CMAS-resistant barrier coatings

Abstract
A method includes predicting a composition of calcium-magnesium-aluminum-silicate (CMAS) to be encountered by a high temperature mechanical system during use of the high temperature mechanical system. The method further includes selecting a composition of a CMAS-resistant barrier coating layer based at least in part on the predicted composition of CMAS. The CMAS-resistant barrier coating layer includes a base composition and at least one secondary oxide selected based on the predicted composition of CMAS. The at least one secondary oxide includes at least one of an oxide of a divalent element, an oxide of a trivalent element, or an oxide of a tetravalent element. The CMAS-resistant barrier coating layer comprises greater than 0 mol. % and less than about 7 mol. % of the at least one secondary oxide.
Description
TECHNICAL FIELD

The disclosure relates to barrier coatings for high temperature mechanical systems.


BACKGROUND

Components of high-temperature mechanical systems, such as gas-turbine engines, must operate in severe environments. For example, the high-pressure turbine blades and vanes exposed to hot gases in commercial aeronautical engines typically experience metal surface temperatures of about 1000° C., with short-term peaks as high as 1100° C. Some components of high-temperature mechanical systems include a Ni or Co-based superalloy substrate coated with a thermal barrier coating (TBC). The thermal barrier coating may include a thermally insulative ceramic topcoat and is bonded to the substrate by an underlying metallic bond coat. The TBC may include a layer of yttria-stabilized zirconia (YSZ) with a thickness of about 100-500 μm. The properties of YSZ include low thermal conductivity, high oxygen permeability, and a relatively high coefficient of thermal expansion. The TBC also may be made “strain tolerant” and the thermal conductivity further lowered by depositing a structure that contains numerous pores and/or pathways.


The desire for improved efficiency and reduced emissions, continue to drive the development of advanced gas turbine engines with higher inlet temperatures. Some components of high-temperature mechanical systems include a ceramic or ceramic matrix composite (CMC)-based substrate, which may allow an increased operating temperature compared to a component with a superalloy substrate. The CMC-based substrate can be coated with an environmental barrier coating (EBC) to reduce exposure of a surface of the substrate to environmental species, such as water vapor or oxygen. The EBC also may provide some thermal insulation to the CMC-based substrate. The EBC may include a ceramic topcoat, and may be bonded to the substrate by an underlying metallic or ceramic bond coat.


SUMMARY

In general, the disclosure is directed to a coating having CMAS-resistance. CMAS is a calcium-magnesium-aluminum-silicate deposit resulting from the ingestion of siliceous minerals (dust, sand, volcanic ashes, runway debris, and the like) with the intake of air in gas turbine engines.


In some examples, a method includes predicting a composition of calcium-magnesium-aluminum-silicate (CMAS) to be encountered by a high temperature mechanical system during use of the high temperature mechanical system. The method further includes selecting a composition of a CMAS-resistant barrier coating layer based at least in part on the predicted composition of CMAS. The CMAS-resistant barrier coating layer includes a base composition and at least one secondary oxide selected based on the predicted composition of CMAS. The at least one secondary oxide includes at least one of an oxide of a divalent element, an oxide of a trivalent element, or an oxide of a tetravalent element. The CMAS-resistant barrier coating layer comprises greater than 0 mol. % and less than about 7 mol. % of the at least one secondary oxide.


In some examples, an article includes a substrate and a calcium-magnesium-aluminum-silicate-resistant (CMAS-resistant) barrier coating layer overlying the substrate. The CMAS-resistant barrier coating layer includes a base composition and at least one secondary oxide selected based on the predicted composition of CMAS. The at least one secondary oxide comprises at least one of an oxide of a divalent element, an oxide of a trivalent element, or an oxide of a tetravalent element. The CMAS-resistant barrier coating layer comprises greater than 0 mol. % and less than about 7 mol. % of the at least one secondary oxide.


The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a cross-sectional diagram of an example of an article that includes a substrate coated with a barrier coating including a bond layer and a CMAS-resistant barrier coating layer.



FIG. 2 is a cross-sectional diagram of an example of an article that includes a substrate coated with a barrier coating including an additional barrier coating layer.



FIG. 3 is a cross-sectional diagram of an example of an article that includes a substrate coated with a multilayer barrier coating.



FIG. 4 is a cross-sectional diagram of an example of an article that includes a substrate coated with another multilayer barrier coating.



FIG. 5 is a flowchart of an example process for manufacturing a barrier coating that includes a CMAS-resistant barrier coating layer.





DETAILED DESCRIPTION

In general, the disclosure is directed to coatings that possess resistance to calcium-magnesium-aluminum-silicate (CMAS) degradation, and articles coated with such coatings.


Increased operating efficiency (e.g., fuel efficiency) is continually sought after to reduce operating costs of gas turbine engines. Operating the gas turbine engines at higher temperatures is one technique of improving operating efficiency of the engine. As turbine inlet temperatures continue to increase, new barrier coatings, such as thermal barrier coatings (TBCs) or environmental barrier coatings (EBCs), are required that are able to withstand the high temperature to which the components of the gas turbine engine are exposed. As described briefly above, TBCs are typically deposited as a porous or columnar structure, which increases the stress tolerance and reduces the thermal conductivity of the TBC compared to a non-porous TBC. However, this porous TBC structure is susceptible to damage.


Higher turbine inlet temperatures may lead to damage of the TBC when a CMAS deposit forms on the TBC from the ingestion of siliceous minerals (dust, sand, volcanic ashes, runway debris, and the like) with the intake of air in gas turbine engines. Many CMAS deposits have a melting temperature of about 1200° C. to about 1450° C. (about 2200° F. to about 2650° F.), depending on composition of the CMAS. Advanced gas turbine engines run at TBC surface temperatures above the CMAS melting temperature, so the CMAS may be molten on the surface of the TBC, which allows the CMAS to infiltrate the pores of the porous TBC. When the component coated with the TBC is cooled below the CMAS melting temperature, the CMAS solidifies, which exerts a mechanical strain on the TBC and may reduce the useful life of the TBC. The filling of the pores of the TBC with molten CMAS may also increase the thermal conductivity of the TBC, which is detrimental to the TBC performance and may cause the substrate of the component to be exposed to increased temperatures.


Additionally, in examples in which a TBC includes yttria-stabilized zirconia (YSZ), the molten CMAS may dissolve the TBC along grain boundaries of the YSZ, and, depending on the melt chemistry, zirconia with lower yttria content may precipitate out of the molten solution. This zirconia with lower yttria content may decrease the effectiveness of the TBC compared to a TBC including zirconia and a higher yttria content.


Similar problems may occur in an article coated with an EBC. In some examples, at least a portion of an EBC (e.g., a sub-layer of the EBC) may be deposited on a substrate as a columnar or porous layer, and the cracks or pores may permit ingress of molten CMAS at sufficiently high operating temperatures. As described above, when CMAS cools below its melting temperature and hardens, this may exert a mechanical strain on the EBC and result in breaking of the EBC or spallation of the EBC from the substrate. Spallation of the EBC from the substrate exposes the substrate to attack by water vapor or other environmental species, which may result in recession of the substrate.


In some examples, molten CMAS may penetrate through an EBC or a TBC and may contact a bond layer or a substrate of the article. The CMAS may chemically react with the bond layer and/or substrate and may degrade the bond layer and/or substrate.


In accordance with examples of the disclosure, a barrier coating may include a CMAS-resistant barrier coating layer that protects at least one of a substrate or an underlying layer of an article from CMAS degradation. In general, the CMAS-resistant barrier coating layer may provide the barrier coating with increased resistance to the detrimental effects of CMAS. The CMAS-resistant barrier coating layer may include a base composition and at least one secondary oxide. The base composition may be selected to provide a desired type of protection to the substrate, such as thermal or environmental protection. The at least one secondary oxide may be selected based on a predicted composition of CMAS. The at least one secondary oxide includes at least one of an oxide of a divalent element, an oxide of a trivalent element, or an oxide of a tetravalent element. The CMAS-resistant barrier coating layer may include greater than 0 mol. % and less than about 7 mol. % of the at least one secondary oxide.


While not wishing to be bound by any particular theory, CMAS degradation of a barrier coating may be related to activity of particular active components of the CMAS and a basicity of the active components. Basicity may indicate a relative concentration of active components in the CMAS. Active components such as silica or other oxides of tetravalent elements may contribute to a low basicity of CMAS, while active components such as calcia or other oxides of divalent elements may contribute to a high basicity of CMAS. As an example, CMAS having a low basicity, such as CMAS with a high silica concentration, may degrade barrier coatings through diffusion of silica from the CMAS melt into the barrier coating and reaction of the silica with base components of the barrier coating, leading to depletion of stabilizing dopants and subsequent destabilization of the base components. As another example, CMAS having a high basicity, such as CMAS with a high calcia concentration, may degrade barrier coatings by diffusion of calcia from the CMAS melt into the barrier coating and reaction of the calcia with the base components of the barrier coating.


In some examples, a composition of CMAS to be encountered by a high temperature mechanical system during use of the high temperature mechanical system may be predicted. For example, a basicity index for a known or anticipated CMAS composition may be calculated or referenced based on geographical region of intended use for the high temperature mechanical system. The predicted basicity index may indicate relative concentrations of oxides of divalent elements, oxides of trivalent elements, or oxides of tetravalent elements. Oxides of divalent elements, such as CaO, may act as basic oxides; oxides of tetravalent elements, such as SiO2, may act as acidic oxides; and oxides of trivalent elements, such as Al2O3, may act as amphoteric oxides, which may act as either acidic or basic oxides in different environments. A composition of a CMAS-resistant barrier coating layer may be selected based at least in part on the predicted composition of CMAS. The composition of the CMAS-resistant barrier coating layer may include at least one secondary oxide that includes at least one of an oxide of a divalent element, an oxide of a trivalent element, or an oxide of a tetravalent element. In some examples, secondary oxides that include an oxide of a divalent element, an oxide of a trivalent element, or an oxide of a tetravalent element are active components of the CMAS and/or are in relative concentrations corresponding to relative concentrations of active components of the CMAS. By selecting secondary oxides that are active components of CMAS, the reaction gradient or diffusion gradient between the CMAS components and the components of the CMAS-resistant barrier coating layer may be reduced, which may reduce penetration of active components of CMAS into and degradation of the CMAS-resistant barrier coating layer. In some examples, secondary oxides include oxides of divalent elements, oxides of trivalent elements, and oxides of tetravalent elements that act as basic or acidic oxides, such that a pH or basicity of the CMAS-resistant barrier may better match a pH or basicity of the active components of the CMAS. By selecting secondary oxides that create a basicity in the CMAS resistant barrier coating layer that better matches a pH or basicity of the CMAS, the CMAS-resistant barrier coating layer may be more stable in the presence of CMAS and less reactive with active components of the CMAS.



FIG. 1 shows a cross-sectional view of an example of an article 10 used in a high-temperature mechanical system. The article 10 includes a barrier coating 14 on a substrate 12. Barrier coating 14 includes a bond layer 16 overlying substrate 12 and a CMAS-resistant barrier coating layer 18 overlying bond layer 16.


Substrate 12 is a component of a high temperature mechanical system, such as, for example, a gas turbine engine or the like. In some examples, substrate 12 includes a superalloy, while in other examples, substrate 12 includes a ceramic or ceramic matrix composite (CMC). In examples in which substrate 12 includes a superalloy, substrate 12 may include an alloy based on Ni, Co, Ni/Fe, Ti, or the like. Substrate 12 may include other additive elements to alter its mechanical properties, such as toughness, hardness, temperature stability, corrosion resistance, oxidation resistance, and the like, as is well known in the art. Any useful superalloy may be utilized in substrate 12, including, for example, those available from Martin-Marietta Corp., Bethesda, Md., under the trade designation MAR-M247; those available from Cannon-Muskegon Corp., Muskegon, Mich., under the trade designations CMSX-4 and CMSX-10; and the like.


In other examples, substrate 12 includes a ceramic or CMC. In some examples in which substrate 12 includes a ceramic, the ceramic may be substantially homogeneous. In some examples, a substrate 12 that includes a ceramic includes, for example, a silicon-containing ceramic, such as silica (SiO2), silicon carbide (SiC) or silicon nitride (Si3N4); alumina (Al2O3); aluminosilicate; or the like. In other examples, substrate 12 includes a metal alloy that includes silicon, such as a molybdenum-silicon alloy (e.g., MoSi2) or a niobium-silicon alloy (e.g., NbSi2).


In examples in which substrate 12 includes a CMC, substrate 12 includes a matrix material and a reinforcement material. The matrix material includes a ceramic material, such as, for example, silicon carbide, silicon nitride, alumina, aluminosilicate, silica, or the like. The CMC further includes a continuous or discontinuous reinforcement material. For example, the reinforcement material may include discontinuous whiskers, platelets, or particulates. As other examples, the reinforcement material may include a continuous monofilament or multifilament weave.


In some examples, the composition of the reinforcement material is the same as the composition of the matrix material. For example, a matrix material comprising silicon carbide may surround a reinforcement material comprising silicon carbide whiskers. In other examples, the reinforcement material includes a different composition than the composition of the matrix material, such as aluminosilicate fibers in an alumina matrix, or the like. One composition of a substrate 12 that comprises a CMC includes a reinforcement material comprising silicon carbide continuous fibers embedded in a matrix material comprising silicon carbide.


As shown in FIG. 1, article 10 may include a bond layer 16 on substrate 12. In other examples, article 10 may omit bond layer 16. Bond layer 16 may improve adhesion between substrate 12 and the layer overlying bond layer 16 (e.g., CMAS-resistant barrier coating layer 18 in FIG. 1). Bond layer 16 may include any useful material that improves adhesion between substrate 12 and an overlying layer. For example, when substrate 12 is a superalloy, bond layer 16 may include an alloy, such as an MCrAlY alloy (where M is Ni, Co, or NiCo), a β-NiAl nickel aluminide alloy (either unmodified or modified by Pt, Cr, Hf, Zr, Y, Si, and combinations thereof), a γ-Ni+γ′-Ni3Al nickel aluminide alloy (either unmodified or modified by Pt, Cr, Hf, Zr, Y, Si, and combination thereof), or the like.


In examples where substrate 12 is a ceramic or CMC, bond layer 16 may include a ceramic or another material that is compatible with substrate 12. For example, bond layer 16 may include mullite (aluminum silicate, Al6Si2O13), silicon metal, silica, a silicide, or the like. Bond layer 16 may further include other elements, such as silicates of rare earth elements (i.e., a rare earth silicate) including Lu (lutetium), Yb (ytterbium), Tm (thulium), Er (erbium), Ho (holmium), Dy (dysprosium), Tb (terbium), Gd (gadolinium), Eu (europium), Sm (samarium), Pm (promethium), Nd (neodymium), Pr (praseodymium), Ce (cerium) La (lanthanum), Y (yttrium), or Sc (scandium). Some preferred compositions of a bond layer 16 formed on a substrate 12 formed of a ceramic or CMC include silicon, mullite, an yttrium silicate or an ytterbium silicate.


The composition of bond layer 16 may be selected based on a number of considerations, including the chemical composition and phase constitution of substrate 12 and the layer overlying bond layer 16 (in FIG. 1, CMAS-resistant barrier coating layer 18). For example, when substrate 12 includes a superalloy with a γ-Ni+γ′-Ni3Al phase constitution, bond layer 16 preferably includes a γ-Ni+γ′-Ni3Al phase constitution to better match the coefficient of thermal expansion of the superalloy substrate 12. This may increase the mechanical stability (adhesion) of the bond layer 16 to the substrate 12. Alternatively, when substrate 12 includes a CMC, bond layer 16 may include silicon metal or a ceramic, for example, mullite.


In some examples, article 10 does not include bond layer 16. For example, in some examples, CMAS-resistant barrier coating layer 18 is directly on substrate 12. Article 10 may not include a bond layer 16 when CMAS-resistant barrier coating layer 18 and substrate 12 are sufficiently chemically and/or mechanically compatible. For example, in examples where CMAS-resistant barrier coating layer 18 and substrate 12 adhere sufficiently strongly to each other, article 10 may not include bond layer 16. Additionally, in examples where the coefficients of thermal expansion of substrate 12 and CMAS-resistant barrier coating layer 18 are sufficiently similar, article 10 may not include bond layer 16. In this way, CMAS-resistant barrier coating layer 18 may be on bond layer 16 or may be on substrate 12. As used herein, the terms “over” and “formed over” encompasses examples in which a first layer is directly on or formed directly on a second layer and examples in which the first layer is over or formed over the second layer, with one or more intermediate layers between the first and second layer. For example, the term “CMAS-resistant barrier coating layer 18 is over substrate 12” encompasses the following examples: CMAS-resistant barrier coating layer 18 is directly on substrate 12; CMAS-resistant barrier coating layer 18 is on bond layer 16, which is on substrate 12; and CMAS-resistant barrier coating layer 18 is on another intermediate layer between substrate 12 and CMAS-resistant barrier coating layer 18 (in addition to or instead of bond layer 16). Similarly, as use herein, the term “overlying” is analogous to “over,” i.e., a first layer overlying a second layer may be directly on the second layer or may be on another layer which overlies the second layer.


Barrier coating 14 further includes CMAS-resistant barrier coating layer 18 overlying bond layer 16. CMAS-resistant barrier coating layer 18 includes a base composition and at least one secondary oxide. The base composition may include a base oxide and one or more dopants selected to provide a desired type of protection to substrate 12. For example, when substrate 12 includes a superalloy, CMAS-resistant barrier coating layer 18 may include a thermal barrier coating (TBC) composition to provide temperature resistance or thermal insulation to substrate 12, so that the temperature experienced by substrate 12 is lower than when substrate 12 is not coated with CMAS-resistant barrier coating layer 18. In other examples, when substrate 12 includes a ceramic or CMC, CMAS-resistant barrier coating layer 18 may include an environmental barrier coating (EBC) composition or an EBC/TBC bilayer or multilayer coating to provide resistance to oxidation, water vapor attack, or the like, in addition to or as an alternative to temperature resistance.


In examples in which CMAS-resistant barrier coating layer 18 includes a TBC, the base composition includes a thermally insulative material. Common TBCs include ceramic layers including zirconia or hafnia. The zirconia or hafnia TBC optionally may include one or more other elements or compounds to modify a desired characteristic of the TBC, such as, for example, phase stability, thermal conductivity, or the like. Exemplary additive elements or compounds include rare earth oxides (oxides of Lu, Yb, Tm, Er, Ho, Dy, Tb, Gd, Eu, Sm, Pm, Nd, Pr, Ce, La, Y, or Sc). Particular examples of materials from which a TBC may be formed include zirconia stabilized with between 7 weight percent (wt. %) and 8 wt. % yttria; zirconia stabilized with ytterbia, samaria, and at least one of lutetia, scandia, ceria, gadolinia, neodymia, or europia; or hafnia stabilized with ytterbia, samaria, and at least one of lutetia, scandia, ceria, gadolinia, neodymia, or europia. In some examples, CMAS-resistant barrier coating layer 18 may include zirconia and/or hafnia in combination with additive elements or compounds such that at least some of the stabilized zirconia or hafnia forms a metastable tetragonal-prime crystalline phase, a cubic crystalline phase, or a compound phase (RE2Zr2O7 or RE2Hf2O7, where RE is a rare earth element).


In examples in which CMAS-resistant barrier coating layer 18 includes an EBC, the base composition includes a material which reduces or substantially prevents attack of substrate 12 by chemical species present in the environment in which article 10 is utilized, e.g., in the intake gas or exhaust gas of a gas turbine engine. For example, the base composition may include a material that is resistant to oxidation or water vapor attack. Examples of EBC materials include mullite; glass ceramics such as barium strontium aluminosilicate (BaO—SrO—Al2O3—2SiO2; B SAS), calcium aluminosilicate (CaAl2Si2O8; CAS), cordierite (magnesium aluminosilicate), and lithium aluminosilicate; and rare earth silicates (silicates of Lu, Yb, Tm, Er, Ho, Dy, Tb, Gd, Eu, Sm, Pm, Nd, Pr, Ce, La, Y, or Sc). The rare earth silicate may be a rare earth mono-silicate (RE2SiO5, where RE stands for “rare earth”) or a rare earth di-silicate (RE2Si2O7, where RE stands for “rare earth”). In some examples, a CMAS-resistant barrier coating layer 18 that includes an EBC is deposited as a substantially non-porous layer, while in other examples, CMAS-resistant barrier coating layer 18 is deposited as a layer that includes a plurality of cracks. While not shown, the EBC may include an outer abradable coating.


Regardless of the composition of CMAS-resistant barrier coating layer 18 or whether CMAS-resistant barrier coating layer 18 includes a TBC composition or an EBC composition, CMAS-resistant barrier coating layer 18 may be deposited by any suitable coating fabrication technique, including, for example, plasma spraying, physical vapor deposition (PVD), chemical vapor deposition (CVD), or a slurry process. In some examples, CMAS-resistant barrier coating layer 18 may be deposited using directed vapor deposition (DVD), a type of electron beam physical vapor deposition (EB-PVD). Additionally, CMAS-resistant barrier coating layer 18 may include a substantially dense microstructure, a porous microstructure, or a columnar microstructure.


As described above, CMAS-resistant barrier coating layer 18 further includes at least one secondary oxide. The at least one secondary oxide may reduce a diffusion gradient of active components of CMAS into CMAS-resistant barrier coating layer 18, reduce a reaction gradient of active components of CMAS with CMAS-resistant barrier coating layer 18, and/or stabilize the components of CMAS-resistant barrier coating layer 18 in the presence of the active components of CMAS.


While not wishing to be bound by any particular theory, active components of CMAS include calcium oxide (“calcia”, or CaO), magnesium oxide (“magnesia”, or MgO), aluminum (III) oxide (“alumina”, or Al2O3), and silicon oxide (“silica”, or SiO2). Upon forming a melt on a barrier coating, the active components may migrate into a barrier coating and react with base components of the barrier coating, such as zirconia or rare earth oxides in TBCs and monosilicates/disilicates in EBCs. The melt may cool and polymerize to form a glassy surface layer on the barrier coating. For example, basic oxides, such as CaO, MgO, Na2O, and K2O, may disrupt polymerization of the melt; acidic oxides, such as SiO2 and P2O5, may enhance polymerization of the melt; and amphoteric oxides, such as Al2O3, TiO2, and Fe2O3, may act as either acidic or basic oxides, depending on whether the melt is basic or acidic, respectively.


To counteract the diffusion and/or reaction gradients of active CMAS components into and with barrier coating 14, the at least one secondary oxide may be selected to reduce the diffusion gradients of the predicted composition of active components of CMAS into barrier coating 14 and/or reduce the reaction gradients of active components of CMAS with the base components of CMAS-resistant barrier coating layer 18. In some examples, the at least one secondary oxide may include one or more of the active components found in CMAS, which increase a concentration of the active components in CMAS-resistant barrier coating layer 18. A higher concentration of a particular active component may reduce the diffusion and reaction of similar or the same active components of CMAS. For example, for CMAS with a higher concentration of SiO2 and CaO and a lower or negligible concentration of MgO and Al2O3, the CMAS-resistant barrier coating layer 18 may have concentrations of SiO2 and CaO and either lower or no concentrations of MgO and Al2O3. In some examples, the relative molar concentrations of the active components in the CMAS-resistant composition may correspond to the relative molar concentrations of the active components in the CMAS. For example, for CMAS with a 40/30/20/10 calcia-magnesia-alumina-silica ratio (i.e. high basicity), CMAS resistant barrier coating layer 18 may include at least two secondary oxides in a ratio of about 40/30/20/10 of calcia, magnesia, alumina, and silica. In some examples, the relative molar concentrations of the active components in the CMAS-resistant composition may be selected for other factors, in addition to CMAS-resistance, such as coefficient of thermal expansion (CTE), thermal conductivity, crack resistance, and the like.


While the at least one secondary oxide has been described in terms of concentration and/or ratio of active components of CMAS or CMAS-resistant barrier coating layer 18, in some examples, either composition of CMAS or CMAS-resistant barrier coating layer 18 may be represented by a basicity or basicity index. A basicity index may represent a molar ratio of basic oxides to acidic oxides in the composition. Basicity index may have the following equation:







Basicity





Index

=


Σ





Basic





Oxides


Σ





Acidic





Oxides






In the above equation, the summation of the basic oxides may include a summation of molar concentrations of basic oxides, while the summation of the acidic oxides may include a summation of molar concentrations of acidic oxides. In a CMAS composition, basic oxides may include oxides of divalent elements such as CaO and MgO, acidic oxides may include oxides of tetravalent elements such as SiO2, and amphoteric oxides, which may behave as either basic or acidic, may include oxides of trivalent elements such as Al2O3. In a CMAS-resistant barrier coating layer 18, basic oxides may include oxides of divalent elements, such as CaO, BaO, and MgO; acidic oxides may include oxides of tetravalent elements such as SiO2; and amphoteric oxides may include oxides of trivalent elements such as Al2O3. In some examples, the basic oxides include at least calcium oxide and the acidic oxides include at least silicon dioxide.


A basicity index of a CMAS composition may indicate a basic, acidic, or near neutral character of the CMAS composition or CMAS-resistant barrier coating layer 18. For example, a CMAS composition having a basicity index of about 2 may indicate a substantially neutral or near neutral character as, for example, a 2CaO:SiO2 ratio would balance charges (two Ca2+ and one SiO44−, respectively). In this regard, basicity may represent a charge-weighted balance of basic species to acidic species in a composition. A CMAS composition having a basicity index of less than 2 may have an acidic character, indicating a higher charge-weighted balance of SiO2; a basicity index between 1.8 and 2.2 may have a near-neutral character, indicating a substantially equal stoichiometric concentration of CaO/MgO and SiO2; and a basicity index greater than 2 may have a basic character, indicating a higher than stoichiometric concentration of CaO and/or MgO.


In some examples, the at least one secondary oxide in CMAS-resistant barrier coating layer 18 may include at least one oxide based on a predicted basicity index of the CMAS composition. For example, a CMAS composition may have a molar ratio of 4CaO:1SiO2, such that the predicted basicity index is about 4. Based on this basicity index of greater than 2, CMAS-resistant barrier coating layer 18 may have a higher concentration of oxides of divalent elements, such as CaO and MgO, than oxides of tetravalent elements, such as SiO2. However, the CMAS-resistant composition may still include oxides of tetravalent elements, such as SiO2, as inclusion of SiO2 may reduce a reaction or diffusion gradient of SiO2. The resulting CMAS-resistant barrier coating layer 18 may have a SiO2 molar concentration of 0.5%, a CaO molar concentration of 1%, and a BaO molar concentration of 1%, for example.


In some examples, active components of CMAS may destabilize CMAS-resistant barrier coating layer 18 by reacting with components of CMAS-resistant barrier coating layer 18. For example, basic oxides of CMAS may react with base oxides, such as zirconia, or acidic oxides of a low basicity CMAS-resistant barrier coating layer 18. In some examples, active components of CMAS may destabilize CMAS-resistant barrier coating layer 18 by inducing components of the base composition to behave in an opposing basic or acidic manner and reacting with the components. For example, zirconia may act in a basic fashion with acidic CMAS and an acidic fashion with basic CMAS; in either case, the active components of CMAS may react with the zirconia.


To counteract instability of CMAS-resistant barrier coating layer 18 in the presence of CMAS, the CMAS-resistant composition may include secondary oxides that stabilize the basicity of CMAS-resistant barrier coating layer 18 against reaction with components of CMAS. In some examples, the secondary oxide composition of CMAS-resistant barrier coating layer 18 may result in a basicity that corresponds to a basicity of the CMAS. For example, a basic CMAS-resistant barrier coating layer 18 may be used in an environment with basic CMAS, or an acidic CMAS-resistant barrier coating layer 18 may be used in an environment with acidic CMAS.


In some examples, the secondary oxide composition of the CMAS-resistant barrier coating layer 18 may result in a near-neutral basicity, such as a basicity index of between about 1.8 and about 2.2. A secondary oxide composition in a near-neutral basicity may include both basic oxides and acidic oxides available to neutralize acidic or basic CMAS, respectively. In some instances, such as where a CMAS composition is not known or would include varying CMAS compositions during operation, CMAS-resistant barrier coating layer 18 may have a near-neutral basicity. For example, a neutral CMAS-resistant barrier coating layer may be used in both basic CMAS environments and acidic CMAS environments.


The secondary oxides may include one or more of oxides of divalent elements, oxides of trivalent elements, or oxides of tetravalent elements, such that a basic, acidic, or neutral behavior of CMAS-resistant barrier coating layer 18 in the presence of corresponding divalent, trivalent, and tetravalent active components of CMAS will remain constant or predictable. For example, for CMAS with a 40/30/20/10 calcia-magnesia-alumina-silica ratio (high basicity), CMAS-resistant barrier coating layer 18 may have a secondary oxide ratio of about 70/20/10 oxides of divalent elements, oxides of trivalent elements, and oxides of a tetravalent elements, respectively, to give the base composition a basic behavior in the presence of the basic CMAS.


In some examples, the at least one secondary oxide may include one or more oxides that both reduce the diffusion and reaction gradients of active components of CMAS into CMAS-resistant barrier coating layer 18 and stabilize the CMAS-resistant barrier coating layer 18 against reaction with components of CMAS. For example, the secondary oxides may be selected for both a ratio of secondary oxides corresponding to active components of the CMAS and a basicity index corresponding to a neutral basicity index or a predicted basicity index of the CMAS likely to be encountered during operation of the high temperature mechanical system.


In some examples, the secondary oxides may be selected for a particular molar fraction in CMAS-resistant barrier coating layer 18. In some examples, CMAS-resistant barrier coating layer 18 may include between about 1 molar percent (mol. %) and about 30 mol. % of at least one secondary oxide. In other examples, the CMAS-resistant barrier coating layer 18 may include between about 7 mol. % and about 15 mol. % of at least one secondary oxide. In some examples, the at least one oxide of a divalent element, oxide of a trivalent element, or oxide of a tetravalent element may be selected for a particular molar fraction in CMAS-resistant barrier coating layer 18. In some examples, CMAS-resistant barrier coating layer 18 may include greater than 0 mol. % and about 30 mol. % of at least one oxide of a divalent element, oxide of a trivalent element, or oxide of a tetravalent element.


In some examples, each of the base composition and the at least one secondary oxide may be selected for a particular molar fraction of CMAS-resistant barrier coating layer 18. CMAS-resistant barrier coating layer 18 may include a mixture or alloy of the base composition and the at least one secondary oxide. In general, CMAS-resistant barrier coating layer 18 may include between about 70 mol. % and about 99 mol. % base composition and between about 1 mol. % and about 30 mol. % of the at least one secondary oxide. In some example, CMAS-resistant barrier coating layer 18 may include between about 85 mol. % and about 93 mol. % base composition and about 7 mol. % to about 15 mol. % of the at least one secondary oxide.


In addition to oxides of divalent elements, oxides of trivalent elements, and/or oxides of tetravalent elements, the at least one secondary oxide may include an element or compound that reacts with CMAS to form a solid or a highly viscous reaction product. In some examples, the at least one secondary oxide may include at least one rare earth oxide. The at least one rare earth oxide may include an oxide of at least one of Lu, Yb, Tm, Er, Ho, Dy, Tb, Gd, Eu, Sm, Pm, Nd, Pr, Ce, La, Y, or Sc. In some examples, at least one rare earth oxide contained in the at least one secondary oxide may be the same as at least one rare earth oxide contained in the base composition. In other examples, the base composition includes at least one rare earth oxide which is different from at least one rare earth oxide in the at least one secondary oxide. In some examples, the CMAS-resistant barrier coating layer 18 is essentially free of zirconia and hafnia. That is, in these examples, CMAS-resistant barrier coating layer 18 includes at most trace amounts of zirconia and hafnia, such as, for example, the amounts present in commercially-available rare earth oxides.


In some examples, CMAS-resistant barrier coating layer 18 may optionally include at least one of TiO2, Ta2O5, HfSiO4, an alkali oxide, or an alkali earth oxide. The additive components may be added to CMAS-resistant barrier coating layer 18 to modify one or more desired properties of CMAS-resistant barrier coating layer 18. For example, the additive components may increase or decrease the reaction rate of CMAS-resistant barrier coating layer 18 with CMAS, may modify the viscosity of the reaction product from the reaction of CMAS and CMAS-resistant barrier coating layer 18, may increase adhesion of CMAS-resistant barrier coating layer 18 to an adjacent layer, such as bond layer 16, may increase or decrease the chemical stability of CMAS-resistant barrier coating layer 18, or the like.


As described above, in some examples, components in CMAS-resistant barrier coating layer 18 may react with CMAS that contacts CMAS-resistant barrier coating layer 18 to form a solid or highly viscous reaction product. The reaction product may have a melting temperature significantly higher than CMAS (e.g., higher than about 1200-1250° C.). A solid or highly viscous reaction product is desired because the CMAS-resistant barrier coating layer 18 is consumed as it reacts with CMAS. If, for example, the reaction product of CMAS-resistant barrier coating layer 18 and CMAS was a relatively low viscosity liquid, the low viscosity liquid could infiltrate further within pores or cracks of a porous or columnar CMAS-resistant barrier coating layer 18, which is the very occurrence the CMAS-resistant barrier coating layer 18 is designed to prevent.


If the reaction product is a solid or highly viscous, however, a reaction layer may form on or near the surface of CMAS-resistant barrier coating layer 18 (e.g., within pores or cracks in CMAS-resistant barrier coating layer 18 near the outer surface of the layer 18), which may lower the reaction rate of the CMAS with CMAS-resistant barrier coating layer 18. That is, once a solid or highly viscous reaction layer forms on or near the surface of CMAS-resistant barrier coating layer 18, the reaction between CMAS-resistant barrier coating layer 18 and CMAS may slow, because any further reaction will require the diffusion of CMAS through the reaction layer to encounter the CMAS-resistant barrier coating layer 18, or diffusion of a component of CMAS-resistant barrier coating layer 18 through the reaction layer to encounter the CMAS. In either case, the diffusion of either CMAS or the component of CMAS-resistant barrier coating layer 18 may be a limiting step in the reaction once a solid or highly viscous reaction layer is formed on the surface of CMAS-resistant barrier coating layer 18, because diffusion may be the slowest process.


CMAS-resistant barrier coating layer 18 may generally define any thickness. In some examples, CMAS-resistant barrier coating layer 18 includes a thickness of between about 0.5 mil and about 250 mils (1 mil equals 0.001 inch). In some examples, CMAS-resistant barrier coating layer 18 includes a thickness of between about 1 mil and about 20 mils.


In some examples, one or more additional barrier coating layers may be on a substrate over which CMAS-resistant barrier coating layer 18 is also on the substrate. For example, if a CMAS-resistant barrier coating layer is a TBC layer and more thermal protection is desired, an additional TBC layer may be provided between a substrate or bond layer and the CMAS-resistant barrier coating layer. FIG. 2 is a cross-sectional diagram of an example of a substrate 12 coated with a barrier coating 24 including an additional barrier coating layer 26. In contrast to FIG. 1, which shows a barrier coating 14 including a CMAS-resistant barrier coating layer 18 on a bond layer 16, article 20 of FIG. 2 includes a barrier coating 24 that includes bond layer 16 on substrate 12, a barrier coating layer 26 on bond layer 16, and a CMAS-resistant barrier coating layer 28. Substrate 12 and bond layer 16 may include similar compositions as described above with respect to FIG. 1. CMAS-resistant barrier coating layer 28 may include similar compositions as CMAS-resistant barrier coating layer 18 described in FIG. 1 above.


Barrier coating layer 26 may be selected to provide a desired type of protection to substrate 12. For example, when a substrate 12 including a superalloy is utilized, a thermal barrier coating layer may be desired to provide temperature resistance to substrate 12. A TBC layer, then, may provide thermal insulation to substrate 12 to lower the temperature experienced by substrate 12. On the other hand, when a substrate 12 including a CMC is utilized, an EBC layer or an EBC/TBC bilayer or multilayer coating may be desired to provide resistance to oxidation, water vapor attack, or the like.


A TBC layer may include any useful insulative layer. TBC layers may include ceramic layers comprising zirconia or hafnia. The zirconia or hafnia TBC layer may include other elements or compounds to modify a desired characteristic of the TBC, such as, for example, phase stability, thermal conductivity, or the like. Exemplary additive elements or compounds include, for example, rare earth oxides. The TBC may be applied by any useful technique, including, for example, plasma spraying, electron beam physical vapor deposition, chemical vapor deposition, and the like.


An EBC layer may include any useful layer which prevents environmental attack of the substrate. For example, the EBC may include materials that are resistant to oxidation or water vapor attack. Exemplary EBCs include mullite; glass ceramics such as barium strontium aluminosilicate (BaO—SrO—Al2O3—2SiO2), calcium aluminosilicate (CaAl2Si2O8), cordierite (magnesium aluminosilicate), and lithium aluminosilicate; and rare earth silicates. The EBC may be applied by any useful technique, such as plasma spraying, electron beam physical vapor deposition, chemical vapor deposition and the like.


Regardless of whether barrier coating layer 26 includes an EBC layer or a TBC layer, CMAS-resistant barrier coating layer 28 may be provided adjacent to or overlying barrier coating layer 26 to protect barrier coating layer 26 from infiltration of CMAS into the pores of barrier coating layer 26. In some examples, barrier coating layer 26 may provide a similar protection, such as environmental or thermal protection, as CMAS-resistant barrier coating layer 28. For example, a CMAS-resistant barrier coating layer 28 may provide CMAS protection and a first level of thermal protection, while barrier coating layer 26 may provide a second level of thermal protection. In some examples, barrier coating layer 26 provides a different protection as CMAS-resistant barrier coating layer 28. For example, a substrate may require both thermal protection and environmental protection. CMAS-resistant barrier coating layer 28 may be a CMAS-resistant EBC layer, while barrier coating layer 26 may be a TBC layer.


Barrier coating layer 26 may be formed to a thickness of about 0.5 mils to about 250 mils. CMAS-resistant barrier coating layer 28 may be formed to any suitable thickness such that CMAS-resistant barrier coating layer 28 provides predetermined protection to substrate 12. In examples where barrier coating layer 26 provides the same type of protection as CMAS-resistant barrier coating layer 28, such as TBC/TBC or EBC/EBC, CMAS-resistant barrier coating layer 28 may be formed to a thickness less than barrier coating layer 26, such as between about 0.5 mils and about 20 mils.


As shown in FIGS. 3 and 4, in some examples, a barrier coating may include additional layers. FIG. 3 is a cross-sectional diagram of an example of an article 30 having a substrate 12 coated with a multilayer barrier coating 34. Multilayer barrier coating 34 includes bond layer 16, a first barrier coating layer 36 overlying bond layer 16, a CMAS-resistant barrier coating layer 38 overlying first barrier coating layer 36, and a second barrier coating layer 40 overlying CMAS-resistant barrier coating layer 38. Substrate 12 and bond layer 16 may include similar compositions as described above with respect to FIGS. 1 and 2. Additionally, in some examples, multilayer barrier coating 34 may not include a bond layer 16, and first barrier coating layer 36 may be formed directly on substrate 12, as described above.


First barrier coating layer 36 and CMAS-resistant barrier coating layer 38 may include similar compositions as barrier coating layer 26 and CMAS-resistant barrier coating layer 28, respectively, described in FIG. 2 above. First barrier coating layer 36 may be formed to a thickness of about 0.5 mils to about 250 mils. CMAS-resistant barrier coating layer 38 may be formed to any suitable thickness such that CMAS-resistant barrier coating layer 38 provides predetermined protection to substrate 12. In some examples, CMAS-resistant barrier coating layer 38 may be formed to a thickness between about 0.5 mils and about 20 mils.


In some examples, second barrier coating layer 40 includes a similar barrier coating composition as at least one of first barrier coating layer 36 and CMAS-resistant barrier coating layer 38. In other examples, second barrier coating layer 40 includes a different barrier coating composition than at least one of first barrier coating layer 36 and CMAS-resistant barrier coating layer 38. Second barrier coating layer 40 may be formed to any predetermined thickness. In some examples, second barrier coating layer 40 may include a thickness that is less than a thickness of first barrier coating layer 36. In other examples, second barrier coating layer 40 may include a thickness which is substantially the same or ever greater than a thickness of first barrier coating layer 36. In some examples, second barrier coating layer 40 may have a thickness of between about 0.5 mils and about 250 mils.


In some examples, second barrier coating layer 40 may reduce a rate at which CMAS and CMAS-resistant barrier coating layer 38 react by reducing the rate at which CMAS comes into contact with CMAS-resistant barrier coating layer 38. Similar to a solid or highly viscous reaction layer formed on CMAS-resistant barrier coating layer 28 (described with respect to FIG. 2), second barrier coating layer 40 may function as a layer through which CMAS must pass in order to come into contact with CMAS-resistant barrier coating layer 38. This reduction in effective reaction rate may prolong the life of CMAS-resistant barrier coating layer 38 and increase the protection afforded by CMAS-resistant barrier coating layer 38 to first barrier coating layer 36 compared to an article 30 which does not include a second barrier coating layer 40. Accordingly, in some examples, the combination of the presence of second barrier coating layer 40 and the formation of a solid or highly viscous reaction product from the reaction of CMAS-resistant barrier coating layer 38 and CMAS may substantially prevent infiltration of molten CMAS in pores or cracks of first barrier coating layer 26.


Additionally or alternatively, multilayer barrier coating 34 may provide greater thermal or environmental protection to substrate 12 than a single barrier coating layer TBC or EBC, respectively, of similar composition as first barrier coating layer 36. For example, multilayer barrier coating 34 includes two interfaces between layers including two different compositions (between first barrier coating layer 36 and CMAS-resistant barrier coating layer 38, and between CMAS-resistant barrier coating layer 38 and second barrier coating layer 40). While not wishing to be bound by any particular theory, interfaces between two TBC layers having different compositions may reduce, for example, a thermal conductivity of multilayer barrier coating 34 compared to a single TBC layer having a similar composition because the interfaces between the layers provide phonon scattering points. The phonon scattering points reduce an effective thermal conductivity of the multilayer barrier coating 34 considered as a whole.


In some examples, an article may include multiple CMAS-resistant barrier coating layers, multiple other barrier coating layers, or both. For example, an article may include multiple CMAS-resistant barrier coating layers interleaved with other barrier coating layer, such as TBC layers, EBC layer, or the like. FIG. 4 is a cross-sectional diagram of an example of an article 50 that includes substrate 12 coated with a multilayer barrier coating 54 that includes multiple layers. Multilayer barrier coating 54 may include a first barrier coating layer 56, a first CMAS-resistant barrier coating layer 58, a second barrier coating layer 60, and a second CMAS-resistant barrier coating layer 62. By including multiple layers, multilayer barrier coating 54 may have different CMAS-resistant barrier coating layers configured for different CMAS conditions, such as a higher concentration of secondary oxides in second CMAS-resistant barrier coating layer 62 than first CMAS-resistant barrier coating layer 58.



FIG. 5 is a flowchart of an example process for manufacturing a barrier coating that includes a CMAS-resistant barrier coating layer. A high temperature mechanical system may encounter CMAS during operation of the high temperature mechanical system. The high temperature mechanical system may include components of an aircraft engine such as turbine blades, vanes, and the like.


In some examples, a composition of CMAS to be encountered by the high temperature mechanical system may be predicted (70). The composition of the CMAS may include any concentration, fraction, ratio, percentage, index, or other relative measure of active components of the CMAS. For example, a composition of CMAS may be expressed in terms of mol. % of each active component, such as 35 mol. % CaO, 10 mol. % MgO, 7 mol. % Al2O3, and 48 mol. % SiO2. In some examples, a composition of CMAS may be expressed as a basicity index, where the basicity index is a molar ratio of basic oxides to acidic oxides, as described in FIG. 1. For example, the composition of CMAS from the previous example may have a basicity index of 1.08, where the basicity index includes Al2O3, CaO, and MgO as basic oxides and SiO2 as acidic oxides.


In some examples, the composition of the CMAS may be predicted by referencing CMAS composition information based on an intended geographic location of operation. For example, CMAS may originate in sand and volcanic ash, which may vary by geographic location. CMAS composition information may include a composition of CMAS for a particular geographical region. For example, sands found in Qatar may have a higher CaO content, and thus higher basicity, than sands from Bahrain, which may have a higher SiO2 content, and thus lower basicity.


In some examples, a composition of a CMAS-resistant barrier coating layer may be selected based on the predicted CMAS composition (72). Selecting a composition of the CMAS-resistant barrier coating may include selecting at least one secondary oxide based on the predicted composition of CMAS. The at least one secondary oxide may include at least one oxide of a divalent element, oxide of a trivalent element, or oxide of a tetravalent element. The composition of the CMAS-resistant barrier coating layer may include any concentration, fraction, ratio, percentage, index, or other relative measure of secondary oxides in the CMAS-resistant barrier coating layer. In some examples, the secondary oxides may be selected from the active components of the CMAS, and the presence and concentration of active components in the CMAS-resistant barrier coating layer may be selected to correspond to a concentration of one or more active components of the CMAS. For example, the predicted composition of CMAS may include a relative concentration of CaO and SiO2, such as 75 mol.% CaO and 25 mol.% SiO2, for a basicity index of 3. The composition of the CMAS-resistant barrier coating layer may include a corresponding relative concentration of CaO and SiO2. In examples where the CMAS-resistant barrier coating layer is a TBC layer, the CMAS-resistant composition may include the corresponding relative concentrations of CaO and SiO2. In examples where the CMAS-resistant barrier coating layer is an EBC layer, the CMAS-resistant composition may include only CaO or a lower concentration of SiO2, as SiO2 may already be present in the base composition as part of the EBC layer.


In some examples, the secondary oxides may be selected such that a basicity of the CMAS-resistant barrier coating layer may correspond to a basicity of the composition of CMAS. Continuing with the previous example, the composition of the CMAS-resistant barrier coating layer may include a corresponding relative concentration of oxides of divalent elements, such as CaO and BaO, and oxides of tetravalent elements, such as SiO2, so that a basicity index of the CMAS-resistant barrier coating layer is similar to the basicity index of the CMAS. In some examples, the secondary oxides may be selected such that a basicity of the CMAS-resistant barrier coating layer may be near neutral. For example, a mechanical system may be intended to operate in a variety of conditions that have a variety of predicted CMAS compositions.


In some examples, the CMAS-resistant barrier coating layer may be formed with the selected composition of the CMAS-resistant barrier coating layer (74). The CMAS-resistant barrier coating layer may be deposited by any suitable coating fabrication technique, including, for example, plasma spraying, electron beam physical vapor deposition, plasma sprayed physical vapor deposition, suspension plasma spraying, or direct vapor deposition. CMAS-resistant barrier coating layer may be formed on a bond coat layer, another barrier coating layer, or the substrate.


Various examples have been described. These and other examples are within the scope of the following claims.

Claims
  • 1. A method comprising: predicting a composition of active components of calcium-magnesium-aluminum-silicate (CMAS) to be encountered by a high temperature mechanical system during use of the high temperature mechanical system, wherein the composition of active components of CMAS comprises a relative molar composition of at least two of calcium oxide, magnesium oxide, aluminum oxide, or silicon oxide; andselecting a composition of a CMAS-resistant barrier coating layer based at least in part on the predicted composition of active components of CMAS, wherein, prior to exposure of the barrier coating to an operating environment of the high temperature mechanical system, the CMAS-resistant barrier coating layer comprises: a base composition comprising at least one of a rare earth monosilicate or a rare earth disilicate;at least one secondary oxide selected based on the predicted composition of active components of CMAS to reduce, compared to the base composition alone, at least one of: a diffusion gradient of the active components of CMAS into the CMAS-resistant barrier coating layer; ora reaction gradient of the active components of CMAS with the base composition of the CMAS-resistant barrier coating layer,wherein the at least one secondary oxide comprises at least one of an oxide of a divalent element, an oxide of a trivalent element, or an oxide of a tetravalent element,wherein the CMAS-resistant barrier coating layer comprises greater than 0 mol. % and less than about 7 mol. % of the at least one secondary oxide, andwherein the at least one secondary oxide includes at least one of calcium oxide, barium oxide, magnesium oxide, aluminum oxide, or silicon oxide.
  • 2. The method of claim 1, wherein predicting the composition of active components of CMAS to be encountered comprises predicting a basicity index of CMAS, wherein the basicity index is represented by the equation:
  • 3. The method of claim 2, wherein the predicted basicity index is less than about 2, and wherein the at least one secondary oxide comprises at least one oxide of a divalent element.
  • 4. The method of claim 3, wherein the CMAS-resistant barrier coating layer is acidic.
  • 5. The method of claim 2, wherein the predicted basicity index is greater than about 2, and wherein the at least one secondary oxide comprises at least one oxide of a tetravalent element.
  • 6. The method of claim 5, wherein the CMAS-resistant barrier coating layer is basic.
  • 7. The method of claim 2, wherein the predicted basicity index is between about 1.8 and about 2.2, and wherein the at least one secondary oxide comprises at least one oxide of a divalent element and at least one oxide of a tetravalent element.
  • 8. The method of claim 1, wherein the CMAS-resistant barrier coating layer comprises an environmental barrier coating (EBC) layer.
  • 9. The method of claim 1, further comprising forming the CMAS-resistant barrier coating layer over a substrate of the high temperature mechanical system using at least one of plasma spraying, electron beam physical vapor deposition, plasma sprayed physical vapor deposition, suspension plasma spraying, or direct vapor deposition.
  • 10. The method of claim 9, further comprising forming a bond layer on the substrate, and wherein forming the CMAS-resistant barrier coating layer over the substrate comprises forming the CMAS-resistant barrier coating layer over the bond layer.
  • 11. The method of claim 10, further comprising forming a second barrier coating layer over the substrate, and wherein forming the CMAS-resistant barrier coating layer over the substrate comprises forming the CMAS-resistant barrier coating layer over the second barrier coating layer.
  • 12. The method of claim 1, wherein the CMAS-resistant barrier coating layer comprises a thickness between about 1 mil and about 20 mils.
  • 13. The method of claim 1, wherein predicting the composition of active components of CMAS to be encountered comprises referencing CMAS composition information based on an intended geographical location of operation.
Parent Case Info

This application claims the benefit of U.S. Provisional Application Ser. No. 62/542,550, filed Aug. 8, 2017, which is incorporated herein by reference in its entirety.

US Referenced Citations (227)
Number Name Date Kind
3962059 Kaup et al. Jun 1976 A
3964877 Bessen et al. Jun 1976 A
4094673 Erickson et al. Jun 1978 A
4386968 Hinkel et al. Jun 1983 A
4588607 Matarese et al. May 1986 A
4663250 Ong et al. May 1987 A
4914794 Strangman Apr 1990 A
4996117 Chu et al. Feb 1991 A
5320909 Scharman et al. Jun 1994 A
5350599 Rigney et al. Sep 1994 A
5391404 Lee et al. Feb 1995 A
5496644 Lee et al. Mar 1996 A
5660885 Hasz et al. Aug 1997 A
5704759 Draskovich et al. Jan 1998 A
5714202 Lemelson et al. Feb 1998 A
5773141 Hasz et al. Jun 1998 A
5851678 Hasz et al. Dec 1998 A
5869146 McCluskey et al. Feb 1999 A
5871820 Hasz et al. Feb 1999 A
5876850 Skowronski et al. Mar 1999 A
5876860 Marijnissen et al. Mar 1999 A
5914189 Hasz et al. Jun 1999 A
5985470 Spitsberg et al. Nov 1999 A
6057047 Maloney May 2000 A
6071628 Seals et al. Jun 2000 A
6261643 Hasz et al. Jul 2001 B1
6284325 Eaton, Jr. et al. Sep 2001 B1
6296942 Eaton et al. Oct 2001 B1
6299988 Wang et al. Oct 2001 B1
6312763 Eaton, Jr. et al. Nov 2001 B1
6410148 Eaton, Jr. et al. Jun 2002 B1
6465090 Stowell et al. Oct 2002 B1
6468648 McCluskey et al. Oct 2002 B1
6485848 Wang et al. Nov 2002 B1
6562409 Koshkarian et al. May 2003 B2
6587534 Hassoun et al. Jul 2003 B2
6613445 Sangeeta et al. Sep 2003 B2
6617036 Eaton et al. Sep 2003 B2
6617037 Sun et al. Sep 2003 B2
6627323 Nagaraj et al. Sep 2003 B2
6645649 Tanaka et al. Nov 2003 B2
6720038 Darolia et al. Apr 2004 B2
6723674 Wang et al. Apr 2004 B2
6733908 Lee et al. May 2004 B1
6759151 Lee Jul 2004 B1
6787195 Wang et al. Sep 2004 B2
6812176 Zhu et al. Nov 2004 B1
6835465 Allen et al. Dec 2004 B2
6849334 Horne et al. Feb 2005 B2
6869508 Darolia et al. Mar 2005 B2
6887528 Lau et al. May 2005 B2
6887595 Darolia et al. May 2005 B1
6890668 Bruce et al. May 2005 B2
6893750 Nagaraj et al. May 2005 B2
6902662 Eaton et al. Jun 2005 B2
6902836 Eaton et al. Jun 2005 B2
6903162 Nygard et al. Jun 2005 B2
6933061 Nagaraj et al. Aug 2005 B2
6933066 Nagaraj et al. Aug 2005 B2
6960395 Spitsberg et al. Nov 2005 B2
6969555 Meschter et al. Nov 2005 B2
7008674 Nagaraj et al. Mar 2006 B2
7063894 Sun et al. Jun 2006 B2
7090894 Carper et al. Aug 2006 B2
7186466 Zhu et al. Mar 2007 B2
7226668 Nagaraj et al. Jun 2007 B2
7247393 Hazel et al. Jul 2007 B2
7291408 Litton et al. Nov 2007 B2
7306860 Strangman et al. Dec 2007 B2
7354651 Hazel et al. Apr 2008 B2
7357994 Hazel et al. Apr 2008 B2
7364802 Spitsberg et al. Apr 2008 B2
7374818 Bhatia et al. May 2008 B2
7374825 Hazel et al. May 2008 B2
7422671 Bhatia et al. Sep 2008 B2
7442444 Hazel et al. Oct 2008 B2
7449254 Spitsberg et al. Nov 2008 B2
7510777 Darolia et al. Mar 2009 B2
7510785 Fukudome et al. Mar 2009 B2
7544394 Boutwell et al. Jun 2009 B2
7579085 Hazel Aug 2009 B2
7595114 Meschter et al. Sep 2009 B2
7666512 Bhatia et al. Feb 2010 B2
7695830 Strangman et al. Apr 2010 B2
7740960 Zhu et al. Jun 2010 B1
7780832 Hasz Aug 2010 B2
7824744 Darolia et al. Nov 2010 B2
7858212 Schlichting et al. Dec 2010 B2
7862901 Darolia et al. Jan 2011 B2
7867575 Boutwell et al. Jan 2011 B2
7879411 Hass et al. Feb 2011 B2
7927722 Schlichting et al. Apr 2011 B2
7951459 Tang et al. May 2011 B2
7968217 Sarrafi-Nour et al. Jun 2011 B2
7981530 Sporer et al. Jul 2011 B2
7994022 Kakehata Aug 2011 B2
8017062 Narendar et al. Sep 2011 B2
8034153 Marchiando et al. Oct 2011 B2
8039113 Kirby et al. Oct 2011 B2
8062759 Fu et al. Nov 2011 B2
8084086 Hass et al. Dec 2011 B2
8119247 Kirby et al. Feb 2012 B2
8124252 Cybulsky et al. Feb 2012 B2
8216689 Witz et al. Jul 2012 B2
8273231 Creech Sep 2012 B2
8470460 Lee Jun 2013 B2
8501840 Kirby et al. Aug 2013 B2
8586169 Namba et al. Nov 2013 B2
8658255 Kirby et al. Feb 2014 B2
8722270 Pastula et al. May 2014 B2
8940417 Courcot et al. Jan 2015 B2
8999457 Kirby et al. Apr 2015 B2
9005716 Kirby et al. Apr 2015 B2
9005717 Kirby et al. Apr 2015 B2
9023435 Kirby et al. May 2015 B2
9056802 Kirby et al. Jun 2015 B2
9062564 Kirby et al. Jun 2015 B2
9133541 Lee Sep 2015 B2
9194242 Lee Nov 2015 B2
9212100 Kirby et al. Dec 2015 B2
10233760 Lee Mar 2019 B2
20010033630 Hassoun et al. Oct 2001 A1
20020098391 Tanaka et al. Jul 2002 A1
20030113553 Sun et al. Jun 2003 A1
20030113559 Eaton et al. Jun 2003 A1
20030118841 Horne et al. Jun 2003 A1
20030138658 Taylor et al. Jul 2003 A1
20040038085 Litton et al. Feb 2004 A1
20040043244 Bruce et al. Mar 2004 A1
20040115351 Lau et al. Jun 2004 A1
20040151840 Wang et al. Aug 2004 A1
20040156724 Torigoe et al. Aug 2004 A1
20040170849 Ackerman et al. Sep 2004 A1
20050003172 Wheeler et al. Jan 2005 A1
20050003175 Wheeler et al. Jan 2005 A1
20050126494 Darolia et al. Jun 2005 A1
20050129511 Allen Jun 2005 A1
20050129973 Eaton et al. Jun 2005 A1
20050142392 Spitsberg et al. Jun 2005 A1
20050164027 Lau et al. Jul 2005 A1
20050255648 Bhatia et al. Nov 2005 A1
20060014029 Saak et al. Jan 2006 A1
20060024513 Schlichting et al. Feb 2006 A1
20060024527 Schlichting et al. Feb 2006 A1
20060024528 Strangman et al. Feb 2006 A1
20060029733 Bhatia et al. Feb 2006 A1
20060046450 Narendar et al. Mar 2006 A1
20060073361 Fukudome et al. Apr 2006 A1
20060078750 Zhu et al. Apr 2006 A1
20060115659 Hazel et al. Jun 2006 A1
20060115661 Hazel et al. Jun 2006 A1
20060154093 Meschter et al. Jul 2006 A1
20060166018 Spitsberg et al. Jul 2006 A1
20060210800 Spitsberg et al. Sep 2006 A1
20060211241 Govern et al. Sep 2006 A1
20060280952 Hazel et al. Dec 2006 A1
20060280953 Hazel et al. Dec 2006 A1
20060280954 Spitsberg Dec 2006 A1
20060280955 Spitsberg et al. Dec 2006 A1
20060280963 Hazel et al. Dec 2006 A1
20070014996 Bhatia et al. Jan 2007 A1
20070071996 Hazel et al. Mar 2007 A1
20070082131 Doesberg et al. Apr 2007 A1
20070119713 Hasz May 2007 A1
20070141367 Darolia et al. Jun 2007 A1
20070160859 Darolia et al. Jul 2007 A1
20070184204 Balagopal et al. Aug 2007 A1
20070207330 Tulyani et al. Sep 2007 A1
20070224411 Hazel et al. Sep 2007 A1
20070227299 Marchiando et al. Oct 2007 A1
20080124479 Hazel et al. May 2008 A1
20080145674 Darolia et al. Jun 2008 A1
20080206542 Vance et al. Aug 2008 A1
20080274336 Merrill et al. Nov 2008 A1
20090004427 Sarrafi-Nour et al. Jan 2009 A1
20090061530 Bossmann et al. Mar 2009 A1
20090102008 Kakehata Apr 2009 A1
20090110953 Margolies Apr 2009 A1
20090155554 Gentleman et al. Jun 2009 A1
20090162539 Boutwell et al. Jun 2009 A1
20090162556 Boutwell et al. Jun 2009 A1
20090162684 Creech Jun 2009 A1
20090169914 Fu et al. Jul 2009 A1
20090176059 Namba et al. Jul 2009 A1
20090178413 Lee Jul 2009 A1
20090184280 Lee Jul 2009 A1
20090186237 Lee Jul 2009 A1
20090297866 Raybould et al. Dec 2009 A1
20090324930 Tulyani et al. Dec 2009 A1
20100080984 Lee Apr 2010 A1
20100129636 Cybulsky et al. May 2010 A1
20100136349 Lee Jun 2010 A1
20100159150 Kirby et al. Jun 2010 A1
20100159253 Kirby et al. Jun 2010 A1
20110027467 Kirby et al. Feb 2011 A1
20110027469 Kirby et al. Feb 2011 A1
20110027470 Kirby et al. Feb 2011 A1
20110027476 Kirby et al. Feb 2011 A1
20110027484 Kirby et al. Feb 2011 A1
20110027517 Kirby et al. Feb 2011 A1
20110027557 Kirby et al. Feb 2011 A1
20110027558 Kirby et al. Feb 2011 A1
20110027559 Kirby et al. Feb 2011 A1
20110027578 Kirby et al. Feb 2011 A1
20110033630 Naik et al. Feb 2011 A1
20110111310 Pastula et al. May 2011 A1
20110256411 Courcot et al. Oct 2011 A1
20120076943 Kirby et al. Mar 2012 A1
20120077004 Kirby et al. Mar 2012 A1
20120128879 Cybulsky et al. May 2012 A1
20120244383 Meschter et al. Sep 2012 A1
20130011578 Hass et al. Jan 2013 A1
20130136915 Naik May 2013 A1
20130189531 Lee Jul 2013 A1
20130224457 Lee Aug 2013 A1
20140065438 Lee Mar 2014 A1
20140072816 Lee Mar 2014 A1
20140199163 Lee Jul 2014 A1
20140255680 Lee et al. Sep 2014 A1
20140272197 Lee Sep 2014 A1
20150159507 Sivaramakrishnan et al. Jun 2015 A1
20150267058 Lee Sep 2015 A1
20160362557 Lee Dec 2016 A1
20170044930 Luthra et al. Feb 2017 A1
20180282851 Ndamka et al. Oct 2018 A1
20180370862 Kirby et al. Dec 2018 A1
20190153880 Lee May 2019 A1
Foreign Referenced Citations (40)
Number Date Country
2712248 Jul 2009 CA
0972853 Jan 2000 EP
1335040 Aug 2003 EP
1400611 Mar 2004 EP
1428902 Jun 2004 EP
1479661 Nov 2004 EP
1550642 Jul 2005 EP
1626039 Feb 2006 EP
1666638 Jun 2006 EP
1795515 Jun 2007 EP
1806435 Aug 2007 EP
1829847 Sep 2007 EP
1975258 Oct 2008 EP
2108715 Oct 2009 EP
2189504 May 2010 EP
2192098 Jun 2010 EP
2194164 Jun 2010 EP
2208805 Jul 2010 EP
2245096 Nov 2010 EP
2287131 Feb 2011 EP
2287134 Feb 2011 EP
2287138 Feb 2011 EP
2468918 Jun 2012 EP
2319248 May 1998 GB
163216 Mar 2013 SG
2006023894 Mar 2006 WO
2007098152 Aug 2007 WO
2007116547 Oct 2007 WO
2008103163 Aug 2008 WO
2008109214 Sep 2008 WO
2009091721 Jul 2009 WO
2009091724 Jul 2009 WO
2010039699 Apr 2010 WO
2011085109 Jul 2011 WO
2011085376 Jul 2011 WO
2011123432 Oct 2011 WO
2012012431 Jan 2012 WO
2012027442 Mar 2012 WO
2012122373 Sep 2012 WO
2012129431 Sep 2012 WO
Non-Patent Literature Citations (14)
Entry
Krause, 2ZrO2.Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part I, Optical Basicity Considerations and Processing, J. Am. Cheram. Soc., 97 [12], (2014), p. 3943-3949 (Year: 2014).
Ndamka, Microstructural Damage of Thermal Barrier Coatings Due to CMAS Attack, Thesis, School of Applied Sciences Surface Engineering and Nanotechnology Institute, Cranfield University, 2013, p. 1-300 (Year: 2013).
Krause 2, 2ZrO2.Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part II, Interactions with Sand and Fly Ash, J. Am. Ceram. Soc., 97 [12], (2014), p. 3950-3957 (Year: 2014).
“Coating Technology for the Future,” Directed Vapor Technologies International, Inc., retrieved from http://www.directedvapor.com/Capabilities_Brochure.pdf on Dec. 9, 2013, 7 pp.
Anderson et al., “Ultrasonic Measurement of the Kearns Texture Factors in Zircaloy, Zirconium, and Titanium,” vol. 30A, Aug. 1999, Metallurgical and Materials Transactions, 8 pp.
Grant et al., “CMAS degradation of environmental barrier coatings,” Surface and Coatings Technology, vol. 202, Jul. 4, 2007, 5 pp.
Harder et al., “Chemical and Mechanical Consequences of Environmental Barrier Coating Exposure to Calcium-Magnesium-Aluminosilicate,” Journal of the American Ceramic Society, vol. 94, No. S1, Mar. 17, 2011, 8 pp.
Kramer et al., “Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO—MgO—Al203—SiO2 (CMAS) Deposits,” Journal of the American Ceramic Society, vol. 89, No. 10, Aug. 9, 2006, 9 pp.
Lee et al., “Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics,” Journal of the European Ceramic Society, vol. 25, Jan. 21, 2005.
Ndamka, “Microstructural Damage of Thermal Barrier Coating Due to CMAS Attack,” Cranfield University, School of Applied Sciences Surface Engineering and Nanotechnology Institute (SENTI), Oct. 2013, pp. 332.
Shelby et al., “Rare earth aluminosilicate glasses,” Journal of American Ceramic Society, vol. 73, No. 1, Jan. 1990, 4 pp.
U.S. Appl. No. 61/318,567, filed Mar. 29, 2010.
U.S. Appl. No. 15/943,250, filed Apr. 2, 2018, by Ndamka et al.
Bhattacharya et al., “Calcia-Doped Yttria Stabilized Zirconia for Thermal Barrier Coatings: Synthesis and Characterization,” Journal of Materials Science, vol. 46, Sep. 2011, pp. 5709-5714.
Related Publications (1)
Number Date Country
20190048475 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
62542550 Aug 2017 US