The semiconductor industry is undergoing a shift towards creation of value-added products and services, rather than simply focusing on advancing the state-of-the-art in integrated circuit technology, with Micro-Electro-Mechanical Systems (MEMS) expected to play an increasingly important role in the new era. The design and development of Micro-Electro-Mechanical Systems entails sophisticated Computer-Aided-Design tools, elaborate microfabrication facilities, and extensive packaging infrastructures. Such technological barriers limit the abilities of innovators and entrepreneurs to access and use MEMS technologies. This award supports research to enable a novel, cloud-based MEMS design, development and manufacturing platform that is web-accessible, low cost, expansible and interactive. If successful, this research will foster cybermanufacturing innovation by enabling a new manufacturing service infrastructure that allows a wide range of customers and entrepreneurs to prototype their Micro-Electro-Mechanical Systems efficiently and at low cost, thereby directly benefitting the U.S. economy and society. This research also will lead to new curriculum in the rapidly emerging areas of cloud computing, electronics, microfabrication, and sensors. Educational, training, and outreach activities envisioned by this research will entail development of hands-on instructional material for minority and underrepresented high school students.<br/><br/>The CloudMEMS platform will establish a novel "Design Anywhere, Manufacture Anywhere" approach in the design and development of Micro-Electro-Mechanical Systems via standardized processes and materials selections from leading semiconductor foundries easily made available to clients, designers, and entrepreneurs. The multi-university research team will systematically investigate process constraints in the Design-for-Manufacturing of next-generation Micro-Electro-Mechanical Systems toward enabling component design and fabrication using standard semiconductor foundry processes. The team will investigate sophisticated mathematical models and scaling laws capable of handling Micro-Electro-Mechanical Systems designs based on different structural materials and processes. Pertinent multi-pronged approaches for aiding Micro-Electro-Mechanical Systems design will be explored by (1) Fusing commercial Computer-Aided-Design packages into a cloud server and (2) Studying Micro-Electro-Mechanical Systems scaling laws for cost effective re-engineering of pre-simulated and pre-decomposed devices. The project will foster distinct design cycles for expert users and non-expert users who lack process knowledge. The CloudMEMS platform will be made accessible via Internet to bridge the cyber and manufacturing domains, thereby promoting leadership of the U.S. in cyber-driven microsystems and manufacturing.