Information
-
Patent Grant
-
6800883
-
Patent Number
6,800,883
-
Date Filed
Tuesday, August 7, 200123 years ago
-
Date Issued
Tuesday, October 5, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Thomas; Tom
- Warren; Matthew E.
Agents
- McDermott Will & Emery LLP
-
CPC
-
US Classifications
Field of Search
US
- 257 206
- 257 207
- 257 208
- 257 211
- 257 365
- 257 366
- 257 773
- 257 774
-
International Classifications
-
Abstract
In a CMOS basic cell used in fabrication of a gate array semiconductor integrated circuit, each of the gate and the diffusion region of a P-channel transistor is in a hooked shape having bent parts respectively bending to the left and right at the upper and lower portions thereof. Similarly, each of the gate and the diffusion region of an N-channel transistor is in a hooked shape having bent parts respectively bending to the left and right at the upper and lower portions thereof. In the case where a semiconductor integrated circuit is fabricated by arranging basic cells having the same structure on the right and left hand sides of this basic cell, the basic cells adjacent to each other are overlapped by portions thereof corresponding to one grid, so that the portions in the hooked shapes can be alternately inlaid with each other. Accordingly, the semiconductor integrated circuit attains a smaller layout area.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a CMOS basic cell and a method for fabricating a gate array semiconductor integrated circuit using the basic cell.
Recently, semiconductor integrated circuits are more and more highly developed in their integration and performance in accordance with refinement of processes, and the cost and period required for the development are steadily increasing accordingly. Under such circumstances, gate arrays, which can be designed by merely modifying interconnect patterns with CAD (computer-aided design) or the like, are widely used as a method for fabricating semiconductor integrated circuits suitable for reducing the cost and period required for the development or for few-of-a-kind production.
In general, a gate array is fabricated as follows: A basic cell having a previously determined layout pattern and an interconnect pattern of a logic cell using one or more basic cells are prepared, the basic cells are automatically placed and automatically connected to each other with interconnects by using the CAD or the like.
FIG. 30
shows the structure of a conventional CMOS basic cell composed of four transistors. In
FIG. 30
, a reference numeral
1
denotes a CMOS basic cell. In the basic cell
1
, a first P-channel transistor TP
1
includes a gate electrode
2
A placed in a U shape in a plane view and dopant diffusion layers
3
A and
4
A provided on both sides of the gate electrode
2
A. The dopant diffusion layers
3
A and
4
A work as the source and the drain. A second P-channel transistor TP
2
includes a gate electrode
5
A placed in a U shape facing a reverse direction to the gate electrode
2
A of the transistor TP
1
, a dopant diffusion layer
6
A provided on one side of the gate electrode
5
A, and the dopant diffusion layer
4
A shared with the transistor TP
1
. A first N-channel transistor TN
1
includes a gate electrode
2
B placed in a U shape in a plane view and dopant diffusion layers
3
B and
4
B provided on the both sides of the gate electrode
2
B. The dopant diffusion layers
3
B and
4
B work as the source and the drain. A second N-channel transistor TN
2
includes a gate electrode
5
B placed in a U shape facing a reverse direction to the gate electrode
2
B of the transistor TN
1
, a dopant diffusion layer
6
B provided on one side of the gate electrode
5
B and the dopant diffusion layer
4
B shared with the transistor TN
1
. Furthermore, reference numerals
7
and
8
denote global power supply pattern and GND (ground) pattern provided in upper and lower portions in the drawing by using a first interconnect layer.
In
FIG. 30
, broken lines drawn in the basic cell
1
denote wiring grids. A wiring grid herein means a place where an interconnect pattern of a logic cell is disposed as a wiring track. The wiring grids are disposed so as to cross the gate electrodes
2
A,
2
B,
5
A and
5
B and the dopant diffusion layers
3
A,
3
B,
4
A,
4
B,
6
A and
6
B, the power supply pattern
7
and the GND pattern
8
of the basic cell
1
, and the interval thereof is determined in accordance with a placement pitch of the transistors or an interconnect pitch determined based on the semiconductor process rule.
At a stage of design of a logic cell, wiring is optionally determined to place on the wiring grids, and at a stage of design of a semiconductor integrated circuit using a plurality of logic cells, the interconnects are placed on the wiring grids by using a CAD system or the like. At these design stages, in the case where, for example, a second interconnect layer is used for wiring, the interconnect pitch of the second layer is generally set to the same pitch as that of a first layer for easing connection to interconnects of the first layer. The interconnect pitch is similarly determined also in the case where a third or upper interconnect layer is used for wiring. In
FIG. 30
, the number of wiring tracks of the basic cell
1
extending in the X-direction is 11 and the number of wiring tracks extending in the Y-direction is 3.
The conventional basic cell, however, has the following problem: For example, when a circuit example of a DFF (D flip-flop) shown in
FIG. 2A
is constructed by using the basic cell of
FIG. 30
, if interconnects of the first and second layers are used for the interconnects of the logic cell, a layout structure of
FIG. 31A
or
FIG. 31B
is obtained. The number of interconnect layers used in this case are three in total, that is, the first and second interconnect layers and a layer of vias for connecting the first interconnect layer to the second interconnect layer.
Alternatively, when the interconnects of the second layer alone are used for the interconnects of the logic cell with the interconnects of the first layer used as fixed interconnects as disclosed in, for example, Japanese Laid-open Patent Publication No. 1-270329, a layout structure of
FIG. 32
is obtained. The number of interconnect layers used in this case is also three in total, that is, the interconnects of the second layer and the interconnects of the upper third layer, which are necessary because the interconnects are crowded, and a layer of vias for connecting the second interconnect layer to the third interconnect layer.
Vias for connecting a gate electrode and a dopant diffusion region to the interconnects of the first layer are naturally necessary not only in the basic cell of FIG.
30
and the exemplified circuit configurations shown in
FIGS. 31A and 31B
but also every example described below. However, the vias are not directly concerned with the essence of the invention and hence are herein neither described nor shown in drawings.
FIG. 2B
is a symbol diagram of the DFF of
FIG. 2A
, and
FIG. 2C
is an operation timing chart. In
FIG. 2B
, a reference numeral
100
denotes a DATA input terminal, a reference numeral
110
denotes a CLK input terminal, a reference numeral
120
denotes an inverted CLK input terminal, a reference numeral
200
denotes a DATA output terminal, and a reference numeral
210
denotes an inverted DATA output terminal.
Layout structures of other logic cells obtained by using the conventional basic cell are as follows:
FIG. 33
shows a layout structure of a buffer circuit example of
FIG. 4A
constructed by using the basic cell of
FIG. 30
with interconnects of the first and second layers used as the interconnects for the logic cell. Alternatively, a layout structure of
FIG. 34
is obtained when the interconnects of the second layer alone are used as the interconnects for the logic cell with the interconnects of the first layer used as fixed interconnects.
FIG. 35
shows a layout structure of an ORNAND circuit of
FIG. 6A
constructed by using the basic cell of
FIG. 30
with the interconnects of the first and second layers used as the interconnects for the logic cell. Alternatively, a layout structure of
FIG. 36
is obtained when the interconnects of the second layer alone are used as the interconnects for the logic cell with the interconnects of the first layer used as fixed interconnects.
FIG. 37
shows a layout structure of a selector circuit of
FIG. 8A
constructed by using the basic cell of
FIG. 30
with the interconnects of the first and second layers used as the interconnects for the logic cell. Alternatively, a layout structure of
FIG. 38
is obtained when the interconnects of the second layer alone are used as the interconnects for the logic cell with the interconnects of the first layer used as fixed interconnects.
FIG. 39
shows a layout structure of an SRAM circuit of
FIG. 25A
constructed by using the basic cell of
FIG. 30
with the interconnects of the first and second layers used as the interconnects for the logic cell. Alternatively, a layout structure of
FIG. 40
is obtained when the interconnects of the second layer alone are used as the interconnects for the logic cell with the interconnects of the first layer used as fixed interconnects.
As described above, two interconnect layers are necessary for interconnects for a logic circuit in forming, by using the conventional basic cell of
FIG. 30
, any of a logic circuit having a clock signal line like a DFF, a logic circuit including transistors connected in parallel like a buffer circuit, a composite logic circuit such as an ORNAND circuit, a logic circuit having a control signal line like a selector circuit and a logic circuit for a memory like an SRAM. As a result, the wiring tracks for upper interconnects are consumed, which increases the line crowdedness in the design of a semiconductor integrated circuit. Accordingly, the ratio of used gates to all the gates in the gate array is lowered, so as to cause a problem that the degree of integration of the semiconductor integrated circuit is lowered. Furthermore, in the case where it is necessary to modify logic or wiring, three layers in total, that is, two layers for interconnects and one for vias, are necessary for the modification. This can be an obstacle to reduction of the cost and period required for development, which is originally the largest advantage of a gate array.
In the case where a D flip-flop circuit having a scanning function as shown in
FIG. 20A
is constructed by using the basic cell of
FIG. 30
, a layout structure of
FIG. 41
is obtained when the interconnects of the first and second layers are used as the interconnects for the logic cell. When a semiconductor integrated circuit is constructed by using three D flip-flop circuits DFF
1
through DFF
3
having a scanning function and a combinational logic circuit LC as shown in
FIG. 20C
, a scan chain method is generally employed in which the output terminal Q of the D flip-flop circuit at the front stage (for example, DFF
1
) is connected to the scan data input terminal DT of the D flip-flop circuit at the back stage (for example, DFF
2
) through an interconnect L.
FIG. 20D
is a timing chart of a general operation employed in this case, and
FIG. 20E
is a timing chart of a scan operation. In the general operation, a data output from the output terminal Q of the D flip-flop circuit at the front stage is transferred through the combinational logic circuit LC to the data input terminal D of the D flip-flop circuit at the back stage. Therefore, the D flip-flop circuit at the back stage has sufficient hold time for the data. In contrast, in the scan operation, an output data from the output terminal Q of the D flip-flop circuit at the front stage is transferred through the interconnect L alone to the scan data input terminal DT of the D flip-flop circuit at the back stage. Therefore, transfer delay time of the scan data is too short to attain sufficient hold time, which can easily cause a hold error of the scan data. Accordingly, the length of the interconnect L is increased to elongate the line delay time.
However, in the case where the D flip-flop circuit having a scanning function is formed by using the conventional basic cell of
FIG. 30
, two interconnect layers in total, that is, the first interconnect layer and the second interconnect layer, are necessary for adjusting the delay. Furthermore, there is a difference in the delay per unit length of the interconnect between the first interconnect layer and the second interconnect layer, and hence, it takes time to design for the adjustment of the line delay. These disadvantages can be an obstacle to the reduction of the cost and development period, which is the largest advantage of a gate array.
U.S. Pat. No. 5,814,844 discloses the following structure of a CMOS basic cell: Auxiliary interconnects used in connecting gate electrodes to each other or a gate electrode to a diffusion region within the basic cell are previously disposed in a polysilicon layer where the gate electrodes are formed (hereinafter referred to as the gate layer). When, for example, a gate electrode and a diffusion region included in the basic cell are necessary to connect to each other, an interconnect connected to the gate electrode and an interconnect connected to the diffusion region are disposed in an interconnect layer above the gate electrode, and these interconnects are connected to the auxiliary interconnect through two via contacts. However, the auxiliary interconnects are disposed in the gate layer and used for connecting the gate electrodes to each other or a gate electrode to a diffusion region within the basic cell, and are not used as part of global interconnects for connecting, for example, gate electrodes of two basic cells to each other.
The speed and consumption power of the DFF are restricted by the line length or the parasitic capacitance determined in accordance with the size and the structure of the basic cell. For increasing the speed and reducing the consumption power without changing the size of the basic cell itself, for example, Japanese Laid-Open Patent Publication No. 07-240501 discloses a technique of lowering diffusion capacitance by reducing the area of a diffusion region to be smaller than a contact region in portions other than the contact region. This technique, however, has a problem that the number of wiring tracks is reduced, and for overcoming this problem, it is necessary to modify the process for securing the wiring tracks.
Furthermore, for example, Japanese Laid-Open Patent Publication No. 09-181284 discloses a technique of reducing signal transfer delay time for increasing the speed by overlapping contact regions of adjacent basic cells. This technique also has the problem that the number of wiring tracks is reduced.
SUMMARY OF THE INVENTION
An object of the invention is providing a CMOS basic cell capable of realizing a desired logic circuit by using merely one interconnect layer or preventing a hold error of a flip-flop circuit having a scan test function without increasing the area of the basic cell, and a method for fabricating a semiconductor integrated circuit using the CMOS basic cell.
Another object of the invention is providing a CMOS basic cell capable of increasing operation speed and reducing consumption power by reducing the layout area of the basic cell with securing sufficient wiring tracks, and a method for fabricating a semiconductor integrated circuit by using the CMOS basic cell.
Specifically, in the case where a semiconductor integrated circuit is constructed by arranging a plurality of CMOS basic cells in parallel, an interconnect layer is provided for global routing above these basic cells. Therefore, in order to achieve the object, according to the invention, an interconnect pattern is previously formed in an interconnect layer directly below this interconnect layer for global routing (namely, in an uppermost interconnect layer of each CMOS basic cell), so that the previously formed interconnect pattern can be also used for connecting the basic cells to one another through the global routing.
Also, in order to achieve the other object, the gate and the diffusion region of an N-channel transistor or a P-channel transistor are formed in specific shapes in the present invention, so as to reduce the layout area of a semiconductor integrated circuit constructed by arranging a plurality of basic cells.
Specifically, the first CMOS basic cell of this invention comprises an N-channel transistor region and a P-channel transistor region isolated from each other by an insulating film on a semiconductor substrate; and an interconnect pattern extending along a direction perpendicular to a boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region, and the interconnect pattern is formed in an uppermost interconnect layer among one, two or more interconnect layers of the CMOS basic cell.
The second CMOS basic cell of this invention comprises an N-channel transistor region and a P-channel transistor region isolated from each other by an insulating film on a semiconductor substrate; and an interconnect pattern extending along a direction parallel to a boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region, and the interconnect pattern is formed in an uppermost interconnect layer among one, two or more interconnect layers of the CMOS basic cell.
The third CMOS basic cell of this invention comprises an N-channel transistor region and a P-channel transistor region isolated from each other by an insulating film on a semiconductor substrate; and an interconnect pattern extending along a direction parallel to a boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region to be used for connection to an interconnect pattern of another adjacent basic cell, and the interconnect pattern is formed in an uppermost interconnect layer among one, two or more interconnect layers of the CMOS basic cell.
The fourth CMOS basic cell of this invention comprises an N-channel transistor region and a P-channel transistor region isolated from each other by an insulating film on a semiconductor substrate; an interconnect pattern extending along a direction perpendicular to a boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region; and another interconnect pattern extending along a direction parallel to the boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region, and the interconnect patterns are formed in an uppermost interconnect layer among one, two or more interconnect layers of the CMOS basic cell.
The fifth CMOS basic cell of this invention comprises an N-channel transistor region and a P-channel transistor region isolated from each other by an insulating film on a semiconductor substrate; an interconnect pattern extending along a direction parallel to a boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region; and another interconnect pattern extending along the direction parallel to the boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region to be used for connection to an interconnect pattern of another adjacent basic cell, and the interconnect patterns are formed in an uppermost interconnect layer among one, two or more interconnect layers of the CMOS basic cell.
The sixth CMOS basic cell of this invention comprises an N-channel transistor region and a P-channel transistor region isolated from each other by an insulating film on a semiconductor substrate; an interconnect pattern extending along a direction perpendicular to a boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region; and another interconnect pattern extending along a direction parallel to the boundary between the N-channel transistor region and the P-channel transistor region and provided independently of the N-channel transistor region and the P-channel transistor region to be used for connection to an interconnect pattern of another adjacent basic cell, and the interconnect patterns are formed in an uppermost interconnect layer among one, two or more interconnect layers of the CMOS basic cell.
Any of the first through sixth CMOS basic cells of this invention can further comprise a fixed interconnect region where a power supply interconnect and a ground interconnect are provided, and the interconnect pattern is provided in the fixed interconnect region.
The method of this invention for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and additional interconnect layers respectively provided above the basic cells, comprises the steps of arranging a plurality of any of the first through sixth CMOS basic cells on a semiconductor substrate; and realizing a logic circuit including a clock signal line by using the interconnect patterns formed in the uppermost interconnect layers of the CMOS basic cells and the additional interconnect layers.
Alternatively, the method of this invention for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and additional interconnect layers respectively provided above the basic cells, comprises the steps of arranging a plurality of any of the first through sixth CMOS basic cells on a semiconductor substrate; and realizing a logic circuit including transistors connected to each other in parallel by using the interconnect patterns formed in the uppermost interconnect layers of the CMOS basic cells and the additional interconnect layers.
Alternatively, the method of this invention for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and additional interconnect layers respectively provided above the basic cells, comprises the steps of arranging a plurality of any of the first through sixth CMOS basic cells on a semiconductor substrate; and realizing a compound logic circuit by using the interconnect patterns formed in the uppermost interconnect layers of the CMOS basic cells and the additional interconnect layers.
Alternatively, the method of this invention for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and additional interconnect layers respectively provided above the basic cells, comprises the steps of arranging a plurality of any of the first through sixth CMOS basic cells on a semiconductor substrate; and realizing a logic circuit including a control signal line by using the interconnect patterns formed in the uppermost interconnect layers of the CMOS basic cells and the additional interconnect layers.
Alternatively, the method of this invention for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and additional interconnect layers respectively provided above the basic cells, comprises the steps of arranging a plurality of the first through sixth CMOS basic cells on a semiconductor substrate; and realizing a logic circuit for a memory by using the interconnect patterns formed in the uppermost interconnect layers of the CMOS basic cells and the additional interconnect layers.
Alternatively, the method of this invention for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and additional interconnect layers respectively provided above the basic cells, comprises the steps of arranging a plurality of the first through sixth CMOS basic cells on a semiconductor substrate; and realizing a flip-flop circuit having a scan test function by using the interconnect patterns formed in the uppermost interconnect layers of the CMOS basic cells and the additional interconnect layers.
The seventh CMOS basic cell of this invention to be used with other basic cells having the same structure disposed on right and left hand sides thereof, comprises an N-channel transistor and a P-channel transistor formed on a semiconductor substrate, and a gate of at least one of the N-channel transistor and the P-channel transistor is in a hooked shape having a first bent part bending in one sideward direction at an upper portion thereof and a second bent part bending in the other sideward direction at a lower portion thereof.
The eighth CMOS basic cell of this invention to be used with other basic cells having the same structure disposed on right and left hand sides thereof, comprises an N-channel transistor and a P-channel transistor formed on a semiconductor substrate, and a diffusion region of at least one of the N-channel transistor and the P-channel transistor is in a hooked shape having a first bent part bending in one sideward direction at an upper portion thereof and a second bent part bending in the other sideward direction at a lower portion thereof.
The ninth CMOS basic cell of this invention to be used with other basic cells having the same structure disposed on right and left hand sides thereof, comprises an N-channel transistor and a P-channel transistor formed on a semiconductor substrate, and a gate of at least one of the N-channel transistor and the P-channel transistor is in a hooked shape including a first bent part bending in one sideward direction at an upper portion thereof and a second bent part bending in the other sideward direction at a lower portion thereof, and a diffusion region of at least one of the N-channel transistor and the P-channel transistor is in a hooked shape having a first bent part bending in one sideward direction at an upper portion thereof and a second bent part bending in the other sideward direction at a lower portion thereof.
In the ninth CMOS basic cell, a first N-channel transistor and a first P-channel transistor are formed to extend along a vertical direction, a second N-channel transistor is disposed on a side of the first N-channel transistor and a second P-channel transistor is disposed on a side of the first P-channel transistor, and a gate of each of the first and second N-channel transistors and the first and second P-channel transistors is formed in the hooked shape.
In the ninth CMOS basic cell, the gates of the first and second N-channel transistors are disposed in a manner that the first bent part of one gate overlaps the second bent part of the other gate when seen along the vertical direction from one position in a horizontal direction, and the gates of the first and second P-channel transistors are disposed in a manner that the first bent part of one gate overlaps the second bent part of the other gate when seen along the vertical direction from one position in the horizontal direction.
In the ninth CMOS basic cell, the first and second N-channel transistors share one diffusion region and the first and second P-channel transistors share one diffusion region, each of the diffusion regions is divided into a shared diffusion region shared by the first and second N-channel or P-channel transistors and positioned between the gates of the first and second N-channel or P-channel transistors; a first dedicated diffusion region positioned on a side of the gate of the first N-channel or P-channel transistor opposite to the shared diffusion region; and a second dedicated diffusion region positioned on a side of the gate of the second N-channel or P-channel transistor opposite to the shared diffusion region, the first bent part is formed in the first dedicated diffusion region, and the second bent part is formed in the second dedicated diffusion region.
Any of the seventh through ninth CMOS basic cells, can comprise, outside of a transistor region where the N-channel transistor and the P-channel transistor are disposed, a fixed interconnect region where a power supply interconnect and a ground interconnect are disposed.
Alternatively, the method of this invention for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells arranged in a horizontal direction, comprises a step of arranging a plurality of any of the seventh through ninth CMOS basic cells in the horizontal direction in a manner that the first bent part of one CMOS basic cell overlaps the second bent part of another adjacent CMOS basic cell when seen along a vertical direction from one position in a horizontal direction.
Accordingly, in the present invention, in fabricating a gate array semiconductor integrated circuit by using a plurality of CMOS basic cells, the interconnect pattern previously formed in the uppermost interconnect layer of each CMOS basic cell is used as a part of the interconnects for connecting the basic cells to one another. Therefore, even a logic circuit with a complicated structure can be fabricated and realized by using merely one interconnect layer for wiring. Accordingly, the line crowdedness in the interconnect layer used in wiring during the design of the semiconductor integrated circuit can be reduced, so as to improve the ratio of used gates to all the gates in the gate array, resulting in improving the degree of integration of the semiconductor integrated circuit.
Furthermore, in the present CMOS basic cell and the fabrication of a semiconductor integrated circuit by arranging a plurality of CMOS basic cells, the gate of the N-channel or P-channel transistor of each basic cell is formed in the hooked shape. In the case where the semiconductor integrated circuit is constructed by arranging the plural basic cells in the horizontal direction, the basic cells are disposed so as to partly overlap in a manner that the portion in the hooked shape is inlaid with the portion in the hooked shape of the adjacent basic cell. Accordingly, the layout area of the semiconductor integrated circuit can be effectively reduced. In addition, owing to this overlap arrangement, in the case where the gate of the transistor of one basic cell is connected to the diffusion region of the transistor of another adjacent basic cell, the interconnect therebetween can be disposed to extend in the vertical direction in the same position along the horizontal direction, and there is no need to extend the interconnect in the horizontal direction. Accordingly, the line length can be reduced. As a result, the layout area can be reduced with sufficiently securing the wiring tracks, and in addition, the operation speed can be increased and power consumption can be reduced due to the reduced line length and reduced diffusion capacitance.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A
is a layout diagram of a CMOS basic cell according to Embodiment 1 of the invention,
FIG. 1B
is an equivalent circuit diagram thereof,
FIG. 1C
is a cross-sectional view thereof taken on line
1
A—
1
A of
FIG. 1A
,
FIG. 1D
is a diagram for illustrating placement of a global interconnect employed when two basic cells of
FIG. 1A
are arranged in parallel,
FIG. 1E
is a diagram of a modification of the basic cell of
FIG. 1A
,
FIG. 1F
is a cross-sectional view of the basic cell of
FIG. 1E
taken on line
1
E—
1
E, and
FIG. 1G
is a diagram for illustrating placement of a global interconnect employed when two basic cells of
FIG. 1E
are arranged in parallel.
FIG. 2A
is a circuit diagram of a DFF constructed by using the basic cell of
FIG. 1A
,
FIG. 2B
is a symbol diagram of the DFF, and
FIG. 2C
is an operation timing chart of the DFF.
FIG. 3A
is a layout wiring diagram of a DFF using the basic cell of FIG.
1
A and
FIG. 3B
is another layout wiring diagram of a DFF using the basic cell of FIG.
1
E.
FIG. 4A
is a circuit diagram of a buffer constructed by using the basic cell of FIG.
1
A and
FIG. 4B
is a symbol diagram of the buffer.
FIG. 5
is a layout wiring diagram of a buffer using the basic cell of FIG.
1
A.
FIG. 6A
is a circuit diagram of an ORNAND constructed by using the basic cell of FIG.
1
A and
FIG. 6B
is a symbol diagram of the ORNAND.
FIG. 7
is a layout wiring diagram of an ORNAND using the basic cell of FIG.
1
A.
FIG. 8A
is a circuit diagram of a selector constructed by using the basic cell of FIG.
1
A and
FIG. 8B
is a symbol diagram of the selector.
FIG. 9
is a layout wiring diagram of a selector using the basic cell of FIG.
1
A.
FIG. 10
is a layout diagram of a CMOS basic cell according to Embodiment 2 of the invention.
FIG. 11A
is a layout wiring diagram using the basic cell of FIG.
10
and another adjacent basic cell,
FIG. 11B
is a diagram for showing connection between interconnect patterns of two basic cells through two vias and
FIG. 11C
is a diagram for showing connection between the interconnect patterns through one via.
FIG. 12
is a layout wiring diagram of a DFF using the basic cell of FIG.
10
.
FIG. 13
is a layout wiring diagram of a buffer using the basic cell of FIG.
10
.
FIG. 14
is a layout wiring diagram of an ORNAND using the basic cell of FIG.
10
.
FIG. 15
is a layout wiring diagram of a selector using the basic cell of FIG.
10
.
FIG. 16
is a layout diagram of a CMOS basic cell according to Embodiment 3 of the invention.
FIG. 17
is a layout wiring diagram of a DFF using the basic cell of FIG.
16
.
FIG. 18
is a layout wiring diagram of a buffer using the basic cell of FIG.
16
.
FIG. 19A
is a layout wiring diagram of an ORNAND using the basic cell of FIG.
16
and
FIG. 19B
is a layout wiring diagram of a selector using the basic cell of FIG.
16
.
FIG. 20A
is a circuit diagram of a D flip-flop circuit having a scanning function constructed by using the basic cell of
FIG. 16
,
FIG. 20B
is a symbol diagram of the D flip-flop circuit,
FIG. 20C
is a block diagram of a logic circuit using the D flip-flop circuit,
FIG. 20D
is an operation timing chart of a general operation of the logic circuit,
FIG. 20E
is an operation timing chart of a scan operation of the logic circuit,
FIG. 20F
is a diagram for showing an example of the layout wiring of a D flip-flop circuit having a scanning function using the basic cell of
FIG. 16
,
FIG. 20G
is a diagram for showing another example of the layout wiring, and
FIG. 20H
is a diagram for showing still another example of the layout wiring.
FIG. 21
is a layout diagram of a CMOS basic cell according to Embodiment 4 of the invention.
FIG. 22
is a layout diagram of a CMOS basic cell according to Embodiment 5 of the invention.
FIG. 23
is a layout wiring diagram of a DFF using the basic cell of FIG.
21
.
FIG. 24
is a layout wiring diagram of a selector using the basic cell of FIG.
22
.
FIG. 25A
is a circuit diagram of an SRAM constructed by using the basic cell and
FIG. 25B
is a symbol diagram of the SRAM.
FIG. 26
is a layout wiring diagram of an SRAM using the basic cell of FIG.
22
.
FIG. 27A
is a layout diagram of a CMOS basic cell according to Embodiment 6 of the invention and
FIG. 27B
is an equivalent circuit diagram of the basic cell.
FIG. 28A
is a circuit diagram of a D flip-flop circuit constructed by using the basic cell of
FIG. 27A
,
FIG. 28B
is a symbol diagram of the D flip-flop circuit and
FIG. 28C
is an operation timing chart of the D flip-flop circuit.
FIG. 29
is a layout wiring diagram of a D flip-flop circuit constructed by using the CMOS basic cell of FIG.
27
A.
FIG. 30
is a layout diagram of a conventional basic cell.
FIG. 31A
is a layout wiring diagram of a DFF using the conventional basic cell and
FIG. 31B
is another layout wiring diagram of the DFF using the conventional basic cell.
FIG. 32
is another layout wiring diagram of the DFF using the conventional basic cell.
FIG. 33
is a layout wiring diagram of a buffer using the conventional basic cell.
FIG. 34
is another layout wiring diagram of the buffer using the conventional basic cell.
FIG. 35
is a layout wiring diagram of an ORNAND using the conventional basic cell.
FIG. 36
is another layout wiring diagram of the ORNAND using the conventional basic cell.
FIG. 37
is a layout wiring diagram of a selector using the conventional basic cell.
FIG. 38
is another layout wiring diagram of the selector using the conventional basic cell.
FIG. 39
is a layout wiring diagram of an SRAM using the conventional basic cell.
FIG. 40
is another layout wiring diagram of the SRAM using the conventional basic cell.
FIG. 41
is a layout wiring diagram of a D flip-flop circuit having a scanning function using the conventional basic cell.
DETAILED DESCRIPTION OF THE INVENTION
CMOS basic cells and methods for fabricating a semiconductor integrated circuit according to preferred embodiments of the invention will now be described with reference to
FIGS. 1 through 29
.
Embodiment 1
FIG. 1A
is a diagram of a CMOS basic cell according to Embodiment 1 of the invention, and
FIG. 1B
is an equivalent circuit diagram of the basic cell of FIG.
1
A. In
FIGS. 1A and 1B
, like reference numerals TP
1
, TP
2
, TN
1
, TN
2
,
1
,
7
,
8
,
2
A through
6
A and
2
B through
6
B are used to refer to like elements used in the conventional basic cell shown in
FIG. 30
, so that the detailed description can be omitted.
In this embodiment, the basic cell
1
of
FIG. 1A
has an interconnect pattern
9
extending along a perpendicular direction to a boundary between the N-channel transistor region and the P-channel transistor region. The interconnect pattern
9
is independent of the N-channel and P-channel transistor regions. Although merely one interconnect pattern
9
is shown in
FIG. 1A
, the interconnect pattern may be plural in number.
FIG. 1C
is a cross-sectional view of the basic cell
1
taken on line
1
A—
1
A of FIG.
1
A. In
FIG. 1C
, a reference numeral
50
denotes a semiconductor substrate and a reference numeral
51
denotes a gate oxide film formed on the substrate
50
, and the two gate electrodes
2
A and SA are formed in the gate oxide film
51
. The interconnect pattern
9
is disposed on an interlayer insulating film
52
covering the gate electrodes
2
A and
5
A, and two interconnects
53
and
54
are disposed on the right and left hand sides, in the drawing, of the interconnect pattern
9
. The two interconnects
53
and
54
are respectively connected to the gate electrodes
2
A and
5
A through contact holes
55
and
56
formed in the interlayer insulating film
52
. Although not shown in the drawing, the power supply pattern
7
and the GND pattern
8
are formed on the interlayer insulating film
52
.
In the case where a semiconductor integrated circuit is formed by arranging a plurality of basic cells
1
in parallel, a global interconnect
60
is disposed as shown in FIG.
1
D. In
FIG. 1D
, two basic cells are used for simplification, the global interconnect
60
is disposed on an interlayer insulating film
57
covering the interconnect patterns
9
, and the global interconnect
60
is connected to the interconnect patterns
9
through contact holes
58
and
59
formed in the interlayer insulating film
57
. In the case of
FIG. 1D
, an interconnect layer where the interconnect patterns
9
are disposed corresponds to a first interconnect layer (the uppermost interconnect layer), and an interconnect layer
61
where the global interconnect
60
is disposed corresponds to a second interconnect layer (additional interconnect layer).
FIG. 1E
is a diagram of a basic cell
1
′ obtained by modifying the basic cell
1
of FIG.
1
A. In the basic cell
1
of
FIG. 1A
, the interconnect pattern
9
is disposed in the first interconnect layer, and in contrast, the interconnect pattern
9
is disposed in a third interconnect layer in the basic cell
1
′ of FIG.
1
E. Specifically, as shown in
FIG. 1F
corresponding to a cross-sectional view taken on line
1
E—
1
E of
FIG. 1E
, the basic cell
1
′ includes a first interconnect layer where the interconnects
53
and
54
are disposed, a second interconnect layer where interconnects
65
and
66
are disposed and a third interconnect layer where interconnects
67
and
68
are disposed, and the interconnect pattern
9
is disposed in the third interconnect layer. The interconnects
53
,
65
and
67
are connected to the gate electrode
2
A and the interconnects
54
,
66
and
68
are connected to the gate electrode
5
A.
In the case where a semiconductor integrated circuit is fabricated by arranging a plurality of basic cells
1
′ of
FIG. 1E
in parallel, a global interconnect
70
is disposed in a fourth interconnect layer (additional interconnect layer)
71
, and the interconnect patterns
9
disposed in the third interconnect layer (corresponding to the uppermost interconnect layer of the basic cell
1
′) are connected to the global interconnect
70
disposed in the fourth interconnect layer through contact holes
73
and
74
formed in an interlayer insulating film
72
of the third interconnect layer.
Since the third interconnect layer is the uppermost layer in the basic cell
1
′ of
FIG. 1F
, the interconnect pattern
9
is disposed in the third interconnect layer. In the case where a basic cell has four or more interconnect layers, the interconnect pattern
9
is disposed in the uppermost layer among them.
FIG. 2A
shows an example of a DFF circuit,
FIG. 2B
is a symbol diagram of the DFF circuit of FIG.
2
A and
FIG. 2C
is an operation timing chart thereof. In
FIG. 2B
, a reference numeral
100
denotes a DATA input terminal, a reference numeral
110
denotes a CLK input terminal, a reference numeral
120
denotes an inverted CLK input terminal, a reference numeral
200
denotes a DATA output terminal and a reference numeral
210
denotes an inverted DATA output terminal.
FIG. 3A
shows a layout structure of a semiconductor integrated circuit (corresponding to the DFF circuit of
FIG. 2A
) fabricated by arranging a plurality of basic cells
1
of
FIG. 1A
on a semiconductor substrate. In
FIG. 3A
, the basic cells
1
A through
1
F of
FIG. 1A
are arranged along the X-direction, and the interconnect patterns
9
of the basic cells
1
A through
1
F are effectively used so as to realize the DFF circuit of
FIG. 2A
by using the second interconnect layer alone for wiring.
FIG. 3B
shows a layout structure of the DFF circuit of
FIG. 2A
fabricated by arranging a plurality of basic cells
1
′ of
FIG. 1E
on a semiconductor substrate. Also in
FIG. 3B
, the basic cells
1
A′ through
1
F′ of
FIG. 1E
are arranged along the X-direction, and the interconnect patterns
9
of the basic cells
1
A′ through
1
F′ are effectively used so as to realize the DFF circuit of
FIG. 2A
by using the fourth interconnect layer alone for wiring.
FIG. 4A
shows an example of a buffer circuit, and
FIG. 4B
is a symbol diagram of the buffer circuit, wherein a reference numeral
100
denotes a DATA input terminal, a reference numeral
200
denotes a DATA output terminal and a reference numeral
210
denotes an inverted DATA output terminal.
FIG. 5
shows a layout structure of the buffer circuit of
FIG. 4A
fabricated by arranging a plurality of basic cells
1
of
FIG. 1A
on a semiconductor substrate. In
FIG. 5
, the basic cells
1
A through
1
F of
FIG. 1A
are arranged along the X-direction, and the interconnect patterns
9
are effectively used so as to realize the buffer circuit of
FIG. 4A
by using the second interconnect layer alone for wiring.
FIG. 6A
shows an example of an ORNAND circuit, and
FIG. 6B
is a symbol diagram of the ORNAND circuit, wherein reference numerals
100
through
105
denote DATA input terminals and a reference numeral
200
denotes a DATA output terminal.
FIG. 7
shows a layout structure of the ORNAND circuit of
FIG. 6A
fabricated by arranging a plurality of basic cells
1
of
FIG. 1A
on a semiconductor substrate. In
FIG. 7
, the basic cells
1
A through
1
C of
FIG. 1A
are arranged along the X (horizontal) direction, and the interconnect patterns
9
are effectively used so as to realize the ORNAND circuit of
FIG. 6A
by using the second interconnect layer alone for wiring.
FIG. 8A
shows an example of a selector circuit, and
FIG. 8B
is a symbol diagram of the selector circuit, wherein a reference numeral
100
denotes a DATA input terminal on the A side, a reference numeral
101
denotes a DATA input terminal on the B side, a reference numeral
130
denotes an input terminal for a selecting control signal, and a reference numeral
200
denotes a DATA output terminal.
FIG. 9
shows a layout structure of the selector circuit of
FIG. 8A
fabricated by arranging a plurality of basic cells
1
of
FIG. 1A
on a semiconductor substrate. In
FIG. 9
, the basic cells
1
A through
1
C of
FIG. 1A
are arranged along the X-direction, and the interconnect patterns
9
are effectively used so as to realize the selector circuit of
FIG. 8A
by using the second interconnect layer alone for wiring.
Embodiment 2
FIG. 10
shows the structure of a basic cell according to Embodiment 2 of the invention. The circuit diagram of this basic cell is the same as that shown in FIG.
1
B. In
FIG. 10
, like reference numerals TP
1
, TP
2
, TN
1
, TN
2
,
1
,
7
,
8
,
2
A through
6
A and
2
B through
6
B are used to refer to like elements used in the conventional basic cell of
FIG. 30
, so that the detailed description can be omitted.
The basic cell
1
of this embodiment has two interconnect patterns
10
extending along a direction parallel to a boundary between the N-channel transistor region and the P-channel transistor region. The interconnect patterns
10
are independent of the N-channel and P-channel transistor regions. Although two interconnect patterns
10
are shown in
FIG. 10
, the number of interconnect patterns may be one, three or more.
FIG. 11A
shows a method for connecting the interconnect pattern
10
of the basic cell
1
of
FIG. 10
to an interconnect pattern of another adjacent basic cell
1
. In general, the interconnect patterns
10
are connected to an interconnect
30
disposed in the second layer by using two vias
20
formed on the grid if necessary as shown in FIG.
11
B. However, if possible in view of the process, the interconnect pattern
10
formed in the first layer for signal lines is disposed in the vicinity of the adjacent basic cell with a minimum separation spacing therebetween, so that the interconnect pattern
10
can be connected to the interconnect
30
in the second layer through one via
20
if necessary as shown in FIG.
11
C. In embodiments described below, the connection shown in
FIG. 11B
alone will be employed.
FIG. 12
shows a layout structure obtained in fabricating the DFF circuit of FIG.
2
A. The layout structure of
FIG. 12
is obtained in fabricating the DFF circuit by arranging a plurality of basic cells
1
of
FIG. 10
on a semiconductor substrate, and like reference numerals are used to refer to like elements used in
FIG. 2B
so as to omit the detailed description. In
FIG. 12
, the basic cells
1
A through
1
F of
FIG. 10
are arranged along the X-direction, and the interconnect patterns
10
of the basic cells
1
are effectively used so as to realize the DFF circuit of
FIG. 2A
by using the second interconnect layer alone.
FIG. 13
shows a layout structure obtained in fabricating the buffer circuit of FIG.
4
A. The layout structure is obtained in fabricating the buffer circuit by arranging a plurality of basic cells
1
of
FIG. 10
on a semiconductor substrate, and like reference numerals are used to refer to like elements used in
FIG. 4B
so as to omit the detailed description. In
FIG. 13
, the basic cells
1
A through
1
F of
FIG. 10
are arranged along the X-direction, and the interconnect patterns
10
of the basic cells
1
are effectively used so as to realize the buffer circuit of
FIG. 4A
by using the second interconnect layer alone.
FIG. 14
shows a layout structure obtained in fabricating the ORNAND circuit of FIG.
6
A. The layout structure of
FIG. 14
is obtained in fabricating the ORNAND circuit by arranging a plurality of basic cells
1
of
FIG. 10
on a semiconductor substrate, and like reference numerals are used to refer to like elements used in
FIG. 6B
so as to omit the detailed description. In
FIG. 14
, the basic cells
1
A through
1
C of
FIG. 10
are arranged in the X-direction, and the interconnect patterns
10
of the basic cells
1
are effectively used so as to realize the ORNAND circuit of
FIG. 6A
by using the second interconnect layer alone.
FIG. 15
shows a layout structure obtained in fabricating the selector circuit of FIG.
8
A. The layout structure of
FIG. 15
is obtained in fabricating the selector circuit by arranging a plurality of basic cells
1
of
FIG. 10
on a semiconductor substrate, and like reference numerals are used to refer to like elements shown in
FIG. 8B
so as to omit the detailed description. In
FIG. 15
, the basic cells
1
A through
1
C are arranged along the X-direction, and the interconnect patterns
10
of the basic cells
1
are effectively used so as to realize the selector circuit of
FIG. 8A
by using the second interconnect layer alone.
Embodiment 3
FIG. 16
shows the structure of a CMOS basic cell according to Embodiment 3 of the invention. The circuit diagram of this basic cell is the same as that shown in FIG.
1
B. In
FIG. 16
, like reference numerals TP
1
, TP
2
, TN
1
, TN
2
,
1
,
7
,
8
,
2
A through
6
A and
2
B through
6
B are used to refer to like elements used in the conventional basic cell of
FIG. 30
, so that the detailed description can be omitted.
The basic cell
1
of this embodiment includes two interconnect patterns
11
and
12
extending in a direction parallel to a boundary between the N-channel transistor region and the P-channel transistor region. The interconnect patterns
11
and
12
are independent of the N-channel and P-channel transistor regions, and the interconnect pattern
11
extends to the right edge of the basic cell
1
so as to be connected to an interconnect pattern
11
of another basic cell (not shown) adjacent on the right hand side in the drawing. Also, the interconnect pattern
12
extends to the left edge of the basic cell
1
so as to be connected to an interconnect pattern
12
of another basic cell (not shown) adjacent on the left hand side in the drawing. Specifically, other basic cells adjacent to this basic cell
1
on the right and left hand sides, which are not shown, also have the two interconnect patterns
11
and
12
similarly to the basic cell
1
of
FIG. 16
, and the adjacent basic cells are different from the basic cell
1
of
FIG. 16
in the interconnect pattern
11
extending to the left edge differently from that of FIG.
16
and the interconnect pattern
12
extending to the right edge differently from that of FIG.
16
.
Although the two interconnect patterns
11
and
12
are shown in
FIG. 16
, it goes without saying that the number of the interconnect patterns can be one, three or more.
FIG. 17
shows a layout structure obtained in fabricating the DFF circuit of FIG.
2
A. The layout structure of
FIG. 17
is obtained in fabricating the DFF circuit by arranging a plurality of basic cells
1
of
FIG. 16
on a semiconductor substrate, and like reference numerals are used to refer to like elements shown in
FIG. 2B
so as to omit the detailed description. In
FIG. 17
, the basic cells
1
A through
1
F are arranged along the X-direction, and the interconnect patterns
11
and
12
of the basic cells
1
are effectively used so as to realize the DFF circuit of
FIG. 2A
by using the second interconnect layer alone.
FIG. 18
shows a layout structure obtained in fabricating the buffer circuit of FIG.
4
A. The layout structure of
FIG. 18
is obtained in fabricating the buffer circuit by arranging a plurality of basic cells
1
of
FIG. 16
on a semiconductor substrate, and like reference numerals are used to refer to like elements shown in
FIG. 4B
so as to omit the detailed description. In
FIG. 18
, the basic cells
1
A through
1
F are arranged along the X-direction, and the interconnect patterns
11
and
12
of the basic cells
1
are effectively used so as to realize the buffer circuit of
FIG. 4A
by using the second interconnect layer alone.
FIG. 19A
shows a layout structure obtained in fabricating the ORNAND circuit of FIG.
6
A. The layout structure of
FIG. 19A
is obtained in fabricating the ORNAND circuit by arranging a plurality of basic cells
1
of
FIG. 16
on a semiconductor substrate, and like reference numerals are used to refer to like elements shown in
FIG. 6B
so as to omit the detailed description. In
FIG. 19A
, the basic cells
1
A through
1
C are arranged along the X-direction, and the interconnect patterns
11
and
12
of the basic cells
1
are effectively used so as to realize the ORNAND circuit of
FIG. 6A
by using the second interconnect layer alone.
FIG. 19B
shows a layout structure obtained in fabricating the selector circuit of FIG.
8
A. The layout structure of
FIG. 19B
is obtained in fabricating the selector circuit by arranging a plurality of basic cells
1
of
FIG. 16
on a semiconductor substrate, and like reference numerals are used to refer to like elements shown in
FIG. 8B
so as to omit the detailed description. In
FIG. 19B
, the basic cells
1
A through
1
C are arranged along the X-direction, and the interconnect patterns
11
and
12
of the basic cells
1
are effectively used so as to realize the selector circuit of
FIG. 8A
by using the second interconnect layer alone.
FIG. 20A
shows an example of a D flip-flop circuit having a scanning function,
FIG. 20B
is a symbol diagram of the circuit of
FIG. 20A
,
FIG. 20C
shows an example of the structure of a semiconductor integrated circuit including three circuits of
FIG. 20A
,
FIG. 20D
is a timing chart of a general operation of the semiconductor integrated circuit, and
FIG. 20E
is a timing chart of a scan operation of the semiconductor integrated circuit.
FIGS. 20F through 20H
show layout structures of the D flip-flop circuit having a scanning function of FIG.
20
A. Each of the layout structures is obtained by arranging a plurality of basic cells
1
of
FIG. 16
on a semiconductor substrate. In
FIGS. 20F through 20H
, like reference numerals are used to refer to like elements shown in
FIG. 20B
so as to omit the detailed description.
FIG. 20F
shows an example of the layout where an interconnect shown with a thick line extending to a scan data input terminal DT has the minimum length,
FIG. 20G
shows an example of the layout where the interconnect shown with a thick line extending to the scan data input terminal DT has a larger length, and
FIG. 20H
shows an example of the layout where polysilicon gates of four idle transistors Tra through Trd are disposed on the interconnects shown with the thick lines extending to the scan data input terminals DT so as to increase the line delay time as compared with that in the layout of FIG.
20
G. In any of the layouts of
FIGS. 20F through 20H
, the basic cells
1
A through
11
of
FIG. 16
are arranged along the horizontal direction, and the interconnect patterns
11
and
12
of the basic cells
1
are effectively used so as to adjust the line delay by using the second interconnect layer alone.
Embodiments 4 and 5
FIG. 21
shows the structure of a CMOS basic cell
1
according to Embodiment 4 of the invention. The circuit diagram of this basic cell is omitted because it is the same as that shown in FIG.
1
B. Also, in
FIG. 21
, like reference numerals TP
1
, TP
2
, TN
1
, TN
2
,
1
,
7
,
8
,
2
A through
6
A and
2
B through
6
B are used to refer to like elements used in the conventional basic cell of
FIG. 30
, so that the detailed description can be omitted.
The basic cell
1
of
FIG. 21
is obtained by combining the basic cell of FIG.
1
A and the basic cell of FIG.
10
. Specifically, an interconnect pattern
9
extending in the vertical direction is disposed between the P-channel transistor region and the N-channel transistor region, and an interconnect pattern
10
extending in the horizontal direction is disposed between the N-channel transistor region and the GND pattern
8
.
FIG. 22
shows the structure of a CMOS basic cell
1
according to Embodiment 5 of the invention. The basic cell
1
of
FIG. 22
is obtained by combining the basic cell of FIG.
10
and the basic cell of FIG.
16
. Specifically, an interconnect pattern
10
independently extending in the horizontal direction is disposed between the P-channel transistor region and the N-channel transistor region, and an interconnect pattern
11
extending in the horizontal direction to the right edge is disposed between the N-channel transistor region and the GND pattern
8
.
In this manner, according to the invention, the basic cell of
FIG. 1A
, the basic cell of FIG.
10
and the basic cell of
FIG. 16
can be flexibly combined. For example, in addition to the basic cells shown in
FIGS. 21 and 22
, it goes without saying that the interconnect pattern
9
extending in the vertical direction in the basic cell of
FIG. 22
may be replaced with the interconnect pattern
10
extending in the horizontal direction. Alternatively, a basic cell may be provided with the interconnect pattern
9
of
FIG. 1A
, the interconnect pattern
10
of FIG.
10
and the interconnect pattern
11
and/or the interconnect pattern
12
of FIG.
16
.
Although the number of interconnect patterns
9
,
10
and
11
provided in each of the basic cells of
FIGS. 21 and 22
is one each, the number of each interconnect pattern can be two or more.
FIG. 23
shows a layout structure obtained in fabricating the DFF circuit of FIG.
2
A. The layout structure of
FIG. 23
is obtained in fabricating the DFF circuit by arranging a plurality of basic cells
1
of
FIG. 21
on a semiconductor substrate, and like reference numerals are used to refer to like elements shown in
FIG. 2B
so as to omit the detailed description. In
FIG. 23
, the basic cells
1
A through
1
F of
FIG. 21
are arranged along the X-direction, and the interconnect patterns
9
and
10
of the basic cells
1
are effectively used so as to realize the DFF circuit of
FIG. 2A
by using the second interconnect layer alone.
FIG. 24
shows a layout structure obtained in fabricating the selector circuit of FIG.
8
A. The layout structure of
FIG. 24
is obtained in fabricating the selector circuit by arranging a plurality of basic cells
1
of
FIG. 22
on a semiconductor substrate, and like reference numerals are used to refer to like elements shown in
FIG. 8B
so as to omit the detailed description. In
FIG. 24
, the basic cells LA through
1
C of
FIG. 22
are arranged along the X-direction, and the interconnect patterns
10
and
11
of the basic cells
1
are effectively used so as to realize the selector circuit of
FIG. 8A
by using the second interconnect layer alone.
FIG. 26
shows a layout structure obtained in fabricating the SRAM circuit of FIG.
25
A. The layout structure of
FIG. 26
is obtained in fabricating the SRAM circuit by arranging a plurality of basic cells
1
of
FIG. 22
on a semiconductor substrate, and a reference numeral
300
denotes a bit line, a reference numeral
310
denotes an inverted bit line and a reference numeral
320
denotes a word line as in a symbol diagram of the SRAM circuit shown in FIG.
25
B. In
FIG. 26
, the basic cells
1
A and
1
B are arranged along the X-direction, and the interconnect patterns
10
and
11
of the basic cells
1
are effectively used so as to realize the SRAM circuit of
FIG. 25A
by using the second interconnect layer alone.
Embodiment 6
A CMOS basic cell and a method for fabricating a semiconductor integrated circuit using the basic cell according to Embodiment 6 of the invention will now be described with reference to
FIGS. 27 through 29
.
FIG. 27A
shows the structure of the CMOS basic cell of this embodiment and
FIG. 27B
is an equivalent circuit diagram of the basic cell.
In
FIG. 27A
, a reference numeral
120
denotes a basic cell composed of four transistors TP
1
, TP
2
, TN
1
and TN
2
formed on a semiconductor substrate
121
. In designing a semiconductor integrated circuit such as a logic cell, other basic cells having the same configuration as the basic cell
120
are arranged on the left and right hand sides, in the drawing, of the basic cell
120
.
In the basic cell
120
, the two P-channel transistors TP
1
and TP
2
are isolated from the two N-channel transistors TN
1
and TN
2
by an insulating film (not shown). The first P-channel transistor TP
1
includes a gate electrode
101
and dopant diffusion regions
102
and
103
formed on both sides of the gate electrode
101
. The dopant diffusion regions
102
and
103
work as the source and the drain. The second P-channel transistor TP
2
is disposed on the right hand side, in the drawing, of the first P-channel transistor TP
1
. The transistor TP
2
includes a gate electrode
104
, a dopant diffusion region
105
formed on the right side, in the drawing, of the gate electrode
104
and the dopant diffusion region (shared diffusion region)
103
shared with the first P-channel transistor TP
1
.
The first and second N-channel transistors TN
1
and TN
2
are formed below, in the drawing, the two P-channel transistors TP
1
and TP
2
. The first N-channel transistor TN
1
includes a gate electrode
107
and dopant diffusion regions
108
and
109
formed on both sides of the gate electrode
107
. The dopant diffusion regions
108
and
109
work as the source and the drain. The second N-channel transistor TN
2
includes a gate electrode
110
, a dopant diffusion region
111
formed on the right side, in the drawing, of the gate electrode
110
and the dopant diffusion region (shared diffusion region)
109
shared with the first N-channel transistor TN
1
.
In the basic cell
120
of
FIG. 27A
, reference numerals
112
and
113
respectively denote a global power supply pattern and a global GND pattern provided in upper and lower portions by using the first interconnect layer. Also, broken lines drawn in the basic cell
120
denote wiring grids, and eleven wiring tracks are provided in the X (horizontal) direction and three wiring tracks v
1
, v
2
and v
3
are provided in the Y (vertical) direction.
Now, the characteristic structure of the basic cell
120
of
FIG. 27A
will be described. In the basic cell
120
, the gate electrode
101
of the first P-channel transistor TP
1
includes a base part
101
a
extending in the Y-direction, a first bent part
101
b
formed by bending the upper portion of the base part
101
a
to the right in the drawing, and a second bent part
101
c
formed by bending the lower portion of the base part
101
a
to the left in the drawing. Accordingly, the gate electrode
101
is in a hooked shape similar to “S” including the base part
101
a
provided with the first and second bent parts
101
b
and
101
c
at the upper and lower portions thereof. Similarly, the gate electrode
104
of the second P-channel transistor TP
2
includes a base part
104
a
extending in the Y-direction, a first bent part
104
b
formed by bending the upper portion of the base part
104
a
to the right in the drawing and a second bent part
104
c
formed by bending the lower portion of the base part
104
a
to the left in the drawing. Accordingly, also the gate electrode
104
of the second P-channel transistor TP
2
is in the hooked shape similar to “S” including the base part
104
a
provided with the first and second bent parts
104
b
and
104
c
at the upper and lower portions thereof.
The first bent part
101
b
of the first P-channel transistor TP
1
and the second bent part
104
c
of the second P-channel transistor TP
2
are disposed so that the tips thereof can be positioned on the center wiring track v
2
extending in the Y-direction, namely, so that the bent parts can overlap when seen along the Y-direction from the position of the wiring track v
2
in the X-direction.
Also, in the basic cell
120
, the dopant diffusion region (first dedicated diffusion region)
102
of the first P-channel transistor TP
1
has a first bent part
102
a
formed by bending the upper portion thereof to the left in the drawing. Similarly, the dopant diffusion region (second dedicated diffusion region)
105
of the second P-channel transistor TP
2
includes a second bent part
105
a
formed by bending the lower portion thereof to the right in the drawing. Accordingly, the dopant diffusion regions
102
,
103
and
105
of the first and second P-channel transistors TP
1
and TP
2
are together in a hooked shape similar to “Z” including the first and second bent parts
102
a
and
105
a
at the upper left portion and the lower right portion thereof.
The aforementioned characteristic structure is also applied to the first and second N-channel transistors TN
1
and TN
2
. Specifically, the gate electrode
107
of the first N-channel transistor TN
1
includes a base part
107
a
extending in the Y-direction, a first bent part
107
b
formed by bending the upper portion of the base part
107
a
to the left in the drawing, and a second bent part
107
c
formed by bending the lower portion to the right in the drawing. Accordingly, the gate electrode
107
of the first N-channel transistor TN
1
is in a hooked shape similar to “Z” including the base part
107
a
provided with the first and second bent parts
107
b
and
107
c
at the upper and lower portions thereof. Similarly, the gate electrode
110
of the second N-channel transistor TN
2
includes a base part
110
a
extending in the Y-direction, a first bent part
110
b
formed by bending the upper portion of the base part
110
a
to the left in the drawing and a second bent part
110
c
formed by bending the lower portion thereof to the right in the drawing. Accordingly, the gate electrode
110
of the second N-channel transistor TN
2
is in a hooked shape similar to “Z” including the base part
110
a
provided with the first and second bent parts
110
b
and
110
c
at the upper and lower portions thereof. The second bent part
107
c
of the first N-channel transistor TN
1
and the first bent part
110
b
of the second N-channel transistor TN
2
are disposed so that the tips thereof can be positioned on the center wiring track v
2
extending in the Y-direction, namely, so that the bent parts can overlap when seen along the Y-direction from the position of the wiring track v
2
in the X-direction.
Furthermore, in the basic cell
120
, the dopant diffusion region (first dedicated diffusion region)
111
of the second N-channel transistor TN
2
has a first bent part
111
a
formed by bending the upper portion thereof to the right in the drawing. Similarly, the dopant diffusion region (second dedicated diffusion region)
108
of the first N-channel transistor TN
1
has a second bent part
108
a
formed by bending the lower portion thereof the left in the drawing. Accordingly, the dopant diffusion regions
108
,
109
and
111
of the first and second N-channel transistors TN
1
and TN
2
together are in a hooked shape similar to “S” including the first and second bent parts
111
a
and
108
a
at the upper right portion and the lower left portion thereof.
FIG. 29
shows an example of a semiconductor integrated circuit obtained by fabricating a DFF circuit of
FIG. 28A
by arranging six CMOS basic cells
120
of
FIG. 27A
on a semiconductor substrate. In
FIG. 29
, the basic cells
120
A through
120
F of
FIG. 27A
are arranged in the X-direction so that adjacent basic cells can overlap by portions thereof corresponding to one grid. Specifically, as understood from
FIG. 29
, with respect to the relationship between, for example, the basic cell
120
A and the adjacent basic cell
120
B, the basic cells are arranged as follows: The first bent part
102
a
of the dopant diffusion region
102
of the first PrU channel transistor TP
1
of the basic cell
120
B is disposed below, in the drawing, the first bent part
104
b
of the gate electrode
104
of the second P-channel transistor TP
2
of the basic cell
120
A, and the second bent part
101
c
of the gate electrode
101
of the first P-channel transistor TP
1
of the basic cell
120
B is disposed below, in the drawing, the second bent part
105
a
of the dopant diffusion region
105
of the second P-channel transistor TP
2
of the basic cell
120
A. The second N-channel transistor TN
2
of the basic cell
120
A and the first N-channel transistor TN
1
of the basic cell
120
B are disposed in a similar relationship.
When the layout of
FIG. 29
of this embodiment is compared with the conventional layout of
FIG. 31B
, the layout area of the entire logic circuit of the DFF is reduced to approximately 70% and the number of used wiring grids is also reduced to approximately 80% in this embodiment.
In addition, in the case where, for example, the gate electrode
104
of the second P-channel transistor TP
2
of the basic cell
120
B is connected to the dopant diffusion region
102
of the first P-channel transistor TP
1
of the basic cell
120
C, the first bent part
104
b
of the gate electrode
104
can be connected to the first bent part
102
a
of the dopant diffusion region
102
. Therefore, the line length for connecting them corresponds to merely one grid, and thus, the line length can be reduced. Accordingly, as a result of the reduction in the line length and reduction in load capacitance derived from the reduction in the layout area, the operation speed of the fabricated semiconductor integrated circuit can be increased.
The first and second bent parts
101
b
,
101
c
,
104
b
,
104
c
,
107
b
,
107
c
,
110
b
,
110
c
,
102
a
,
105
a
,
108
a
and
111
a
are all bent at right angles in any of the sideward directions in this embodiment, which does not limit the invention. Each bent part may be bent in a sideward direction in any manner, for example, may be bent in a curved manner.
As described so far, according to the CMOS basic cells and the methods for fabricating a semiconductor integrated circuit using any of the CMOS basic cells of this invention, a complicated logic circuit, which conventionally needs two or more interconnect layers, can be fabricated by using one additional interconnect layer alone. Also, timing of hold time of a flip-flop circuit having a scanning function can be adjusted by using one additional interconnect layer alone. Accordingly, the line crowdedness in design of a semiconductor integrated circuit is reduced and the ratio of used gates to all gates in a gate array is increased, resulting in improving the integration of the semiconductor integrated circuit. Moreover, not only the cost can be lowered but also, even when logic or wiring should be modified, merely one interconnect layer is sufficient for the modification. Accordingly, the period and cost required for the development can be reduced.
Claims
- 1. A CMOS basic cell comprising:an N-channel transistor, a P-channel transistor on a semiconductor substrate; at least one interconnect connected to said N-channel transistor or said P-channel transistor through at least one contact hole; and an interconnect pattern which is isolated from every contact hole in said CMOS basic cell and every interconnect in said CMOS basic cell, wherein said interconnect pattern exists between said N-channel transistor and said P-channel transistor, and wherein said interconnect pattern is formed in an uppermost interconnect layer of said CMOS basic cell, and wherein said CMOS basic cell has a boundary defining the edges of the CMOS basic cell, and at least one end of said interconnect pattern does not contact any edge of said CMOS basic cell.
- 2. The CMOS basic cell of claim 1, wherein said CMOS basic cell has a longitudinal axis, said interconnect pattern extending either perpendicular to said longitudinal axis or parallel to said longitudinal axis.
- 3. The CMOS basic cell of claim 1 further comprising: a power supply pattern, a master pattern and another interconnect pattern different from said interconnect pattern,wherein said another interconnect pattern exists between said N-channel transistor and said master pattern, said another interconnect pattern extending either perpendicular to or parallel to said longitudinal axis, said another interconnect pattern electrically disconnected from said N-channel transistor and said P-channel transistor and formed in said interconnect layer.
- 4. The CMOS basis cell of any one of claim 1 wherein said interconnect pattern is mutually connected electrically with an interconnect pattern of another CMOS basic cell, when said CMOS basic cell is adjacent to said another CMOS basic cell.
- 5. The CMOS basic cell of any one of claim 1 wherein two or more said CMOS basic cells are electrically connected by a higher interconnect pattern located in a layer that is higher than said interconnect pattern.
- 6. The CMOS basic cell according to claim 5, wherein said higher interconnect pattern is located in a region between said P-channel transistors and said N-channel transistors except the both ends of said interconnect pattern, andwherein said interconnect pattern which intersects said higher interconnect pattern is electrically connected with said higher interconnect pattern, said interconnect pattern being isolated from a second higher interconnect pattern which intersects said interconnect pattern.
- 7. A method for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and a higher interconnect pattern provided above said basic cells, comprising the steps of:arranging a plurality of CMOS basic cells according to any one of claim 1 on a semiconductor substrate; and realizing a logic circuit including a clock signal line by using said interconnect patterns formed in the uppermost interconnect layers of said CMOS basic cells and said higher interconnect pattern.
- 8. A method for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and a higher interconnect pattern provided above said basic cells, comprising the steps of:arranging a plurality of CMOS basic cells according to one of claim 1 on a semiconductor substrate; and realizing a logic circuit including transistors connected to each other in parallel by using said interconnect patterns formed in the uppermost interconnect layers of said CMOS basic cells and said higher interconnect pattern.
- 9. A method for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and a higher interconnect pattern provided above said basic cells, comprising the steps of:arranging a plurality of CMOS basic cells according to one of claim 1 on a semiconductor substrate; and realizing a composite logic circuit by using said interconnect patterns formed in the uppermost interconnect layers of said CMOS basic cells and said higher interconnect pattern.
- 10. A method for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and a higher interconnect pattern provided above said basic cells, comprising the steps of:arranging a plurality of CMOS basic cells according to claim 1 on a semiconductor substrate; and realizing a logic circuit including a control signal line by using said interconnect patterns formed in the uppermost interconnect layers of said CMOS basic cells and said higher interconnect pattern.
- 11. A method for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and a higher interconnect pattern provided above said basic cells, comprising the steps of:arranging a plurality of CMOS basic cells according to one of claim 1 on a semiconductor substrate; and realizing a logic circuit for a memory by using said interconnect patterns formed in the uppermost interconnect layers of said CMOS basic cells and said higher interconnect pattern.
- 12. A method for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells and a higher interconnect pattern provided above said basic cells, comprising the steps of:arranging a plurality of CMOS basic cells according to one of claim 1 on a semiconductor substrate; and realizing a flip-flop circuit having a scan test function by using said interconnect patterns formed in the uppermost interconnect layers of said CMOS basic cells and said higher interconnect pattern.
- 13. A CMOS basic cell comprising:an N-channel transistor and a P-channel transistor existing on a semiconductor substrate, said CMOS basic cell being electrical coupled with other adjacent CMOS basic cells; wherein a gate of at least one of said N-channel transistor and said P-channel transistor has a hooked shape including a first bent part bending in one sideward direction at an upper portion thereof and a second bent part bending in an opposite sideward direction at a lower portion thereof, and a diffusion region of at least one of said N-channel transistor and said P-channel transistor having a hooked shape having a first bent part bending in one sideward direction at an upper portion thereof and a second bent part bending in an opposite sideward direction at a lower portion thereof, said upper portion of said gate is bent oppositely to said upper portion of said diffusion region.
- 14. The CMOS basic cell of claim 13, wherein a first N-channel transistor and a first P-channel transistor are formed to extend along a vertical direction, anda second N-channel transistor is disposed on a side of said first N-channel transistor and a second P-channel transistor is disposed on a side of said first P-channel transistor, and a gate of each of said first and second N-channel transistors and said first and second P-channel transistors is formed in the hooked shape.
- 15. The CMOS basic cell of claim 14, wherein the gates of said first and second N-channel transistors are disposed in a manner that said first bent part of one gate overlaps said second bent part of the other gate when viewed along the vertical direction from one position in a horizontal direction, andthe gates of said first and second P-channel transistors are disposed in a manner that said first bent part of one gate overlaps said second part of the other gate when viewed along the vertical direction from one position in the horizontal direction.
- 16. The CMOS basic cell of claim 14, wherein said first and second N-channel transistors share one diffusion region and said first and second P-channel transistors share one diffusion region,each of said diffusion regions is divided into a shared diffusion region shared by said first and second N-channel or P-channel transistors and positioned between the gates of said first and second N-channel or P-channel transistors; a first dedicated diffusion region positioned on a side of said gate of said first N-channel or P-channel transistor opposite to said shared diffusion region; and a second dedicated diffusion region positioned on a side of said gate of said second N-channel or P-channel transistor opposite to said shared diffusion region, said first bent part is formed in said first dedicated diffusion region, and said second bent part is formed in said second dedicated diffusion region.
- 17. The CMOS basic cell according to any one of claim 13, comprising, outside of a transistor region where said N-channel transistor are disposed, a fixed interconnect region where a power supply interconnect and a ground interconnect are disposed.
- 18. The CMOS basic cell according to any one of claim 13, said first bent part of said gate of said P-channel transistor and said first bent part of said diffusion region of said P-channel transistor of another CMOS basic cell is electrically connected with said higher interconnect pattern,wherein said higher interconnect pattern extends along a horizontal direction to the perpendicular from said N-channel transistor to said P-channel transistor.
- 19. A method for fabricating a gate array semiconductor integrated circuit including a plurality of basic cells arranged in a horizontal direction, comprising a step of arranging a plurality of CMOS basic cells according to any one of claim 1 in the horizontal direction in a manner that said first bent part of one CMOS basic cell overlaps said second bent part of another adjacent CMOS basic cell when viewed along a vertical direction from one position in a horizontal direction.
- 20. A semiconductor integrated circuit including a plurality of CMOS basic cells arranged in the same direction,wherein each CMOS basic cell is composed of first and second N-channel transistors and first and second P-channel transistors, and a gate of said first and second N-channel transistors and said first and second P-channel transistors of each cell is in a hooked shape having a first bent part bending in one sideward direction at an upper portion thereof and a second bent part bending in the other sideward direction at a lower portion thereof, wherein the gates of said first and second N-channel transistors are disposed in a manner that said first bent part of one gate overlaps said second bent part of the other gate when viewed along an axis orthogonal to the axis extending parallel to the sideward directions in which said first bent part and said second bent part extend, and wherein the gates of said first and second P-channel transistors are disposed in a manner that said first bent part of one gate overlaps said second bent part of the other gate when viewed along an axis orthogonal to an axis extending parallel to the sideward directions in which said first bent part and said second bent part extend.
- 21. A semiconductor integrated circuit comprising:a plurality of CMOS basic cells; each said CMOS basic cell comprising: an interconnect layer formed in an uppermost layer of each of said plurality of CMOS basic cells, said interconnect layer comprising at least one interconnect operative for connecting signals to and from the corresponding CMOS basic cell; an N-channel transistor and a P-channel transistor on a semiconductor substrate; and an interconnect pattern which is capable of being electrically isolated from said N-channel transistor and said P-channel transistor and which is disposed between said N-channel transistor and said P-channel transistor, wherein said interconnect pattern is formed in said uppermost layer of said CMOS basic cell, wherein said interconnect pattern is only capable of being coupled to said N-channel transistor or said P-channel transistor by utilizing an interconnect pattern which is disposed in an interconnect layer located above said uppermost layer of said CMOS basic cell.
- 22. The semiconductor integrated circuit of claim 21, wherein each said CMOS basic cell has a longitudinal axis, said interconnect pattern extending either perpendicular to said longitudinal axis or parallel to said longitudinal axis.
- 23. The semiconductor integrated circuit of claim 22, further comprising: a power supply pattern, a master pattern and another interconnect pattern different from said interconnect pattern,wherein said another interconnect pattern exists between said N-channel transistor and said master pattern, said another interconnect pattern extending either perpendicular to or parallel to said longitudinal axis, said another interconnect pattern electrically disconnected from said N-channel transistor and said P-channel transistor and formed in said interconnect layer.
- 24. The semiconductor integrated circuit of claim 23, wherein said interconnect pattern is mutually connected electrically with an interconnect pattern of another CMOS basic cell, when said CMOS basic cell is adjacent to said another CMOS basic cell.
- 25. The semiconductor integrated circuit claim 24, wherein two or more said CMOS basic cells are electrically connected by a higher interconnect pattern located in a layer that is higher than said interconnect pattern.
- 26. The CMOS basic cell of claim 21, wherein said CMOS basic cell has a boundary defining the edges of the CMOS basic cell, and at least one end of said interconnect pattern does not contact any edge of said CMOS basic cell.
- 27. A CMOS basic cell comprising:an N-channel transistor and, a P-channel transistor on a semiconductor substrate; an interconnect pattern which is disposed between said N-channel transistor and said P-channel transistor; wherein said interconnect pattern is isolated from said N-channel transistor and said P-channel transistor; wherein said interconnect pattern is formed in an uppermost interconnect layer of said CMOS basic cell, and wherein said CMOS basic cell has a boundary defining the edges of the CMOS basic cell, and at least one end of said interconnect pattern does not contact any edge of said CMOS basic cell.
- 28. The CMOS basic cell of claim 27, wherein each said CMOS basic cell has a longitudinal axis, said interconnect pattern extending either perpendicular to said longitudinal axis or parallel to said longitudinal axis.
- 29. The CMOS basic cell of claim 28, wherein said N-channel transistor and said P-channel transistor have a plurality of electrodes, and each electrode coupled to said N-channel transistor and said P-channel transistor is coupled to the uppermost layer of said CMOS basic cell via an interconnect.
- 30. The CMOS basic cell of claim 27, wherein said interconnect pattern is only capable of being coupled to said N-channel transistor or said P-channel transistor by utilizing an interconnect pattern which is disposed in an interconnect layer located above said uppermost layer of said CMOS basic cell.
- 31. The CMOS basic cell of claim 27, wherein said N-channel transistor and said P-channel transistor are isolated from each other by an insulating film on a semiconductor substrate.
- 32. A CMOS basic cell comprising:an N-channel transistor and, a P-channel transistor on a semiconductor substrate; an interconnect pattern which is disposed between said N-channel transistor and said P-channel transistor, wherein said interconnect pattern is isolated from said N-channel transistor and said P-channel transistor, wherein said interconnect pattern is formed in an uppermost interconnect layer of said CMOS basic cell, and wherein said N-channel transistor and said P-channel transistor have a plurality of electrodes, and each electrode coupled to said N-channel transistor and said P-channel transistor is coupled to the uppermost layer of said CMOS basic cell via an interconnect.
- 33. The CMOS basic cell of claim 32, wherein said basic cell has a boundary defining the edges of the CMOS basic cell, and at least one end of said interconnect pattern does not contact any edge of said CMOS basic cell.
- 34. The CMOS basic cell of claim 32, wherein said N-channel transistor and said P-channel transistor are isolated from each other by an insulating film on a semiconductor substrate.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2000-286668 |
Sep 2000 |
JP |
|
2001-035267 |
Feb 2001 |
JP |
|
US Referenced Citations (9)
Foreign Referenced Citations (7)
Number |
Date |
Country |
61-202425 |
Sep 1986 |
JP |
03-141670 |
Jun 1991 |
JP |
06-013589 |
Jan 1994 |
JP |
06-252367 |
Sep 1994 |
JP |
09097885 |
Apr 1997 |
JP |
09-181284 |
Jul 1997 |
JP |
01-270-329 |
Oct 1999 |
JP |