This invention relates to a combustion turbine vane assembly with a metal vane core and a ceramic matrix composite (CMC) or superalloy airfoil sheath on the core, the core and airfoil spanning between metal backing plates, the plates forming segments of inner and outer shrouds surrounding an annular working gas flow path. The invention also relates to ceramic matrix composite or superalloy shroud covers.
Combustion turbines include a compressor assembly, a combustor assembly, and a turbine assembly. The compressor compresses ambient air, which is channeled into the combustor where it is mixed with fuel and burned, creating a heated working gas. The working gas can reach temperatures of about 2500-2900° F. (1371-1593° C.), and is expanded through the turbine assembly. The turbine assembly has a series of circular arrays of rotating blades attached to a central rotating shaft. A circular array of stationary vanes is mounted in the turbine casing just upstream of each array of rotating blades. The stationary vanes are airfoils that redirect the gas flow for optimum aerodynamic effect on the next array of rotating blades. Expansion of the working gas through the rows of rotating blades and stationary vanes causes a transfer of energy from the working gas to the rotating assembly, causing rotation of the shaft, which drives the compressor.
The vane assemblies may include an outer platform element or shroud segment connected to one end of the vane and attached to the turbine casing, and an inner platform element connected to an opposite end of the vane. The outer platform elements are positioned adjacent to each other to define an outer shroud ring, and the inner platform elements may be located adjacent to each other to define an inner shroud ring. The outer and inner shroud rings define an annular working gas flow channel between them.
Vane assemblies may have passageways for a cooling fluid such as air or steam. The coolant may be routed from an outer plenum, through the vane, and into an inner plenum attached to the inner platform elements. The vanes are subject to mechanical loads from aerodynamic forces on them while acting as cantilever supports for the inner platform elements and inner plenum. Thus, problems arise in assembling vanes with both the required mechanical strength and thermal endurance.
Attempts have been made to form vane platforms and vane cores of metal with a CMC cover layer. However forming CMC airfoils by wet layering on a metal core is unsatisfactory, because curing of CMC requires temperatures that damage metal. Also CMC has a different coefficient of thermal expansion than metal, resulting in separation of the airfoil from the metal during turbine operation. CMC or superalloy airfoils may be formed separately and then assembled over the metal core, but this involves problems with assembly. If an inner and outer platform and vane core are cast integrally, there is no way to slide CMC cover elements over them. Thus, attempts have been made to form CMC airfoils split into halves, connecting the halves over the vane core. However, this results in a ceramic seam, which must be cured in a separate high-temperature step that can damage metal and may cause lines of weakness in the airfoil. If the platforms and vane are cast separately it is challenging to mechanically connect them securely enough to withstand the cantilevered aerodynamic forces and vibrational accelerations. It is also challenging to mount a CMC airfoil over a metal vane core securely in a way that accommodates differential thermal expansion without allowing vibration.
The invention is explained in the following description in view of the drawings that show:
The inventors devised a vane assembly that can be fabricated using conventional metal casting and CMC fabrication, can be assembled with sufficient mechanical strength and thermal endurance, and accommodates differential thermal expansion, thus solving the above problems of the prior art. It limits stresses on the CMC airfoil to wall thickness compressive stresses, which are best for CMC, and it also provides an easily replaceable CMC vane airfoil.
CMC shroud covers 46, 48 may be assembled over facing surfaces of the backing plates 38, 40, using pins in holes 47 or other fastening means, in order to thermally protect the backing plates from the working gas and to seal the working gas path. Ceramic thermal barrier coatings 50, 52 may be applied to the CMC shroud covers 46, 48. Intersegment gas seals 39 may be provided as known in the art.
A medial cooling channel 68 is connected to the peripheral cooling paths 70, 71 by a row of leading edge tributaries 69. Coolant flows from the medial channel 68 through the leading edge tributaries 69 to the leading edge peripheral cooling paths 71, then around the vane strut in both transverse directions toward the trailing edge, through peripheral cooling paths 71 on the pressure side 101, and through the spring chamber 76 on the suction side 103. It then enters a trailing edge coolant drain 73, where it flows radially inward to the cooling plenum 60 in the inner U-ring 58. Coolant may also flow from one or more of the internal strut passages 68 into the cooling paths 70 or 76 through additional tributaries (not shown) through the pressure 101 and suction 103 sides of the strut 64.
A portion 83A of the cooling fluid may flow through a network of outer shroud coolant passages as shown by routing arrows in
The inner end 88 of the vane strut 64 may be inserted into a fitted socket 84 formed of one or more cavities in the inner backing plate 38, and affixed therein with a pin 86 or other mechanical fastener. The pin 86 may be held by ring clips 87 or other means known in the art, and may be releasable, so that the inner platform can be removed for easy replacement of the CMC vane airfoil 66. Flexible seals 53 of a material known in the art may be provided in the backing plates 38, 40, sealing against the respective shroud covers 46, 48 and/or the ends of the strut 64 and/or the CMC vane airfoil 66 as shown to limit coolant leakage. The inner end of the medial cooling channel 68 may exit into the inner plenum 60, via the exit holes 56 in the inner backing plate 38. This exit may be metered to direct coolant into the tributary channels 69.
91—The outer backing plate 40 is cast integrally with the vane strut 64 and trailing edge 28.
92—The inner backing plate 38 is cast separately.
93—The CMC vane airfoil 22 and the CMC shroud covers 46, 48 are formed, and are coated if desired.
94—The CMC parts 22, 46, 48 are cured.
95—The outer shroud cover 48 is slid over the strut 64 and fastened to the outer backing plate 40.
96—The spring 74 is installed on the strut 64 and compressed temporarily with a clamp, sleeve, or other means such as a fugitive matrix that holds the spring in compression. The spring is released within the CMC airfoil.
97—The CMC airfoil 66 is slid over the strut 64 and the spring 74, and may be fastened to the outer shroud cover 48.
98—The inner shroud cover 46 is fastened over the inner backing plate 38.
99—The free end 88 of the strut is inserted into the socket 84 in the inner backing plate, and is fastened with a pin 86 or other means.
The assembly is now ready for insertion into the vane carrier 78 (
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
Applicants claim the benefit of U.S. provisional patent applications 61/097,927 and 61/097,928, both filed on Sep. 18, 2008, and incorporated by reference herein.
Development for this invention was supported in part by Contract No. DE-FC26-05NT42646, awarded by the United States Department of Energy. Accordingly, the United States Government may have certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
2914300 | Sayre | Nov 1959 | A |
3992127 | Booher et al. | Nov 1976 | A |
6000906 | Draskovich | Dec 1999 | A |
6200092 | Koschier | Mar 2001 | B1 |
6464456 | Darolia et al. | Oct 2002 | B2 |
6514046 | Morrison et al. | Feb 2003 | B1 |
6648597 | Widrig et al. | Nov 2003 | B1 |
6984101 | Schiavo, Jr. | Jan 2006 | B2 |
7093359 | Morrison et al. | Aug 2006 | B2 |
7114917 | Legg | Oct 2006 | B2 |
7201564 | Bolms et al. | Apr 2007 | B2 |
7255534 | Liang | Aug 2007 | B2 |
7281895 | Liang | Oct 2007 | B2 |
7316539 | Campbell | Jan 2008 | B2 |
20060222487 | Au | Oct 2006 | A1 |
20060228211 | Vance et al. | Oct 2006 | A1 |
20070237630 | Schiavo, Jr. et al. | Oct 2007 | A1 |
20110110772 | Arrell et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100068034 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
61097927 | Sep 2008 | US | |
61097928 | Sep 2008 | US |