Optical coherence tomography (OCT) is an imaging technology that was developed for cross-sectional imaging of scattering media with an axial resolution on the order of a few micrometers, with the actual resolution being determined by the spectral bandwidth of the optical source employed. Optical Doppler tomography (ODT), or color Doppler optical coherence tomography, is an imaging technology that was developed for extracting local flow velocity information along the optical beam axis using the Doppler frequency shift generated from moving scatterers. A phase-resolved ODT (PR-ODT) technique implemented with the autocorrelation of adjacent axial-line (A-line) profiles is widely used to calculate the Doppler frequency shift. Unfortunately PR-ODT suffers from degraded sensitivity due to the relatively small phase change of moving scatterers in the immediate vicinity of stationary scatterers, such as a vessel wall. The vessel size estimated from flow will thus be artificially reduced, and small vessels may be undetectable.
Spectral domain OCT (SD-OCT) is an emerging imaging technology that was developed using principles from spectral interferometry. It has been shown that SD-OCT can perform high sensitivity and high-speed imaging. Recently, the PR technique noted above has been combined with Fourier domain OCT (FD-OCT) to achieve high-speed flow imaging.
The above noted ODT techniques are useful. However, it would be desirable to provide additional ODT imaging techniques that enable better image quality to be achieved, particularly with respect to the disadvantages noted above in regards to PR-ODT.
In ODT, the signal component of primary interest arises from moving scatterers, such as flowing blood cells. However, it is likely that the ODT signal will include additional undesired components, such as clutter induced by stationary scatterers (e.g., a blood vessel wall). In broad terms, the concepts disclosed herein relate to characterizing the undesired signal components, so that they can be removed or filtered from the ODT signal, which should improve the ODT image quality. Thus, the concepts disclosed herein can be considered to encompass clutter rejection filters for ODT. In general, such filters can be implemented using hardware- or software-based signal processing, such that the ODT system used to acquire the ODT signal need not be modified beyond the addition of the clutter filtering elements (i.e., the software or hardware required to filter the ODT signal).
The overall steps employed in implementing such a clutter removal method include defining clutter parameters that enable the clutter signal component to be differentiated from the primary signal component of interest (the signal component arising from moving scatterers, such as flowing blood cells), obtaining an ODT signal, generating an image using the ODT signal, filtering the clutter using the defined parameters, generating an ODT image based on the filtered ODT signal, and determining if the filtering has improved the ODT image quality. In at least one exemplary embodiment, the parameter employed to differentiate the clutter signal component from the moving scatterer signal component is a frequency associated with the clutter signal component. The frequency of the clutter signal component can be empirically deduced by obtaining an ODT signal from an area proximate a region of interest, where the ODT signal is likely to include a relatively large clutter component and a relatively small moving scatterer component, and assuming that the predominant frequency in the ODT signal corresponds to the clutter signal component.
Once a clutter rejection filter has been developed, the clutter filtering process involves obtaining an ODT signal from a region of interest and using the filter to remove clutter signal component, leaving the moving scatterer signal component. The filter can be implemented using software-based signal processing, or hardware-based signal processing (e.g., a custom signal processing circuit).
This Summary has been provided to introduce a few concepts in a simplified form that are further described in detail below in the Description. However, this Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Various aspects and attendant advantages of one or more exemplary embodiments and modifications thereto will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Exemplary embodiments are illustrated in referenced Figures of the drawings. It is intended that the embodiments and Figures disclosed herein are to be considered illustrative rather than restrictive. No limitation on the scope of the technology and of the claims that follow is to be imputed to the examples shown in the drawings and discussed herein.
ODT systems are most often used to acquire data and image blood flow in biological systems, and the concepts disclosed herein are discussed in terms of such biological systems, where moving scatterers are assumed to be blood cells in flow, and stationary scatterers are assumed to be tissue associated with walls of blood vessels. It should be recognized however, that the concepts disclosed herein can be applied to differentiate between other types of moving and stationary scatterers, thus the concepts disclosed herein are not limited to the use of ODT in analyzing blood flow in biological systems.
As noted above, in most ODT systems, the autocorrelation method is used to estimate the Doppler flow velocity from the sequential axial line (A-line) signal (the PR-ODT technique noted in the Background of the Invention). However, such a PR-ODT signal likely includes both a signal component corresponding to clutter, and a signal component corresponding to moving scatterers (the signal component of interest). The concepts disclosed herein encompass a clutter rejection filter that is designed to separate out the clutter signal component from the moving scatterers signal component. The clutter signal component is likely a stationary signal component induced by stationary scatterers, such as tissue forming the blood vessel wall. The moving scatterers signal component is generally induced by moving scatterers, such as flowing blood cells in tissues. Particularly where the region of interest is close to a blood vessel wall, the moving scatterers signal component is likely to be relatively small (fewer and slower moving blood cells will be found adjacent to the blood vessel wall, as compared to a core of the blood vessel), hence removal of the clutter signal component can significantly improve the quality of the data acquired, and a quality of images generated using the acquired data.
In at least one exemplary embodiment, at least one clutter parameter is a frequency associated with the clutter signal component. The frequency of the clutter signal component can be empirically deduced by obtaining an ODT signal from an area proximate a region of interest, where the ODT signal is likely to include a relatively large clutter component and a relatively small moving scatterer component, and assuming that the predominant frequency in the ODT signal corresponds to the clutter signal component. The sequence of steps illustrated in
Once a useful clutter filter has been developed, a flowchart 30 shown in
Having broadly described techniques for generating and using clutter rejection filters in ODT imaging, detailed exemplary implementations will now be described.
As noted above, in the conventional PR-ODT technique, the autocorrelation method is used to estimate the Doppler flow velocity from the sequential axial line (A-line) signal. Such filters can be implemented in either the time domain or the Fourier domain (including the spectral domain, as well as the swept-source OCT). The objective of clutter rejection techniques is to minimize the influence of clutter on the Doppler flow signal and improve the sensitivity of Doppler flow estimation algorithms in regard to moving scatterers.
With respect to the time domain, clutter rejection can be realized in time domain using a simple delay line filter (DLF). With respect to the spectral domain (or Fourier domain in general), in one aspect of the concepts disclosed herein as implemented using an exemplary embodiment, clutter rejection filtering is first applied to the A-line signals, and a conventional velocity estimator based on adjacent A-line autocorrelation can then be used to extract the Doppler frequency shift originated from moving scatterers. This operation is different from PR-ODT, which directly employs the autocorrelation velocity estimator without clutter rejection.
Thus, in one exemplary embodiment, a DLF is used before the Doppler frequency shift estimation implemented in the PR-ODT method. As discussed in greater detail below, empirical ODT images obtained with and without delay line filtering indicate that delay line filtering can be employed as a clutter rejection filter for ODT imaging. The term “moving scatterer sensitive ODT” (MSS-ODT) has been coined to refer to this delay line filtering PR-ODT technique. Note that the conventional PR-ODT technique employs only a velocity estimator, but not a clutter rejection filter and velocity estimation.
Thus, in at least one exemplary embodiment, a phase-shifted DLF is used as the clutter rejection filter. The DLF is employed to filter the A-line signal before a velocity estimator is used to extract Doppler frequency shift of the reflected signal. In an empirical study, the frequency response of different orders of DLFs were analyzed theoretically to prove that the DLF filter technique can be used to separate out the clutter signal component (a primary cause of clutter is the stationary signal component induced by stationary scatterers, such as the blood vessel wall) from the Doppler signal component (induced by moving scatterers, such as flowing blood cells in tissue). Empirical studies and images of fluid flow in capillary tubes and in vivo blood flow in mouse ears have shown that MSS-ODT offers clear advantages compared to conventional PR-ODT (i.e., Doppler ODT without clutter filtering). In such studies, the phase-shifted DLF was implemented in an SD-OCT system. The A-line scan rate of the SD-OCT system employed in the empirical studies was 12.3 k lines/s, allowing real-time structural and Doppler flow imaging to be achieved. Doppler flow images obtained by using a DLF clutter rejection filter with an autocorrelation velocity estimator are compared to those obtained by prior Doppler OCT techniques (i.e., PR-ODT with an autocorrelation velocity estimator but no clutter rejection filtering) to investigate the improvement DLF provided for Doppler flow imaging. Such empirical studies indicate that the accuracy of Doppler flow estimation is improved when a clutter filter is employed, especially when the region of interest is near the wall of a blood vessel. When a clutter rejection filter is employed, the size of blood vessels can be more accurately determined, and small blood vessels that might be masked by stationary scatterers using conventional PR-ODT (i.e., PR-ODT with an autocorrelation velocity estimator but no clutter rejection filtering) can be successfully imaged. Such clutter rejection filters can be beneficially employed for imaging in vivo blood flow in human tissues, especially retinal blood flow.
A key principle in the clutter rejection filter concepts disclosed herein is that the signal back-reflected from stationary scatterers is rejected, to improve the Doppler flow imaging of moving scatterers. As noted above, such clutter rejection filters can be realized using a simple time domain DLF. Thus, the MSS-ODT technique disclosed herein combines the clutter rejection filter and the PR velocity estimator, while conventional PR-ODT uses only the PR velocity estimator for Doppler flow imaging.
The Doppler frequency shift can be used to separate the desired moving scatterers (such as blood cells) from stationary or undesired slowly moving scatterers (such as vessel walls). The Doppler spectrum separation can be realized using a single DLF shown in the diagram of
{tilde over (M)}(jT)={tilde over (Γ)}(jT)−{tilde over (Γ)}(jT−T). (1)
Setting t=jT, the impulse response h(t) of the filter of Eq. (1) is provided by the following relationship:
h(t)=δ(t)−δ(t−T), (2)
where δ is the delta function. The output {tilde over (M)}(jT) is the convolution between {tilde over (Γ)}(jT) and the impulse response. Fourier transformation of h(t) yields the frequency response H(ƒ) of the filter in Doppler frequency shift (ƒ) domain, as indicated by the following relationship:
H(ƒ)=1−exp(−i2πƒT), (3)
in which i is the complex number unit.
The output Doppler spectrum is the product of the frequency response of the filter and the input Doppler spectrum, as described by the following relationship:
{tilde over (M)}(ƒ)={tilde over (Γ)}(ƒ)H(ƒ). (4)
From Eq. (3), the power transfer function of the DLF can be determined using the following relationship:
|H(ƒ)|2=4 sin2(πƒT). (5)
From Eq. (4), the Doppler power spectrum of the output is also the product of the power transfer function and the Doppler power spectrum of the input. Letting z=exp(i2πƒT), then Eq. (3) is transformed in the z-domain, as described by the following relationship:
H(z)=1−z−1. (6)
As indicated in the diagram of
where ak is the binomial coefficients that can be obtained from the following relationship:
From Eq. (7) and the z transform property (D. Schlichtharle, Digital Filters: Basics and Designs (Springer-Verlag, 2000)), the n-order DLF can be formulated as an equivalent filter structure 114 as shown in the diagram of
|H(ƒ)|2=[4 sin2(πƒT)]n. (9)
For all practical purposes, the displacement scanned across samples by the lateral scanning probe should be less than the spot size of the light beam in the samples, to ensure the successive A-line fringes are correlated. Thus, only a few A-line scanning intervels and low order DLFs are necessary for ODT applications. Exemplary weighting coefficients for the first four DLFs can be calculated from Eq. (8), and are listed in Table 1 for reference. From Eq. (9), it can be determined that the stop bands fstop of these filters are described by fstop=mfr, where m is an integer and fr is the A-line scan rate. These stop bands introduce the blind Doppler frequency of these filters, in which the system provides a null Doppler frequency shift. When the relative motion of the stationary scatters with respect to the lateral scanning probe is so small that the Doppler frequency shift induced falls within the stop-band of the DLF used, then the back-reflection signal induced by stationary scatterers is separated out, and its influence on the estimation of Doppler frequency shift is greatly reduced. In contrast, if the stationary scatters were not properly suppressed by the DLF, then Doppler flow information cannot be properly extracted by the velocity estimator.
Referring once again to the lateral scanning probe of an OCT system configured for ODT imaging, if the probe moves relative to the stationary scatterers with a Doppler angle other than 90 degrees, the Doppler frequency shift resulting from the stationary scatterers will not be zero, and therefore a phase shift is required to shift the stop band frequency to match the Doppler frequency shift of these stationary scatterers. To accomplish this, the DLF described above with respect to the diagrams of
The power transfer function of the phase shift filter of
|H(ƒ)|2={4 sin2 [π(ƒ−ƒs)T]}n. (11)
The Doppler power spectrum of stationary scatterers introduced by its relative motion with respect to the scanning probe can be described by the following Gaussian function:
where ƒs denotes the Doppler frequency shift of the stationary scatterers, and σf is the Doppler bandwidth of the stationary scatterers. The Doppler power spectrum of the stationary scatterers is folded in the Doppler frequency shift domain due to the 2π ambiguity phenomena of the frequency shift estimation, thereby influencing the estimation of the Doppler frequency shift of the moving scatterers.
The normalized Doppler power spectrum S(ƒ) of the stationary scatterers and the normalized power transfer functions |H(ƒ)|2 of the first four orders without and with phase-shifting are respectively illustrated in
In
From the theoretical discussions provided above, it follows that the MSS-ODT (clutter filtering combined with phase-resolved autocorrelation of adjacent A-line profiles) technique disclosed herein is independent of the OCT system used for imaging. The conventional PR-ODT technique (phase-resolved autocorrelation of adjacent A-line profiles without clutter filtering) is also independent of the OCT system used for imaging. Therefore, both techniques can be implemented in both time and Fourier domain OCT systems , where the systems are capable of generating complex analytical A-line fringes.
The MSS-ODT technique disclosed herein was empirically implemented using a fiber-optically based SD-OCT system 40, as shown in
It should be recognized that system 40 is exemplary, and the techniques disclosed herein can be used with other ODT imaging systems.
An exemplary signal processing process for extracting the Doppler flow image from SD-OCT system 40 is schematically illustrated in the diagram of
For the MSS-ODT technique, an extra step is required; a phase-shifted DLF 104/106/118 (see
and where p and q are shift steps along the axial (z) direction and lateral scanning (jT) direction. The above calculation is performed within a two-dimensional window of a size S×K, where S is the height of the averaging window along direction z, and K is the number of A-lines that the window spans along the lateral scanning (jT) direction. {tilde over (M)}z*(jT+T) denotes the conjugate of {tilde over (M)}z(jT+T). The unambiguous dynamic range of the frequency shift for Doppler flow imaging is [−1/(2T), 1/(2T)], which is about [−6.2, 6.2] kHz, given T=81 μs, as used for the empirical studies disclosed herein. Because pixels with low intensity will be quite sensitive to noise, the Doppler frequency shift at a given pixel is set to zero when its intensity value is smaller than a preset threshold. In practice the threshold is typically set about 15 dB higher than the average noise level of the structural image, and the same threshold criterion is applied in both PR-ODT and MSS-ODT techniques. This thresholding operation helps alleviate the influence of noise on the Doppler flow image.
To summarize, Eq. (1) is the realization of a single delay line filter in the lateral (temporal) direction as a simple finite difference operation. The frequency response in Doppler frequency shift ƒ domain can be obtained by taking Fourier transform of both sides of Eq. (1). The Doppler power spectra in the ƒ-domain, M(ƒ) and Γ(ƒ) are related by M(ƒ)=|H(ƒ)|2Γ(ƒ), where |H(ƒ)|2 is a power transfer function taking the form of |H(ƒ)|2=4 sin2(πƒT) From the spectral response |H(ƒ)|2 of this simple delay line filter, it is apparent that signals with Doppler frequency shifts near zero (corresponding to stationary scatterers) will be suppressed, but Doppler frequency shifts away from zero (corresponding to moving scatterers) will survive. Therefore, using the filtered quantity {tilde over (M)}j(z) reduces contributions from stationary scatterers and improves sensitivity to nearby moving scatterers in the estimation of Doppler frequency shift.
It should be recognized that clutter filtering can be implemented using a variety of different filtering paradigms. As briefly discussed in the Summary section above, correlating a specific frequency with clutter enables a simple clutter filter to be developed. As discussed in detail above, signal processing in the spectral domain using delay line filtering can be employed. A related time domain filtering paradigm is discussed below. These different filtering paradigms can be implemented in many different ways. Because of the ubiquitous nature of personal computers (and because most OCT systems are used in conjunction with a personal computer for signal processing), in one exemplary embodiment, the clutter rejection filters are implemented as machine instructions executed by a computer processor. However, custom signal processing circuits, such as application specific integrated circuits (ASICs), could alternatively be employed.
In order to evaluate the MSS-ODT technique disclosed herein with the conventional PR-ODT technique, both MSS-ODT and PR-ODT images were obtained. The empirical MSS-ODT images were obtained using a first order phase-shifted DLF. The PR-ODT images were obtained without stationary scatterers being filtered out from the complex analytical fringes. Each set of images were obtained using SD-OCT system 40 with the same intensity threshold, and the averaging window size of 4 μm wide by 2.4 μm deep (i.e., N=4, and K=4 in Eq. (13a)).
One advantage the MSS-ODT technique offers over the conventional PR-ODT technique is that the MSS-ODT technique provides improved accuracy in vessel size measurement. This advantage was empirically demonstrated using a flow phantom experiment, where the phantom was made of gelatin mixed with TiO2 granules (1 mg/ml), to provide tissue-mimicking background scattering. A capillary tube (inner diameter=75 μm) with a 2% Intralipid solution flowing therethrough was embedded within the phantom. The tube was slightly tilted with respect to the phantom surface to ensure a non-zero Doppler angle, and the flow rate was controlled by a syringe pump. The spectral interference fringes detected from the SD-OCT system were analyzed using both the conventional PR-ODT technique and the MSS-ODT technique. The factor η of the phase-shifted DLF was defined as 0.2 for this phantom experiment, based on values employed in previous empirical studies.
Positive and negative greyscale Doppler flow images obtained using PR-ODT are shown in
The clutter frequency shift ƒs in the phase-shifted DLF was set to be −0.2ƒr for the above studies, and was empirically selected to maximize the suppression of the background Doppler signal due to clutters. The ƒs parameter would be changed for different experiments according to the overall clutter Doppler signal level. The flowchart of
The improved performance of the MSS-ODT technique over the PR-ODT technique has further been empirically demonstrated by in vivo imaging of blood vessels in a mouse ear. In this empirical study, the mouse was first anesthetized, and then the OCT imaging beam was laterally scanned over a shaved region on the mouse ear with a handheld probe. The factor η of the phase-shifted DLF was selected to be 0.17 based on empirical analysis. Note the flowchart of
The empirical mouse ear data indicate that vessel size is underestimated by PR-ODT by about 30%, as compared to the vessel size estimated by MSS-ODT. This quantitative comparison result is very similar to the finding in the control phantom studies where MSS-ODT was proved to be more accurate (4% error verses 29% error), suggesting that MSS-ODT provides more accurate estimation of vessel size in vivo as well. This result once again demonstrates that MSS-ODT can achieve better accuracy in estimating blood vessel diameter than PR-ODT. This increase in accuracy is due to the inclusion of the DLF (an implementation of a clutter rejection filter), which suppresses signals from stationary scatterers near the wall of blood vessels. Further, the Doppler images obtained by MSS-ODT exhibit fewer background artifacts induced by the relative motion of stationary scatterers with respect to the scanning probe.
While the clutter rejection filters disclosed herein have emphasized the use of a delay line filter, those of ordinary skill in the art will readily recognize that delay line filter based clutter rejection filters are intended to be exemplary, and not limiting. Other signal filtering techniques that can selectively remove clutter from an ODT signal (i.e., an OCT signal that can be processed to yield an ODT image) can also be employed. The flowchart of
It should be recognized that clutter rejection filters can be implemented in both the time and Fourier domains (noting the MSS-ODT technique disclosed herein encompasses either approach). An exemplary time domain signal process used to remove clutter from an ODT signal is schematically illustrated in the diagram of
Referring to
Referring to
In summary, the concepts disclosed herein encompass clutter rejection filters for Doppler OCT imaging. In one exemplary embodiment, a phase-shifted DLF is employed as a clutter rejection filter, to achieve a MSS-ODT system that separates out stationary scatterers from moving scatterers, to improve the accuracy and sensitivity of Doppler flow imaging. It is expected that these MSS-ODT techniques can be beneficially employed for imaging depth-resolved blood flow rates in the human retina.
It should be recognized that attempts to filter out clutter might unintentionally also remove some of the signal components of interest (e.g., the signal component corresponding to the moving scatterers). While such degradation of the signal component of interest is generally undesirable, it must be recognized that removing the clutter signal component, even with some corresponding degradation of the signal component of interest, may still yield a desirable improved result. The phrase “without substantially affecting the moving scatterer signal component” as used herein is intended to refer to this issue and should be understood to encompass any clutter removal process that impairs or degrades the signal component of interest, yet still achieves a desirable improvement in ODT imaging performance.
Furthermore, it should be recognized that clutter rejection filters may not remove the entire clutter signal component, yet still achieve an improvement in ODT imaging performance. The term “substantially remove the clutter signal component” is thus further intended to encompass any clutter removal process that removes at least some of the clutter signal component and thereby provides a recognizable improvement in ODT imaging performance.
Although the concepts disclosed herein have been described in connection with exemplary methods for practicing them and modifications thereto, those of ordinary skill in the art will understand that many other modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of these concepts in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.
This application is based on a prior copending provisional application, Ser. No. 60/783,555, filed on Mar. 17, 2006, the benefit of the filing date of which is hereby claimed under 35 U.S.C. § 119(e).
This invention was funded at least in part with a grant (No. NIH-1-R21-EB003284-01) from the National Institutes of Health and a grant (No. NSF-BES-0348720) from the National Science Foundation, and the U.S. government may have certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60783555 | Mar 2006 | US |