Information
-
Patent Grant
-
6386350
-
Patent Number
6,386,350
-
Date Filed
Thursday, June 29, 200024 years ago
-
Date Issued
Tuesday, May 14, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 192 21
- 192 51
- 192 109 A
- 192 93 R
- 192 8929
- 440 75
- 440 86
- 464 62
- 464 74
- 464 82
- 464 160
- 074 108
- 074 378
- 074 470
- 074 543
- 074 545
- 074 548
-
International Classifications
-
Abstract
A clutch mechanism of an outboard engine provides improved feel of shifting operation while allowing a detent mechanism and a stopper to fully perform their functions. The clutch mechanism has a shift cam which is remotely operable through a clutch rod and a shift rod, so as to switch the direction of rotation of a propeller shaft within a gear case. The clutch mechanism has an assist device acting between the clutch rod and the shift rod. The assist device has a rotary drive member connected to the clutch rod, a rotary driven member connected to the shift rod and driven by the drive member, and an elastic member disposed to act between the drive member and the driven member.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a clutch mechanism of an outboard engine.
2. Description of the Related Art
In general, an outboard engine has a clutch mechanism which is remotely-operable to change over the direction of rotation of a propeller shaft between “forward” and “reverse” passing through a “neutral” state. To enable such a change-over of direction of rotation, the propeller shaft has a push rod incorporated therein. The push rod is moved back and forth to bring a clutch dog into and out of engagement with the propeller shaft. This arrangement is generally known as “shift-in and shift-out” structure. A shift cam is typically used as means for effecting the back-and-forth movement of the push rod.
The shift cam has a cam profile which is defined by three curved recesses that are smoothly connected one to another. These three recesses have different depths corresponding to three shift positions, i.e., the “forward”, “reverse” and “neutral” states, of the clutch mechanism. The above-mentioned push rod is normally spring-biased towards the cam, so as to rest in one of the three recesses, thus selecting one of the three shift positions.
There are two types of the shift cam: a vertically-movable shift cam which moves up and down to bring different recesses into engagement with the push rod; and a rotational shift cam which rotates within a horizontal plane. The rotational shift cam imparts to the operator a better feel of manipulation and is used mainly for large-sized outboard engines.
The shift cam is associated with a suitable means which retains the shift cam in the neutral position. For instance, a linearly-movable shift cam may have a detent mechanism with a rigid ball spring-biased into a dent formed in the back side, i.e., the side opposite to the recesses, of the shift cam.
Thus, the detent mechanism can easily be located in the vicinity of the shift cam, when the cam is of the linearly movable type. With the rotational shift cam, however, it is not easy to find a space in the close proximity of the shift cam for accommodating the detent mechanism. The detent mechanism therefore has to be disposed at a location spaced away from the shift cam, e.g., on a portion of a clutch rod.
The rotational shift cam has a stopper for preventing the cam from rotating beyond limit rotational positions. As in the case of the detent mechanism, the stopper cannot be disposed in the vicinity of the shift cam. The stopper is therefore arranged at a position remote from the shift cam, e.g., on a portion of the clutch rod.
During shifting from the forward position to the neutral position and from the neutral position to the reverse position, and vice versa, the end of the push rod engaging the shift cam has to slide along a peak or a crest between the two recesses of the cam profile, thus encountering a significant resistance or load, which impairs the feel of the shifting operation.
Locating the detent mechanism at a position remote from the shift cam allows the detent mechanism to act on the shift cam only indirectly. This leads to problems such as a time lag until the detent force is actually exerted on the shift cam. In addition, there is a risk that the clutch mechanism may be erroneously brought back into the shift-in condition even when the detent mechanism is operative.
It is also to be noted that assembly or setup of the clutch mechanism cannot be performed unless the shift cam is fixed exactly in the neutral position by the detent function. Fixing of the shift cam exactly at the neutral position is also essential for enabling confirmation of the shift-in and shift-out positions after the setup.
Likewise, locating the stopper at a place remote from the shift cam may lead to troubles such as unintentional continuation of the shift-in state despite safe functioning of the stopper.
SUMMARY OF THE INVENTION
In view of the foregoing, it is an object of the present invention to provide a clutch mechanism which is used in an outboard engine and which ensures full functioning of a detent mechanism and a stopper, while offering improved feel of the shifting operation.
To this end, according to the present invention, there is provided a clutch mechanism of an outboard engine, comprising: a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod through which the shift cam is remotely operated; and an assist device provided to act between the clutch rod and the shift rod, the assist device including a drive member connected to the clutch rod, a driven member connected to the shift rod and driven by the drive member, and a resilient member disposed to act between the drive member and the driven member.
The drive member and the driven member may be rotary members, and the assist device may have a shift housing which rotatably supports and receives the rotary drive member and the rotary driven member. With this arrangement, the clutch mechanism may have a detent mechanism on the shift housing and which includes a rigid ball, a spring for urging the rigid ball against the outer peripheral surface of the rotary driven member, and a plurality of recesses formed in the outer peripheral surface of the rotary driven member, the spring urging and pressing the rigid ball into engagement with one of the recesses.
Preferably, the driven member is provided with a stopper projecting from the outer peripheral surface thereof, while the shift housing has a cylindrical hub surrounding and supporting the driven member, the cylindrical hub having a cutout portion which receives the stopper such that the range of rotational movement of the stopper is limited by both ends of the cutout portion, whereby the range of rotation of the driven member is limited.
Preferably, a projection for retaining the elastic member is provided on the drive member.
Preferably, the projection has an arcuate form concentric with the drive member.
The arrangement may be such that the end of the projection makes surface contact with a portion of the driven member.
Preferably, the spring which urges the rigid ball against the outer peripheral surface of the driven member is arranged to extend obliquely downward within the shift housing when viewed in side elevation.
The above and other objects, features and advantages of the present invention will become clear from the following description of a preferred embodiment with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an elevational view of an outboard engine incorporating an embodiment of the clutch mechanism of the present invention, as viewed from the port side.
FIG. 2
is an enlarged sectional view of the gear case of FIG.
1
.
FIG. 3
is a sectional view taken along the line III—III of FIG.
2
.
FIG. 4
is a longitudinal sectional view of an assist device which interconnects a clutch rod and a shift rod.
FIG. 5
is a sectional view taken along the line V—V of FIG.
4
.
FIG. 6
is a bottom plan view of the assist device in a “shift-in” condition.
FIG. 7
is a longitudinal view of a structure of the assist device used in a second embodiment of the present invention.
FIG. 8
is a longitudinal view of a structure of the assist device used in a third embodiment of the present invention.
FIG. 9
is an illustration of the assist device as viewed in the direction of the arrow IX of FIG.
8
.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring first to
FIG. 1
, an outboard engine
1
has an engine holder
2
on which is mounted an engine unit
3
. The engine unit
3
is a so-called vertical engine with a crankshaft
4
extending substantially vertically.
An oil pan
5
is disposed beneath the engine holder
2
. A clamp bracket
6
, attached to the engine holder
2
for example, clamps a transom of the boat's hull (not shown), whereby the outboard engine
1
is secured to the hull. The engine unit
3
and the engine holder
2
are covered by an engine cover
7
.
A drive shaft housing
8
is provided under the oil pan
5
. A drive shaft
9
extends substantially vertically through the engine holder
2
, oil pan
5
and the drive shaft housing
8
. The drive shaft
9
is connected at its upper end to the lower end of the crankshaft
4
. The drive shaft
9
extends downward through the drive shaft housing
8
. Drive shaft
9
drives, through bevel gears
11
disposed in a gear case
10
provided under the drive shaft housing
8
and through a propeller shaft
12
, a propeller
13
which propels a boat or the like.
The outboard engine
1
is provided with a remote-controlled clutch mechanism
14
which changes the direction of rotation of the propeller shaft
12
from “forward” to “reverse” via a “neutral” state, and vice versa.
Referring to
FIGS. 2 and 3
, the clutch mechanism
14
has major parts including a clutch rod
15
, a shift rod
16
, an assist device
17
, a shift cam
18
, a push rod
19
and a clutch dog
20
. The clutch rod
15
extends towards the gear case
10
from, for example, a position in the engine cover
7
near the engine unit
3
, and is connected to the shift rod
16
via the assist device
17
which is disposed in the portion of the gear case
10
adjoining the drive shaft housing
8
. The arrangement is such that, when an operator on board manipulates a shift lever (not shown) or the like, the motion of the shift lever is converted into a rotational motion of the clutch rod
15
which is then transmitted to the shift rod
16
.
The shift cam
18
is fixed to the lower end of the shift rod
16
so as to rotate together with the shift rod
16
. As will be seen from
FIG. 3
, the shift cam
18
has a cam profile composed of three consecutive curved recesses
21
which respectively correspond to the “forward” (F), “neutral” (N) and the “reverse” (R) shift positions. These recesses have bottoms that are at different radial directions from the axis of rotation of the shift cam
18
. The push rod
19
is received in a bore formed in the propeller shaft
12
, so as to be movable in the direction of the axis of the propeller shaft
12
. The push rod
19
is always biased by a spring
23
A against the shift cam
18
, so that the end of the push rod
19
rests in one of the recesses
21
of the shift cam
18
, whereby the clutch mechanism
14
is set to one of the three shift positions.
The aforementioned bevel gears
11
include a forward driven gear
23
and a reverse driven gear
24
which are rotatably carried by the propeller shaft
12
. These driven gears
23
and
24
are always held in driving engagement with a drive gear
25
fixed to the lower end of the drive shaft
9
. The clutch dog
20
serves to drivingly connect either one of the forward driven gear
23
and the reverse driven gear
24
to the propeller shaft
12
, while disconnecting the other from the same, in accordance with the axial position of the push rod
19
. The clutch dog
20
also holds the clutch mechanism
14
in the neutral state in which both the forward and reverse driven gears
23
and
24
are freed from the propeller shaft
12
.
Referring now to
FIGS. 4 and 5
the assist device
17
has a shift housing
26
which rotatably houses and supports a rotary drive member
27
and a rotary driven member
28
. The rotary drive member
27
is connected at its upper end to the clutch rod
15
, while the rotary driven member
28
is connected at its lower end to the shift rod
16
. The upper end of the rotary driven member
28
fits in the lower end of the driven member
27
.
Referring specifically to
FIG. 5
, the rotary drive member
27
is provided with a pair of radial wings
29
. Arcuate projections
30
concentric with the rotary drive member
27
project from side faces of the wings
29
. The rotary driven member
28
has a central bore configured to receive the main part of the rotary drive member
27
together with the wings
29
and the projections
30
. More specifically, in the illustrated embodiment, the central bore
31
has radially expanded portions which receive the wings
29
and the projections
30
. In each of such radial expanded portions, each projection circumferentially opposes one end wall of the radial expansion of the central bore
31
, leaving a slight circumferential gap therebetween. Elastic members such as coiled springs
32
are loaded in these circumferential gaps, so as to urge the wings
29
in the direction opposite to the projections
30
, i.e., in the direction indicated by “A” in FIG.
5
.
The shift housing
26
has a detent mechanism
33
which includes a rigid ball
34
, a spring
35
which urges the rigid ball
34
against the peripheral surface of the rotary driven member
28
, and three consecutive curved recesses
36
formed in the peripheral surface of the rotary driven member
28
. This arrangement provides a kind of clicking mechanism in which the rigid ball
34
is received in one of the recesses
36
so as to keep the rotary driven member
28
at one of the three shift positions. Thus, the three recesses
36
respectively correspond to the “forward” (F), “neutral” (N) and the “reverse” (R) positions. As will be seen from
FIG. 4
, the spring
35
which presses the rigid ball
34
against the outer peripheral surface of the rotary driven member
28
urges the rigid ball
34
obliquely downward (as viewed in side elevation) into one of the recesses
36
.
A stopper
37
is formed on the outer peripheral surface of the rotary driven member
28
so as to project radially outward therefrom. The stopper
37
prevents the driven member from rotating beyond each limit position where the push rod engages with one of two outer recesses
36
. The stopper
37
is positioned within a cutout portion
38
of a cylindrical hub
26
a
of the shift housing
26
. The cylindrical hub
26
a
surrounds and holds the outer peripheral surface of the rotary driven member
28
.
The operation of this embodiment is as follows.
An operator of a boat manipulates a shift lever (not shown) so that the clutch rod
15
and, hence, the shift rod
16
are rotated, thereby rotating the shift cam
18
fixed to the lower end of the shift rod
16
. As a result of the rotation of the shift cam
18
, the end of the push rod
19
that has been held in engagement with one of the recesses
21
is moved to engage a recess
21
which is adjacent to the first-mentioned recess
21
. Since the radial distances of the bottoms of these recesses from the axis of rotation of the shift cam
18
are different, the push rod
19
is moved within the propeller shaft
12
along the axis of the propeller shaft, thereby selectively connecting one of the bevel gears
11
with the propeller shaft or disconnecting these bevels gears
11
from the propeller shaft.
During shifting from the “forward” position to the “neutral” position or from the “neutral” position to the “reverse” position, the end of the push rod
19
slides along the lobe or crest of the cam profile between two recesses
21
. This produces a certain level of resistance or load, thus imparting to the operator a “heavy” or unpleasant feel of operation.
In accordance with the present invention, the load encountered during the shifting is lessened by the assist device
17
which acts between the clutch rod
15
and the shift rod
16
.
More specifically, when the clutch rod
15
is rotated from the neutral position to cause the rotary drive member
27
to move in the direction of the arrow B for example, the rotary driven member
28
is also rotated in the same direction B accompanying the rotary drive member
27
.
As stated before, coiled springs
32
are loaded between the ends of the projections
30
of the rotary drive member
27
and the portions of the rotary driven member
28
opposing these ends of the projections
30
. Thus, the coiled springs
32
are compressed at the beginning of the rotation of the rotary drive member
27
and, thereafter, produce rebounding forces that act to rotationally drive the rotary driven member
28
. Further rotation of the rotary drive member
27
brings the ends of the projections
30
of the rotary drive member
27
into engagement with opposing wall portions of the rotary driven member
28
, whereby the rotary driven member
28
is further rotated to effect the shifting without fail, as will be seen from FIG.
6
.
In the above-described shifting operation, the rebounding forces produced by the springs
32
serve to reduce the initial load, thus imparting better feel of shifting operation.
It is also to be appreciated that the projections
30
provided on the wings
29
of the rotary drive member
27
serve to retain the springs
32
thereby effectively preventing the springs
32
from coming off or from being displaced.
Further, the projections
30
are formed in arcuate form concentric with the rotary drive member
27
such that their ends make surface contact with the close to the shift cam
18
.
Further, the assembly of the clutch mechanism
14
is facilitated because the shift cam
18
can be stably fixed in the neutral position by the effect of the detent mechanism
33
. For the same reason, the work for confirming the shift-in and shift-out positions after the assembly of the clutch mechanism
14
is also facilitated.
The rigid ball
34
of the detent mechanism is pressed against the outer peripheral surface of the rotary driven member
28
by the spring
35
which is arranged to extend obliquely downward towards the recess
36
when viewed in side elevation. This effectively serves to reduce the diameter of the shift housing
26
, contributing to reduction in the size and weight of the assist device
17
.
The stopper
37
provided on the outer peripheral surface of the rotary driven member
28
is movable only within the cutout portion
38
of the cylindrical hub
26
a
of the shift housing
26
which surrounds and holds the rotary driven member
28
, thus limiting the range of rotation of the rotary driven member
28
. This effectively prevents the rotary driven member
28
from being rotated beyond the positions where the push rod
19
engages the two outer recesses
36
, as will be seen from FIG.
6
. Further, since the stopper
37
is disposed within the gear case
10
at a position close to the shift cam
18
, inspection or test after the assembly of the clutch mechanism can be conducted without risk of the push rod
19
moving from a shift position, even if an excessive shifting operation is performed during the test.
In the embodiment described heretofore, the assist device
17
which is one of the critical features of the invention is combined with the clutch mechanism
14
of the type which employs a rotary cam
18
that rotates within a horizontal plane. This, however, is not exclusive and the assist device
17
may be combined with a clutch mechanism of the type which employs a vertically movable shift cam, as will be understood from the following description of a second embodiment of the present invention.
Referring to
FIG. 7
, the second embodiment incorporates an assist device
60
which has a slidable drive member
61
connected to the lower end of a clutch rod (not shown) and a slidable driven member
63
connected to the upper end of a shift rod
62
.
For instance, the slidable drive member
61
has a columnar rod portion
64
and a flange portion
65
provided on the lower end of the rod portion
64
. On the other hand, the slidable driven member
63
is provided at its upper end with a cap member
66
attached thereto. The cap member
66
has an internal bore of a diameter greater than that of the rod portion
64
of the slidable drive member
61
. The rod portion
64
extends downward through an opening formed in the top end of the cap member
66
, so that the above-mentioned flange portion
65
is disposed within the cap member
66
. A spring
67
is loaded between the flange
65
and the top wall of the cap member
66
. The spring
67
urges the flange portion
65
so as to keep the flange
65
in contact with the upper end of the slidable driven member
63
. The flange portion
65
of the slidable drive member
61
has a radially projecting claw
68
which engages a cutout portion
69
formed in the cap member
66
.
In operation, when the operator operates a shift lever (not shown) so as to push the clutch rod downward, the flange portion
65
of the slide member
61
is pressed against the slidable driven member
63
so as to press the shift rod
62
downward.
Conversely, when the operator operates the shift lever so as to pull the clutch rod upward, the flange portion
65
of the slidable drive member
61
acts the compress the spring
67
upward. Therefore, in the beginning period of this operation, the spring
67
is compresses and charged to produce a rebounding force which tends to pull the slidable driven member
63
upward together with the cap member
66
. Further upward pulling of the slidable drive member
61
brings the claw
68
of the flange portion
65
into contact with an end of the cutout portion
69
, whereby the slidable driven member
63
is further pulled upward to effect the shifting without fail.
It will be seen that, during the shifting operation as described above, the rebounding force produced by the spring
67
serves to reduce the initial load, thus imparting better feel of the shifting operation.
In the first and- second embodiments described heretofore, the assist device is combined with clutch mechanisms of the type in which the clutch rod and the shift rod are arranged on a common axis. Obviously, however, the assist device can be used for a clutch mechanism of the type in which the clutch rod and the shift rod are arranged at an offset from each other, as will be understood from the following description of the third embodiment taken in conjunction with
FIGS. 8 and 9
.
Referring to
FIGS. 8 and 9
, a clutch mechanism in accordance with the third embodiment has an assist device
80
, and a clutch rod
81
and shift rod
82
that are offset from each other in the breadthwise (or longitudinal) direction of a boat or the like. A rotary drive member
83
is provided on the lower end of the clutch rod
81
, while a rotary driven member
84
is provided on the upper end of the shift rod
82
.
The rotary drive member
83
has a radial arm
85
. A projection
86
having an arcuate form concentric with the rotary drive member
83
projects from one side of the arm
85
. Meanwhile, the rotary driven member
84
is provided at its peripheral portion with a recess
87
capable of receiving and engaging with the arm
85
and the projection
86
of the rotary member
83
. A slight gap is formed between the end of the projection
86
of the rotary member
83
and an opposing all portion of the recess
87
of the rotary driven member
84
. A spring
88
fitting around the projection
86
of the rotary drive member
83
urges the arm
85
in the direction opposite to the projection
86
.
In operation, when the operator operates the shift lever (not shown) so as to rotate the clutch rod
81
, the rotary drive member
83
is rotated in the same direction as the clutch rod
81
, which in turn causes the rotary driven member
84
to rotate in the direction counter to the direction of rotation of the rotary drive member
83
.
As stated before, a slight gap is left between the end of the projection
86
on the rotary drive member
83
and the opposing wall of the recess
87
in the rotary driven member
84
, with the spring
88
fitting around the projection
83
. Therefore, the spring
88
is contracted and charged in the beginning period of the rotation of the rotary drive member
83
so as to produce a rebounding force which acts to rotate the rotary driven member
84
. A further rotation of the rotary drive member
83
brings the end of the projection
86
of the rotary drive member
83
into surface contact with the opposing wall of the recess
87
in the rotary driven member
84
, thereby causing further rotation of the rotary driven member
84
so as to effect the shifting without fail.
It will be seen that in the above-described shifting operation that the rebounding force produced by the spring
88
serves to reduce the initial load, thus imparting improved feel of the shifting operation.
As will be understood from the foregoing description, the present invention provides a clutch mechanism of an outboard engine, comprising: a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod through which the shift cam is remotely operated; and an assist device provided to act between the clutch rod and the shift rod, the assist device including a drive member connected to the clutch rod, a driven member connected to the shift rod and driven by the drive member, and an elastic member disposed to act between the drive member and the driven member.
This arrangement reduces the load encountered at the beginning of the shifting operation, thus offering a better feel of the shifting operation.
In a preferred from of the invention, the drive member and the driven member are rotary members, and the assist device has a shift housing which rotatably supports and receives the rotary drive member and the rotary driven member. With this arrangement, the clutch device further comprises a detent mechanism provided on the shift housing, the detent mechanism including a rigid ball
34
, a spring
35
for urging the rigid ball against the outer peripheral surface of the rotary driven member, and a plurality of recesses formed in the outer peripheral surface of the rotary driven member, the spring urging and pressing the rigid ball into engagement with one of the recesses. This arrangement ensures that each shift position be definitely determined with good feel of clicking, thus offering a better feel of shifting operation, while reducing any time lag in the shifting operation and facilitating the assembly of the clutch mechanism.
The driven member may be provided with a stopper projecting from the outer peripheral surface thereof, while the shift housing has a cylindrical hub surrounding and supporting the driven member, the cylindrical hub having a cutout portion which receives the stopper such that the range of rotational movement of the stopper is limited by both ends of the cutout portion, whereby the range of rotation of the driven member is limited. This arrangement effectively prevents the driven member from rotating beyond limit positions.
The drive member may have a projection for retaining the elastic member. This ensures that the elastic member is always held in the correct position, without being displaced or coming off.
The projection preferably has an arcuate form concentric with the drive member. This ensures that the torque of the drive member is efficiently transmitted to the driven member.
Preferably, the arrangement may be such that the end of the projection makes surface contact with a portion of the driven member. This also offers high efficiency of transmission of the torque from the drive member to the driven member.
The spring which urges the rigid ball against the outer peripheral surface of the driven member may arranged to extend obliquely downward within the shift housing when viewed in side elevation. This serves to reduce the diameter of the shift housing.
Although the invention has been described through its preferred forms, it is to be understood that the described embodiments are only illustrative and various changes and modifications may be imparted thereto without departing from the scope of the present invention which is limited solely by the appended claims.
Claims
- 1. A clutch mechanism of an outboard engine comprising:a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod cooperatively operable to remotely operate said shift cam; an assist device between said clutch rod and said shift rod; said assist device including a drive member connected to said clutch rod and a driven member connected to said shift rod; said drive member being operable to drive said driven member; an elastic member between said drive member and said driven member; said elastic member being compressible during an initial portion of shifting, whereby improved feel is attained during shifting; said driven member includes a stopper projecting from the outer peripheral surface thereof; a cylindrical hub in said shift housing surrounding and supporting said driven member; a cutout portion in said cylindrical hub; and said cutout portion receives said stopper whereby a range of rotational movement of said stopper is limited by ends of said cutout portion, and thereby a range of rotation of said driven member is limited.
- 2. A clutch mechanism according to claim 1, further comprising a projection on said drive member for retaining said elastic member.
- 3. A clutch mechanism according to claim 2, wherein an end of said projection makes surface contact with a portion of said driven member.
- 4. A clutch mechanism according to claim 2, wherein said projection has an arcuate form concentric with said drive member.
- 5. A clutch mechanism according to claim 4, wherein an end of said projection makes surface contact with a portion of said driven member.
- 6. A clutch mechanism of an outboard engine comprising:a remotely-operable shift cam for switching the direction of rotation of a propeller shaft in a gear case of the outboard engine; a clutch rod and a shift rod cooperatively operable to remotely operate said shift cam; an assist device between said clutch rod and said shift rod; said assist device including a drive member connected to said clutch rod and a driven member connected to said shift rod; said drive member being operable to drive said driven member; an elastic member between said drive member and said driven member; said elastic member being compressible during an initial portion of shifting, whereby improved feel is attained during shifting said drive member and said driven member are rotary members; said assist device has a shift housing rotatably supporting and receiving the rotary drive member and the rotary driven member; a detent mechanism on said shift housing; said detent mechanism including a rigid ball; a spring positioned to urge said rigid ball against an outer peripheral surface of said rotary driven member; a plurality of recesses in the outer peripheral surface of said rotary driven member; said spring urging and pressing said rigid ball into engagement with a selectable one of said recesses said driven member includes a stopper projecting from the outer peripheral surface thereof; a cylindrical hub in said shift housing surrounding and supporting said driven member; a cutout portion in said cylindrical hub; and said cutout portion receives said stopper whereby a range of rotational movement of said stopper is limited by ends of said cutout portion, and thereby a range of rotation of said driven member is limited.
- 7. A clutch mechanism according to claim 6, wherein:said spring extends obliquely downward within said shift housing when viewed in side elevation, whereby a transverse dimension of said shift housing is reduced.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-280753 |
Sep 1999 |
JP |
|
US Referenced Citations (10)
Foreign Referenced Citations (3)
Number |
Date |
Country |
11-129988 |
May 1999 |
JP |
11230331 |
Aug 1999 |
JP |
10299502 |
Nov 1999 |
JP |