby the clutch mechanism


14


is set to one of the three shift positions.




The aforementioned bevel gears


11


include a forward driven gear


23


and a reverse driven gear


24


which are rotatably carried by the propeller shaft


12


. These driven gears


23


and


24


are always held in driving engagement with a drive gear


25


fixed to the lower end of the drive shaft


9


. The clutch dog


20


serves to drivingly connect either one of the forward driven gear


23


and the reverse driven gear


24


to the propeller shaft


12


, while disconnecting the other from the same, in accordance with the axial position of the push rod


19


. The clutch dog


20


also holds the clutch mechanism


14


in the neutral state in which both the forward and reverse driven gears


23


and


24


are freed from the propeller shaft


12


.




Referring now to

FIGS. 4 and 5

the assist device


17


has a shift housing


26


which rotatably houses and supports a rotary drive member


27


and a rotary driven member


28


. The rotary drive member


27


is connected at its upper end to the clutch rod


15


, while the rotary driven member


28


is connected at its lower end to the shift rod


16


. The upper end of the rotary driven member


28


fits in the lower end of the driven member


27


.




Referring specifically to

FIG. 5

, the rotary drive member


27


is provided with a pair of radial wings


29


. Arcuate projections


30


concentric with the rotary drive member


27


project from side faces of the wings


29


. The rotary driven member


28


has a central bore configured to receive the main part of the rotary drive member


27


together with the wings


29


and the projections


30


. More specifically, in the illustrated embodiment, the central bore


31


has radially expanded portions which receive the wings


29


and the projections


30


. In each of such radial expanded portions, each projection circumferentially opposes one end wall of the radial expansion of the central bore


31


, leaving a slight circumferential gap therebetween. Elastic members such as coiled springs


32


are loaded in these circumferential gaps, so as to urge the wings


29


in the direction opposite to the projections


30


, i.e., in the direction indicated by “A” in FIG.


5


.




The shift housing


26


has a detent mechanism


33


which includes a rigid ball


34


, a spring


35


which urges the rigid ball


34


against the peripheral surface of the rotary driven member


28


, and three consecutive curved recesses


36


formed in the peripheral surface of the rotary driven member


28


. This arrangement provides a kind of clicking mechanism in which the rigid ball


34


is received in one of the recesses


36


so as to keep the rotary driven member


28


at one of the three shift positions. Thus, the three recesses


36


respectively correspond to the “forward” (F), “neutral” (N) and the “reverse” (R) positions. As will be seen from

FIG. 4

, the spring


35


which presses the rigid ball


34


against the outer peripheral surface of the rotary driven member


28


urges the rigid ball


34


obliquely downward (as viewed in side elevation) into one of the recesses


36


.




A stopper


37


is formed on the outer peripheral surface of the rotary driven member


28


so as to project radially outward therefrom. The stopper


37


prevents the driven member from rotating beyond each limit position where the push rod engages with one of two outer recesses


36


. The stopper


37


is positioned within a cutout portion


38


of a cylindrical hub


26




a


of the shift housing


26


. The cylindrical hub


26




a


surrounds and holds the outer peripheral surface of the rotary driven member


28


.




The operation of this embodiment is as follows.




An operator of a boat manipulates a shift lever (not shown) so that the clutch rod


15


and, hence, the shift rod


16


are rotated, thereby rotating the shift cam


18


fixed to the lower end of the shift rod


16


. As a result of the rotation of the shift cam


18


, the end of the push rod


19


that has been held in engagement with one of the recesses


21


is moved to engage a recess


21


which is adjacent to the first-mentioned recess


21


. Since the radial distances of the bottoms of these recesses from the axis of rotation of the shift cam


18


are different, the push rod


19


is moved within the propeller shaft


12


along the axis of the propeller shaft, thereby selectively connecting one of the bevel gears


11


with the propeller shaft or disconnecting these bevels gears


11


from the propeller shaft.




During shifting from the “forward” position to the “neutral” position or from the “neutral” position to the “reverse” position, the end of the push rod


19


slides along the lobe or crest of the cam profile between two recesses


21


. This produces a certain level of resistance or load, thus imparting to the operator a “heavy” or unpleasant feel of operation.




In accordance with the present invention, the load encountered during the shifting is lessened by the assist device


17


which acts between the clutch rod


15


and the shift rod


16


.




More specifically, when the clutch rod


15


is rotated from the neutral position to cause the rotary drive member


27


to move in the direction of the arrow B for example, the rotary driven member


28


is also rotated in the same direction B accompanying the rotary drive member


27


.




As stated before, coiled springs


32


are loaded between the ends of the projections


30


of the rotary drive member


27


and the portions of the rotary driven member


28


opposing these ends of the projections


30


. Thus, the coiled springs


32


are compressed at the beginning of the rotation of the rotary drive member


27


and, thereafter, produce rebounding forces that act to rotationally drive the rotary driven member


28


. Further rotation of the rotary drive member


27


brings the ends of the projections


30


of the rotary drive member


27


into engagement with opposing wall portions of the rotary driven member


28


, whereby the rotary driven member


28


is further rotated to effect the shifting without fail, as will be seen from FIG.


6


.




In the above-described shifting operation, the rebounding forces produced by the springs


32


serve to reduce the initial load, thus imparting better feel of shifting operation.




It is also to be appreciated that the projections


30


provided on the wings


29


of the rotary drive member


27


serve to retain the springs


32


thereby effectively preventing the springs


32


from coming off or from being displaced.




Further, the projections


30


are formed in arcuate form concentric with the rotary drive member


27


such that their ends make surface contact with the close to the shift cam


18


.




Further, the assembly of the clutch mechanism


14


is facilitated because the shift cam


18


can be stably fixed in the neutral position by the effect of the detent mechanism


33


. For the same reason, the work for confirming the shift-in and shift-out positions after the assembly of the clutch mechanism


14


is also facilitated.




The rigid ball


34


of the detent mechanism is pressed against the outer peripheral surface of the rotary driven member


28


by the spring


35


which is arranged to extend obliquely downward towards the recess


36


when viewed in side elevation. This effectively serves to reduce the diameter of the shift housing


26


, contributing to reduction in the size and weight of the assist device


17


.




The stopper


37


provided on the outer peripheral surface of the rotary driven member


28


is movable only within the cutout portion


38


of the cylindrical hub


26




a


of the shift housing


26


which surrounds and holds the rotary driven member


28


, thus limiting the range of rotation of the rotary driven member


28


. This effectively prevents the rotary driven member


28


from being rotated beyond the positions where the push rod


19


engages the two outer recesses


36


, as will be seen from FIG.


6


. Further, since the stopper


37


is disposed within the gear case


10


at a position close to the shift cam


18


, inspection or test after the assembly of the clutch mechanism can be conducted without risk of the push rod


19


moving from a shift position, even if an excessive shifting operation is performed during the test.




In the embodiment described heretofore, the assist device


17


which is one of the critical features of the invention is combined with the clutch mechanism


14


of the type which employs a rotary cam


18


that rotates within a horizontal plane. This, however, is not exclusive and the assist device


17


may be combined with a clutch mechanism of the type which employs a vertically movable shift cam, as will be understood from the following description of a second embodiment of the present invention.




Referring to

FIG. 7

, the second embodiment incorporates an assist device


60


which has a slidable drive member


61


connected to the lower end of a clutch rod (not shown) and a slidable driven member


63


connected to the upper end of a shift rod


62


.




For instance, the slidable drive member


61


has a columnar rod portion


64


and a flange portion


65


provided on the lower end of the rod portion


64


. On the other hand, the slidable driven member


63


is provided at its upper end with a cap member


66


attached thereto. The cap member


66


has an internal bore of a diameter greater than that of the rod portion


64


of the slidable drive member


61


. The rod portion


64


extends downward through an opening formed in the top end of the cap member


66


, so that the above-mentioned flange portion


65


is disposed within the cap member


66


. A spring


67


is loaded between the flange


65


and the top wall of the cap member


66


. The spring


67


urges the flange portion


65


so as to keep the flange


65


in contact with the upper end of the slidable driven member


63


. The flange portion


65


of the slidable drive member


61


has a radially projecting claw


68


which engages a cutout portion


69


formed in the cap member


66


.




In operation, when the operator operates a shift lever (not shown) so as to push the clutch rod downward, the flange portion


65


of the slide member


61


is pressed against the slidable driven member


63


so as to press the shift rod


62


downward.




Conversely, when the operator operates the shift lever so as to pull the clutch rod upward, the flange portion


65


of the slidable drive member


61


acts the compress the spring


67


upward. Therefore, in the beginning period of this operation, the spring


67


is compresses and charged to produce a rebounding force which tends to pull the slidable driven member


63


upward together with the cap member


66


. Further upward pulling of the slidable drive member


61


brings the claw


68


of the flange portion


65


into contact with an end of the cutout portion


69


, whereby the slidable driven member


63


is further pulled upward to effect the shifting without fail.




It will be seen that, during the shifting operation as described above, the rebounding force produced by the spring


67


serves to reduce the initial load, thus imparting better feel of the shifting operation.




In the first and- second embodiments described heretofore, the assist device is combined with clutch mechanisms of the type in which the clutch rod and the shift rod are arranged on a common axis. Obviously, however, the assist device can be used for a clutch mechanism of the type in which the clutch rod and the shift rod are arranged at an offset from each other, as will be understood from the following description of the third embodiment taken in conjunction with

FIGS. 8 and 9

.




Referring to

FIGS. 8 and 9

, a clutch mechanism in accordance with the third embodiment has an assist device


80


, and a clutch rod


81


and shift rod


82


that are offset from each other in the breadthwise (or longitudinal) direction of a boat or the like. A rotary drive member


83


is provided on the lower end of the clutch rod


81


, while a rotary driven member


84


is provided on the upper end of the shift rod


82


.




The rotary drive member


83


has a radial arm


85


. A projection


86


having an arcuate form concentric with the rotary drive member


83


projects from one side of the arm


85


. Meanwhile, the rotary driven member


84


is provided at its peripheral portion with a recess


87


capable of receiving and engaging with the arm


85


and the projection


86


of the rotary member


83


. A slight gap is formed between the end of the projection


86


of the rotary member


83


and an opposing all portion of the recess


87


of the rotary driven member


84


. A spring


88


fitting around the projection


86


of the rotary drive member


83


urges the arm


85


in the direction opposite to the projection


86


.




In operation, when the operator operates the shift lever (not shown) so as to rotate the clutch rod


81


, the rotary drive member


83


is rotated in the same direction as the clutch rod


81


, which in turn causes the rotary driven member


84


to rotate in the direction counter to the direction of rotation of the rotary drive member


83


.




As stated before, a slight gap is left between the end of the projection


86


on the rotary drive member


83


and the opposing wall of the recess


87


in the rotary driven member


84


, with the spring


88


fitting around the projection


83


. Therefore, the spring


88


is contracted and charged in the beginning period of the rotation of the rotary drive member


83


so as to produce a rebounding force which acts to rotate the rotary driven member


84


. A further rotation of the rotary drive member


83


brings the end of the projection


86


of the rotary drive member


83


into surface contact with the opposing wall of the recess


87


in the rotary driven member


84


, thereby causing further rotation of the rotary driven member


84


so as to effect the shifting without fail.




It will be seen that in the above-described shifting operation that the rebounding force produced by the spring


88


serves to reduce the initial load, thus imparting improved feel of the shifting operation.




As will be understood from the foregoing description, the present invention provides a clutch mechanism of an outboard engine, comprising: a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod through which the shift cam is remotely operated; and an assist device provided to act between the clutch rod and the shift rod, the assist device including a drive member connected to the clutch rod, a driven member connected to the shift rod and driven by the drive member, and an elastic member disposed to act between the drive member and the driven member.




This arrangement reduces the load encountered at the beginning of the shifting operation, thus offering a better feel of the shifting operation.




In a preferred from of the invention, the drive member and the driven member are rotary members, and the assist device has a shift housing which rotatably supports and receives the rotary drive member and the rotary driven member. With this arrangement, the clutch device further comprises a detent mechanism provided on the shift housing, the detent mechanism including a rigid ball


34


, a spring


35


for urging the rigid ball against the outer peripheral surface of the rotary driven member, and a plurality of recesses formed in the outer peripheral surface of the rotary driven member, the spring urging and pressing the rigid ball into engagement with one of the recesses. This arrangement ensures that each shift position be definitely determined with good feel of clicking, thus offering a better feel of shifting operation, while reducing any time lag in the shifting operation and facilitating the assembly of the clutch mechanism.




The driven member may be provided with a stopper projecting from the outer peripheral surface thereof, while the shift housing has a cylindrical hub surrounding and supporting the driven member, the cylindrical hub having a cutout portion which receives the stopper such that the range of rotational movement of the stopper is limited by both ends of the cutout portion, whereby the range of rotation of the driven member is limited. This arrangement effectively prevents the driven member from rotating beyond limit positions.




The drive member may have a projection for retaining the elastic member. This ensures that the elastic member is always held in the correct position, without being displaced or coming off.




The projection preferably has an arcuate form concentric with the drive member. This ensures that the torque of the drive member is efficiently transmitted to the driven member.




Preferably, the arrangement may be such that the end of the projection makes surface contact with a portion of the driven member. This also offers high efficiency of transmission of the torque from the drive member to the driven member.




The spring which urges the rigid ball against the outer peripheral surface of the driven member may arranged to extend obliquely downward within the shift housing when viewed in side elevation. This serves to reduce the diameter of the shift housing.




Although the invention has been described through its preferred forms, it is to be understood that the described embodiments are only illustrative and various changes and modifications may be imparted thereto without departing from the scope of the present invention which is limited solely by the appended claims.



Claims
  • 1. A clutch mechanism of an outboard engine comprising:a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod cooperatively operable to remotely operate said shift cam; an assist device between said clutch rod and said shift rod; said assist device including a drive member connected to said clutch rod and a driven member connected to said shift rod; said drive member being operable to drive said driven member; an elastic member between said drive member and said driven member; said elastic member being compressible during an initial portion of shifting, whereby improved feel is attained during shifting; said driven member includes a stopper projecting from the outer peripheral surface thereof; a cylindrical hub in said shift housing surrounding and supporting said driven member; a cutout portion in said cylindrical hub; and said cutout portion receives said stopper whereby a range of rotational movement of said stopper is limited by ends of said cutout portion, and thereby a range of rotation of said driven member is limited.
  • 2. A clutch mechanism according to claim 1, further comprising a projection on said drive member for retaining said elastic member.
  • 3. A clutch mechanism according to claim 2, wherein an end of said projection makes surface contact with a portion of said driven member.
  • 4. A clutch mechanism according to claim 2, wherein said projection has an arcuate form concentric with said drive member.
  • 5. A clutch mechanism according to claim 4, wherein an end of said projection makes surface contact with a portion of said driven member.
  • 6. A clutch mechanism of an outboard engine comprising:a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod cooperatively operable to remotely operate said shift cam; an assist device between said clutch rod and said shift rod; said assist device including a drive member connected to said clutch rod and a driven member connected to said shift rod; said drive member being operable to drive said driven member; an elastic member between said drive member and said driven member; said elastic member being compressible during an initial portion of shifting, whereby improved feel is attained during shifting said drive member and said driven member are rotary members; said assist device has a shift housing rotatably supporting and receiving the rotary drive member and the rotary driven member; a detent mechanism on said shift housing; said detent mechanism including a rigid ball; a spring positioned to urge said rigid ball against an outer peripheral surface of said rotary driven member; a plurality of recesses in the outer peripheral surface of said rotary driven member; said spring urging and pressing said rigid ball into engagement with a selectable one of said recesses said driven member includes a stopper projecting from the outer peripheral surface thereof; a cylindrical hub in said shift housing surrounding and supporting said driven member; a cutout portion in said cylindrical hub; and said cutout portion receives said stopper whereby a range of rotational movement of said stopper is limited by ends of said cutout portion, and thereby a range of rotation of said driven member is limited.
  • 7. A clutch mechanism according to claim 6, wherein:said spring extends obliquely downward within said shift housing when viewed in side elevation, whereby a transverse dimension of said shift housing is reduced.
Priority Claims (1)
Number Date Country Kind
11-280753 Sep 1999 JP
US Referenced Citations (10)
Number Name Date Kind
1572519 Davis Feb 1926 A
3919964 Hagen Nov 1975 A
4323356 Stephenson Apr 1982 A
4579204 Iio Apr 1986 A
4747796 Iwai et al. May 1988 A
4924724 Yoshimura May 1990 A
5006084 Handa Apr 1991 A
5059144 Onoue Oct 1991 A
5173716 Tetsuka Dec 1992 A
5445546 Nakamura Aug 1995 A
Foreign Referenced Citations (3)
Number Date Country
11-129988 May 1999 JP
11230331 Aug 1999 JP
10299502 Nov 1999 JP