The disclosed embodiments generally pertain to shrouds for a gas turbine engine. More particularly, but not by way of limitation, present embodiments relate to ceramic matrix composite (CMC) shroud support systems utilized in gas turbine engines including a clip structure for connecting the CMC shroud.
A typical gas turbine engine generally possesses a forward end and an aft end with its several core or propulsion components positioned axially therebetween. An air inlet or intake is located at a forward end of the engine. Moving toward the aft end, in order, the intake is followed by a compressor, a combustion chamber, and a turbine. It will be readily apparent from those skilled in the art that additional components may also be included in the engine, such as, for example, low-pressure and high-pressure compressors, and low-pressure and high-pressure turbines. This, however, is not an exhaustive list. An engine also typically has an internal shaft axially disposed along a center longitudinal axis of the engine. The internal shaft is connected to both the turbine and the air compressor, such that the turbine provides a rotational input to the air compressor to drive the compressor blades.
In operation, air is pressurized in a compressor and mixed with fuel in a combustor for generating hot combustion gases which flow downstream through turbine stages. These turbine stages extract energy from the combustion gases. A multi-stage high pressure turbine first receives the hot combustion gases from the combustor through a row of high pressure turbine rotor blades extending radially outwardly from a supporting rotor disk. A low pressure turbine may be disposed downstream of the high pressure turbine for further conversion of gas energy to mechanical energy.
A shroud assembly circumscribes the turbine rotor and defines an outer boundary for combustion gases flowing through the turbine. The turbine shroud may be a single unitary structure or may be formed of a plurality of segments. Some known shroud assemblies include a shroud hanger that is coupled to an outer casing of the engine to provide support to a plurality of shrouds positioned adjacent to, and radially outward of, the tips of the turbine blades.
Various structures have been suggested for mounting the shroud to the shroud hanger. Some current arrangements of shrouds and hangers have had only limited success for retaining the shroud in position. For example, some methods include mounting bolts extending between the shroud hanger and the shroud. However, this method may result in unacceptable bending load on the bolts.
Additionally, pressure loads on the shroud result in radial force pulling the shroud in a direction away from the hanger and toward the blades. When the shroud moves radially inwardly, the shroud may interfere with movement of the blade causing undue damage to blade tips. Therefore, some structure is needed to combat this force during engine operation.
Alternatively, when such radial motion is not limited properly in the opposite direction, radially outwardly, the shroud may move too far from adjacent blade tips allowing air leakage and decreasing efficiency.
As may be seen by the foregoing, it would be desirable to overcome these and other deficiencies with gas turbine engine components. Moreover, it would be desirable to limit relative radial movement between the shroud hanger and shroud.
According to instant embodiments, a shroud and shroud hanger are provided wherein at least the shroud is formed of ceramic matrix composite material. The shroud and hanger extend in a circumferential direction. A generally C-shaped clip extends radially to retain the hanger and shroud together.
According to some embodiments, a segmented shroud assembly comprises a shroud hanger which extends in a circumferential direction and has an axial dimension, a cavity disposed between an axial forward end and an axial rearward end and extending circumferentially, a ceramic matrix composite (CMC) shroud disposed within the cavity, the CMC shroud having a lower wall, at least one side wall, at least one upper wall and at least a partially hollow interior, a c-clip connecting the shroud hanger and the CMC shroud, the c-clip disposed at an end of the shroud hanger and engaging a lower surface of the upper wall.
Optionally, the clip may have an upper rib and a lower rib for engaging the shroud hanger and the CMC shroud. The segmented shroud assembly may further comprise a baffle positioned within the at least partially hollow interior. The segmented shroud assembly wherein the c-clip extends into a recess in the shroud hanger. The recess may be formed to allow the c-clip to fit flush with a slash face of the shroud hanger. The CMC shroud may have an opening in the upper wall. The opening may be centered between a first upper wall and a second upper wall. The CMC shroud may further comprise a second opening at an end of the shroud. The shroud may further comprise a support depending from one of the first upper wall and the second upper wall. The segmented shroud assembly wherein one of the first and second upper wall are disposed at an end of the CMC shroud. The segmented shroud assembly wherein the other of the first and second upper wall are disposed near an end of the CMC shroud. The segmented shroud assembly wherein the support has a width in a circumferential dimension which is greater than a width of the one of the first upper wall and the second upper wall. The segmented shroud assembly wherein the opening is disposed at a circumferential end of the upper wall. The shroud may have a spacer disposed on the at least one upper wall. The segmented shroud assembly wherein the c-clip limits motion of the shroud in a radial direction. The segmented shroud assembly wherein the c-clip is disposed at one of at least one end of the shroud or intermediate to ends of the shroud.
All of the above outlined features are to be understood as exemplary only and many more features and objectives of the invention may be gleaned from the disclosure herein. Therefore, no limiting interpretation of this summary is to be understood without further reading of the entire specification, claims, and drawings included herewith.
The above-mentioned and other features and advantages of these exemplary embodiments, and the manner of attaining them, will become more apparent and the C-clip supported segmented shroud will be better understood by reference to the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
Reference now will be made in detail to embodiments provided, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation, not limitation of the disclosed embodiments. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present embodiments without departing from the scope or spirit of the disclosure. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to still yield further embodiments. Thus it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring to
As used herein, the terms “axial” or “axially” refer to a dimension along a longitudinal axis of an engine. The term “forward” used in conjunction with “axial” or “axially” refers to moving in a direction toward the engine inlet, or a component being relatively closer to the engine inlet as compared to another component. The term “aft” used in conjunction with “axial” or “axially” refers to moving in a direction toward the engine nozzle, or a component being relatively closer to the engine nozzle as compared to another component.
As used herein, the terms “radial” or “radially” refer to a dimension extending between a center longitudinal axis of the engine and an outer engine circumference. The use of the terms “proximal” or “proximally,” either by themselves or in conjunction with the terms “radial” or “radially,” refers to moving in a direction toward the center longitudinal axis, or a component being relatively closer to the center longitudinal axis as compared to another component. The use of the terms “distal” or “distally,” either by themselves or in conjunction with the terms “radial” or “radially,” refers to moving in a direction toward the outer engine circumference, or a component being relatively closer to the outer engine circumference as compared to another component.
As used herein, the terms “lateral” or “laterally” refer to a dimension that is perpendicular to both the axial and radial dimensions.
Referring initially to
In operation air enters through the air inlet end 12 of the engine 10 and moves through at least one stage of compression where the air pressure is increased and directed to the combustor 16. The compressed air is mixed with fuel and burned providing the hot combustion gas which exits the combustor 16 and enters the high pressure turbine 20. At the high pressure turbine 20, energy is extracted from the hot combustion gas causing rotation of turbine blades which, in turn, cause rotation of the shaft 24. The shaft 24 passes toward the front of the engine to continue rotation of the one or more compressor stages 14, a turbofan 18 or inlet fan blades, depending on the turbine design. The turbofan 18 is connected by the shaft 28 to a low pressure turbine 21 and creates thrust for the turbine engine 10. The low pressure turbine 21 may also be utilized to extract further energy and power additional compressor stages. The low pressure air may be used to aid in cooling components of the engine as well.
Referring now to
A shroud hanger 32 which is connected to the engine casing and extends circumferentially about a portion of the engine, for example the turbine. The engine casing extends circumferentially about the engine axis 26 (
The shroud hanger 32 is defined by a plurality of segments which in combination, extend about the central axis 26 of the engine. The shroud hanger 32 may include a first wall 34 a second wall 36, each of which extend in a radial direction and in a circumferential direction. The first wall 34 may be a one-piece linear structure and may extend in a substantially radial direction when mounted in the engine 10. Alternatively, the first wall 34 may be formed of a plurality of segments, linear, curvilinear or a combination of both. The second wall 36 may also be linear or may be formed of segments. The second wall 36, for example, may have two radially extending segments 31 and 33 and an axially extending 39 portion between the radially extending segments.
A hanger gusset 38 may extend between the first wall 34 and the second wall 36 and may extend axially or may extend at an angle to the central axis 26 as depicted. According to instant embodiment, the gusset 38 is tapered from a lower radial height 42 at the first wall 34 to a higher radial height 44 at the second wall 36. The gusset 38 may alternatively be flat or tapered in the opposite direction.
The shroud hanger 32 includes tabs or hooks 35, 37 which may be utilized to engage the engine casing. The tabs 35, 37 may extend continuously in a circumferential direction or may be defined by tabs at specific locations where connections occur to save weight. These hooks 35, 37 may take various forms in order to provide a mounting assembly or structure. For example, the depicted embodiment has a generally inverted L-shaped cross-section in combination with the first and second walls 34, 36. However, this is merely one exemplary embodiment and others may be utilized.
As depicted, the first and second walls 34, 36 and the gusset 38 of shroud hanger 32 form a cavity 46 wherein the shroud 50 may be positioned. The shroud 50 may be formed of one or more shroud segments 51. The lower most surface of the shroud segment 51 defines an outer surface of an air flow path within the gas turbine engine 10, for example a compressor 14 or turbine 20. The segments 51 may further comprise an abradable material on the lowermost surface 58. Radially inward from the shroud segment 51 may be an airfoil blade 23 which rotates during operation of the gas turbine engine 10 with a rotor disk. The assembly 30 includes a shroud hanger 32 and a side section view of exemplary shroud support system 30 is depicted.
An exemplary turbine is shown, however the instant embodiments are not limited to turbine use. The turbine 20 includes a row of circumferentially spaced stationary vanes (not shown) and a plurality of circumferentially spaced turbine blades (not shown) downstream of the vanes. The blades are foil-shaped and mounted to a turbine rotor disk (not shown). Each of the blades 23 extends radially toward a shroud 50. The shroud 50 extends circumferentially about the engine axis 26 and is comprised of a plurality of shroud segments 51. Optionally, the shroud 50 may be formed of one unitary structure. The shroud 50 is tightly configured relative to the blades 23 so that the shroud 50 defines an outer radial flowpath boundary for the hot combustion gas flowing through the turbine 20.
A ceramic matrix composite (CMC) shroud 50 is positioned within the cavity 46 of the shroud hanger 32. The shroud 50 defines a structure which is disposed against the rotor blade tips of, for example, the turbine 20. The shroud 50 may be positioned within the cavity 46 and is sized and shaped to be positioned within the cavity 46.
The shroud segments 50 include end faces 52 which are commonly referred to as “slash faces.” The slash faces 52, 54 may lie in plane parallel to the center line axis of the engine 10, referred to as a “radial plane”, or they may be slightly offset from the radial plane, or otherwise oriented so that they are at an acute angle to such radial plane. Each shroud 50 includes a top wall 56, a bottom wall 58 and at least one side wall 59. The instant embodiment includes a second side wall or transition wall 57 opposite the first side wall 59 which extends substantially between the top wall 56 and the bottom wall 58.
Within the top surface 56 of the shroud 50 may or may not include one or more windows or relief sections (not shown), which in combination with adjacent relief sections of adjacent segments 50 form apertures. The windows may be fully bounded within the top surface of the shroud 50. The second window may also be fully bounded within the top surface of the shroud 50 or alternatively may be disposed at circumferential ends of the shroud 50, at a slash face 52, 54, so that adjacent shrouds 50 form a complete window. For example, when a plurality of segments 51 are positioned to form a complete circular arrangement, the shroud 50 has a plurality of circumferentially spaced apertures formed by adjacent relief windows located in the top wall 56. In either of these embodiments, the shroud 50 may be supported from the hanger 32 at these locations or at ends of the shroud segment 51.
Additionally, when the hangers 32 and shrouds 50 are assembled into a complete ring, end gaps may be positioned in the slash faces 52, 54 and 48, 49. These gaps may be used to position one or more spline seals. These spline seals may be formed of thin strips of metal or other suitable materials which are inserted in slots or gaps at the end faces to span the gaps between adjacent segments and limit air leakage between the hangers 32 and the shrouds 50.
The shroud segments 50 may be constructed of various low ductility and low coefficient of thermal expansion materials including but not limited to a ceramic matrix composite (CMC). Generally, CMC materials include a ceramic fiber, for example a silicon carbide (SiC), forms of which are coated with a compliant material such as boron nitride (BN). The fibers are coated in a ceramic type matrix, one form of which is silicon carbide (SiC). Typically, the shroud segment 40 can also be constructed of other low-ductility, high-temperature-capable materials. CMC materials generally have room temperature tensile ductility of less than or equal to about 1% which is used herein to define a low tensile ductility material. Generally, CMC materials have a room temperature tensile ductility in the range of about 0.4% to about 0.7%.
CMC materials have a characteristic wherein the materials tensile strength in the direction parallel to the length of the fibers (the “fiber direction”) is stronger than the tensile strength in the direction perpendicular. This perpendicular direction may include matrix, interlaminar, secondary or tertiary fiber directions. Various physical properties may also differ between the fiber and the matrix directions.
Additionally, at the slash faces 48, 52, a C-clip 60 is positioned for use. The clip includes a first leg 62, a second leg 64 and third leg 66 extending between the first leg 62 and second leg 64. The first leg 62 of the C-clip 60 engages a recess 45 in the slash face 48 of the hanger 32. Additionally, the second leg 64 of the C-clip 60 engages a lower surface of the upper wall 56. The C-clip 60 is forced in a circumferential direction so that the third leg 66 engages the slash faces 48, 52. A similar construction is utilized on the opposite end of the shroud hanger 32 and the shroud 50.
Referring now to
The C-clip 60 may be utilized at ends of the shroud hanger 32. However, due to the arrangements of the shroud segments 51, the C-clips 60 may be engaging the segments at various locations including either of the slash faces 52, 54 or through openings in the top wall 56 of the shroud 50. The C-clips 60 include the first leg 62 and the second leg 64 which extend in a generally tangential or circumferential direction. The third leg 66 extends radially between the first and second legs 62, 64. The C-clips 60 may be friction fit to engage the shroud hanger 32 and the shroud 50.
The upper surface 56 of the shroud engages a cavity surface of the hanger 32. Additionally, the transition surface 57 may be engages by edges or a surface of the hanger 32 for additional stability. Ends of the shroud 50 may also engage portions of the hanger 32 for added stability.
Referring now to
Additionally, in comparing
Additionally, the first and second legs 161, 165 may include ribs or protrusions 163 of a different thickness so as to engage the hanger 32, shroud 50 and optionally, baffle 80 with the appropriate fit and provide additional strength to the C-clips 60, 160.
The cross-sectional view of
Referring now to
Beneath the top wall 156 is a center support 170. The center support 170 may be oblong in cross-section according to one embodiment however, various cross-sectional shapes may be utilized. The “center support” 170 provides additional strength for the support or top wall 156 in the center of the shroud segment 151. The center support 170 may also be used to hang the shroud 150 from a hanger, for example hanger 32. The term center is used because the embodiment depicted is a partial shroud segment 151 and the segment support 170 is located at the center of the embodiment of segment 151. Although the segment shows a window 164 partially formed, embodiments, may be provided wherein the segment is longer or shorter than depicted in this and other embodiments of this disclosure. As previously indicated, the shroud 150 may be formed of one or more shroud segments.
Referring now to
Referring now to
Referring to
The embodiment of
The foregoing description of structures and methods has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the structures and methods to the precise forms and/or steps disclosed, and obviously many modifications and variations are possible in light of the above teaching. Features described herein may be combined in any combination. Steps of a method described herein may be performed in any sequence that is physically possible. It is understood that while certain forms of composite structures have been illustrated and described, it is not limited thereto and instead will only be limited by the claims, appended hereto.
While multiple inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
Examples are used to disclose the embodiments, including the best mode, and also to enable any person skilled in the art to practice the apparatus and/or method, including making and using any devices or systems and performing any incorporated methods. These examples are not intended to be exhaustive or to limit the disclosure to the precise steps and/or forms disclosed, and many modifications and variations are possible in light of the above teaching. Features described herein may be combined in any combination. Steps of a method described herein may be performed in any sequence that is physically possible.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms. The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
This non-provisional application is the National Stage of International Application No. PCT/US14/68490, filed Dec. 4, 2014 and claims the benefit of U.S. Provisional Application No. 61/915,114 filed Dec. 12, 2013, the whole disclosure of which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/068490 | 12/4/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/088869 | 6/18/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3583824 | Smuland et al. | Jun 1971 | A |
3778185 | Plowman et al. | Dec 1973 | A |
4087199 | Hemsworth et al. | May 1978 | A |
4460311 | Trappmann et al. | Jul 1984 | A |
4596116 | Mandet et al. | Jun 1986 | A |
4759687 | Miraucourt et al. | Jul 1988 | A |
4863345 | Thompson et al. | Sep 1989 | A |
5048288 | Bessette et al. | Sep 1991 | A |
5074748 | Hagle | Dec 1991 | A |
5080557 | Berger | Jan 1992 | A |
5127793 | Walker et al. | Jul 1992 | A |
5137421 | Hayton | Aug 1992 | A |
5154577 | Kellock et al. | Oct 1992 | A |
5169287 | Proctor et al. | Dec 1992 | A |
5188507 | Sweeney | Feb 1993 | A |
5197853 | Creevy et al. | Mar 1993 | A |
5593277 | Proctor et al. | Jan 1997 | A |
5655876 | Rock et al. | Aug 1997 | A |
5738490 | Pizzi | Apr 1998 | A |
5780146 | Mason et al. | Jul 1998 | A |
5964575 | Marey | Oct 1999 | A |
6113349 | Bagepalli et al. | Sep 2000 | A |
6164656 | Frost | Dec 2000 | A |
6290459 | Correia | Sep 2001 | B1 |
6315519 | Bagepalli et al. | Nov 2001 | B1 |
6340285 | Gonyou et al. | Jan 2002 | B1 |
6402466 | Burdgick et al. | Jun 2002 | B1 |
6412149 | Overberg | Jul 2002 | B1 |
6503051 | Predmore | Jan 2003 | B2 |
6503574 | Skelly et al. | Jan 2003 | B1 |
6699011 | Cot et al. | Mar 2004 | B2 |
6702550 | Darkins, Jr. et al. | Mar 2004 | B2 |
6733235 | Alford et al. | May 2004 | B2 |
6808363 | Darkins, Jr. et al. | Oct 2004 | B2 |
6884026 | Glynn et al. | Apr 2005 | B2 |
6887528 | Lau et al. | May 2005 | B2 |
6893214 | Alford et al. | May 2005 | B2 |
6942203 | Schroder et al. | Sep 2005 | B2 |
7011493 | Marchi et al. | Mar 2006 | B2 |
7052235 | Alford et al. | May 2006 | B2 |
7217089 | Durocher et al. | May 2007 | B2 |
7238002 | Cairo et al. | Jul 2007 | B2 |
7270518 | Barb et al. | Sep 2007 | B2 |
7556475 | Roberts, III et al. | Jul 2009 | B2 |
7595114 | Meschter et al. | Sep 2009 | B2 |
7686577 | Morrison et al. | Mar 2010 | B2 |
7726936 | Keller et al. | Jun 2010 | B2 |
7749565 | Johnson et al. | Jul 2010 | B2 |
7753643 | Gonzalez et al. | Jul 2010 | B2 |
7819625 | Merrill et al. | Oct 2010 | B2 |
7871244 | Marini et al. | Jan 2011 | B2 |
7908867 | Keller et al. | Mar 2011 | B2 |
7950234 | Radonovich et al. | May 2011 | B2 |
7968217 | Sarrafi-Nour et al. | Jun 2011 | B2 |
8047773 | Bruce et al. | Nov 2011 | B2 |
8079807 | Shapiro et al. | Dec 2011 | B2 |
8118546 | Morrison | Feb 2012 | B2 |
8128350 | Schiavo et al. | Mar 2012 | B2 |
8167546 | Shi et al. | May 2012 | B2 |
8303247 | Schlichting et al. | Nov 2012 | B2 |
8328505 | Shi et al. | Dec 2012 | B2 |
8834106 | Luczak | Sep 2014 | B2 |
20020127108 | Crall et al. | Sep 2002 | A1 |
20030031557 | Arilla et al. | Feb 2003 | A1 |
20030202876 | Jasklowski et al. | Oct 2003 | A1 |
20030215328 | McGrath et al. | Nov 2003 | A1 |
20040005216 | Suzumura et al. | Jan 2004 | A1 |
20040005452 | Dorfman et al. | Jan 2004 | A1 |
20040047726 | Morrison | Mar 2004 | A1 |
20040062640 | Darkins, Jr. et al. | Apr 2004 | A1 |
20040219011 | Albers et al. | Nov 2004 | A1 |
20050003172 | Wheeler et al. | Jan 2005 | A1 |
20050111965 | Lowe et al. | May 2005 | A1 |
20050129499 | Morris et al. | Jun 2005 | A1 |
20050141989 | Sayegh et al. | Jun 2005 | A1 |
20060078429 | Darkins, Jr. et al. | Apr 2006 | A1 |
20060083607 | Synnott et al. | Apr 2006 | A1 |
20060110247 | Nelson et al. | May 2006 | A1 |
20060110248 | Nelson et al. | May 2006 | A1 |
20060292001 | Keller et al. | Dec 2006 | A1 |
20070031245 | Ruthemeyer et al. | Feb 2007 | A1 |
20070031258 | Campbell et al. | Feb 2007 | A1 |
20070077141 | Keller | Apr 2007 | A1 |
20070154307 | Cairo | Jul 2007 | A1 |
20080025838 | Marini et al. | Jan 2008 | A1 |
20080206046 | Razzell | Aug 2008 | A1 |
20080206542 | Vance et al. | Aug 2008 | A1 |
20090010755 | Keller et al. | Jan 2009 | A1 |
20090053045 | Nowak et al. | Feb 2009 | A1 |
20090208322 | McCaffrey | Aug 2009 | A1 |
20090324393 | Gonzalez et al. | Dec 2009 | A1 |
20110085899 | Foster et al. | Apr 2011 | A1 |
20110182720 | Kojima et al. | Jul 2011 | A1 |
20110274538 | Shi et al. | Nov 2011 | A1 |
20110299976 | Uskert | Dec 2011 | A1 |
20110318171 | Albers et al. | Dec 2011 | A1 |
20120082540 | Dziech et al. | Apr 2012 | A1 |
20120107122 | Albers et al. | May 2012 | A1 |
20120156029 | Karafillis et al. | Jun 2012 | A1 |
20120171023 | Albers et al. | Jul 2012 | A1 |
20120171027 | Albers et al. | Jul 2012 | A1 |
20120247124 | Shapiro et al. | Oct 2012 | A1 |
20120260670 | Foster et al. | Oct 2012 | A1 |
20120263582 | Foster et al. | Oct 2012 | A1 |
20120275898 | McCaffrey et al. | Nov 2012 | A1 |
20130000324 | Alvanos et al. | Jan 2013 | A1 |
20130004306 | Albers et al. | Jan 2013 | A1 |
20130008176 | Shi et al. | Jan 2013 | A1 |
20130011248 | Croteau et al. | Jan 2013 | A1 |
20130017057 | Lagueux | Jan 2013 | A1 |
20130266435 | Foster et al. | Oct 2013 | A1 |
20140255170 | Hillier | Sep 2014 | A1 |
20140271144 | Landwehr et al. | Sep 2014 | A1 |
20140271145 | Thomas et al. | Sep 2014 | A1 |
20140294571 | Hillier | Oct 2014 | A1 |
20140294572 | Hillier et al. | Oct 2014 | A1 |
20140308113 | Westphal et al. | Oct 2014 | A1 |
20150016970 | Smith et al. | Jan 2015 | A1 |
20150377035 | Freeman et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2520792 | Mar 2006 | CA |
1219215 | Jun 1999 | CN |
1458393 | Nov 2003 | CN |
1542259 | Nov 2004 | CN |
101372902 | Feb 2009 | CN |
102135020 | Jul 2011 | CN |
0770761 | May 1997 | EP |
1225309 | Jul 2002 | EP |
1548144 | Jun 2005 | EP |
1801361 | Jun 2007 | EP |
1965030 | Sep 2008 | EP |
2631434 | Aug 2013 | EP |
2774905 | Sep 2014 | EP |
2540938 | Aug 1984 | FR |
2580033 | Oct 1986 | FR |
2942844 | Sep 2010 | FR |
2397102 | Jul 2004 | GB |
2480766 | Nov 2011 | GB |
53065516 | Jun 1978 | JP |
57010710 | Jan 1982 | JP |
63239301 | Oct 1988 | JP |
04330302 | Nov 1992 | JP |
05141270 | Jun 1993 | JP |
09013904 | Jan 1997 | JP |
10103014 | Apr 1998 | JP |
2002276301 | Sep 2002 | JP |
2004036443 | Feb 2004 | JP |
2005155626 | Jun 2005 | JP |
2006105393 | Apr 2006 | JP |
2007046603 | Feb 2007 | JP |
2007182881 | Jul 2007 | JP |
2011080468 | Apr 2011 | JP |
2013170578 | Sep 2013 | JP |
02099254 | Dec 2002 | WO |
03026886 | Apr 2003 | WO |
2013163505 | Oct 2013 | WO |
2014130762 | Aug 2014 | WO |
Entry |
---|
Michael John Franks et al., filed Dec. 15, 2011, U.S. Appl. No. 13/327,349. |
Curtis Alan Johnson et al., filed Sep. 29, 2006, U.S. Appl. No. 11/537,278. |
Michael John Franks et al., filed Feb. 22, 2012, U.S. Appl. No. 13/402,616. |
Jonathan David Baldiga et al., filed Nov. 17, 2015, U.S. Appl. No. 14/891,806. |
A PCT Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/035089 dated Jul. 1, 2014. |
A Chinese Office Action issued in connection with related CN Application No. 201480028735.3 dated Sep. 5, 2016. |
A Japanese Office Action issued in connection with related JP Application No. 2016513961 dated Nov. 8, 2016. |
GE Related Case Form. |
A U.S. Non-Final Office Action issued in connection with Related U.S. Appl. No. 14/634,060 dated May 17, 2017. |
A Non-Final Office Action issued in connection with related U.S. Appl. No. 11/537,278 dated Jul. 9, 2009. |
A Final Office Action issued in connection with related U.S. Appl. No. 11/537,278 dated Jan. 27, 2010. |
A Non Final Office Action issued in connection with related U.S. Appl. No. 13/327,349 dated Jul. 22, 2014. |
A Chinese Office Action issued in connection with corresponding CN Application No. 201210541477.1 dated May 12, 2015. |
A Chinese Office Action issued in connection with corresponding CN Application No. 201310056712.0 dated Jun. 19, 2015. |
A European Search Report and Opinion issued in connection with corresponding EP Application No. 12195953.0 dated Jul. 22, 2015. |
Unofficial English Translation of Japanese Office Action issued in connection with corresponding JP Application No. 2012269895 dated Oct. 4, 2016. |
Unofficial English Translation of Japanese Office Action issued in connection with corresponding JP Application No. 2013027200 dated Oct. 18, 2016. |
Unofficial English Translation of Chinese Office Action issued in connection with corresponding CN Application No. 201480067368.8 dated Nov. 2, 2016. |
Unofficial English Translation of Japanese Notice of Allowance issued in connection with corresponding JP Application No. 2013027200 dated Nov. 29, 2016. |
A PCT Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2015/029236 dated Jul. 20, 2015. |
A PCT Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2015/029342 dated Jul. 22, 2015. |
A PCT Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2015/028050 dated Aug. 11, 2015. |
A European Search Report and opinion issued in connection with related EP Application No. 16155655.0 dated Aug. 1, 2016. |
A Chinese Office Action issued in connection with related CN Application No. 201610106090.1 dated Jan. 4, 2017. |
A Canadian Office Action issued in connection with related CA Application No. 2921269 dated Jan. 25, 2017. |
A Japanese Search Report issued in connection with related JP Application No. 2016029448 dated Jan. 25, 2017. |
A Japanese Office Action issued in connection with related JP Application No. 2016029448 dated Feb. 7, 2017. |
A Japanese Notice of Allowance issued in connection with related JP Application No. 2016513961 dated Feb. 21, 2017. |
A PCT Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/068490 dated Mar. 5, 2015. |
Number | Date | Country | |
---|---|---|---|
20160312639 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61915114 | Dec 2013 | US |