1. Field of the Invention
The present invention relates to a voltage controlled oscillator. More particular, the present invention relates to a CMOS cross-coupled differential voltage controlled oscillator.
2. Description of Prior Art
Therefore, an objective of the present invention is to provide a CMOS cross-coupled differential voltage controlled oscillator which can lower the OFF capacitance value of a varactor for improving the tuning range between the ON capacitance and OFF capacitance thereof.
The other objective of the present invention is to provide a CMOS cross-coupled differential voltage controlled oscillator which can generate the same flicker noise at two ends of a varactor such that phase noise can be eliminated.
Another objective of the present invention is to provide a CMOS cross-coupled differential voltage controlled oscillator which can filter 2nd harmonic of a shared node in an inductor unit.
In order to achieve the above objectives, the present invention provides a cross-coupled differential voltage controlled oscillator. The oscillator includes a current control unit, a first cross-coupled differential pair, an inductor unit, a capacitor unit, a second cross-coupled differential pair and a voltage control unit. The current control unit is coupled between a relatively-high voltage and a relatively-low voltage. The first cross-coupled differential pair, the inductor unit, the capacitor unit and the second cross-coupled differential pair are coupled between the pair of oscillator outputs and cascaded between the current control unit and relatively-high voltage. The inductor unit further includes a shared node. The voltage control unit is coupled between the shared node and the relatively-low voltage. The voltage control unit controls the capacitor unit according to a plurality of voltage control signals and then outputs signals to the pair of oscillator outputs.
Moreover, in order to achieve the above objectives, the present invention further provides another cross-coupled differential voltage controlled oscillator. The oscillator includes a current control unit, a first cross-coupled differential pair, an inductor unit, a capacitor unit, a second cross-coupled differential pair and a voltage control unit. The current control unit is coupled between a relatively-high voltage and a relatively-low voltage. The first cross-coupled differential pair, the inductor unit, the capacitor unit and the second cross-coupled differential pair are coupled between the pair of oscillator outputs and cascaded between the current control unit and relatively-low voltage. The inductor unit further includes a shared node. The voltage control unit is coupled between the shared node and the relatively-high voltage. The voltage control unit controls said capacitor unit according to a plurality of voltage control signals and then outputs signals to the pair of oscillator outputs.
The current control unit 10 comprises a current source 110, two NMOS field effect transistors 120 and 130. The drain and the gate of the NMOS field effect transistor 120 are coupled to the gate of the NMOS field effect transistor 130. The sources of the NMOS field effect transistors 120 and 130 are coupled to the power voltage V2. The current source 110 is coupled between the power voltage V1 and the drain of the NMOS field effect transistor 120 to offer a reference current IREF such that the current control unit 10 forms a current mirror.
The first cross-coupled differential pair 20, the inductor unit 30, the capacitor unit 40, and the second cross-coupled differential pair 50 are cascaded between the power voltage V1 and the current control unit 10. The cross-coupled differential pair 20 includes two PMOS field effect transistors 210 and 220. The sources of the PMOS field effect transistors 210 and PMOS field effect transistor 220 are coupled to the power voltage V1. The gate of the PMOS field effect transistor 210 and the drain of the PMOS field effect transistor 220 are coupled to the oscillator output VCON The drain of the PMOS field effect transistor 210 and the gate of the PMOS field effect transistor 220 are coupled to the oscillator output VCOP.
The inductor unit 30 is coupled between the oscillator outputs VCON and VCOP. The inductor unit 30 further includes two inductors 310 and 320 coupled to a shared node 330. Alternatively, the inductor unit 30 can be implemented by single inductor, where shared node 330 is the location near the middle of the single inductor.
The capacitor unit 40 comprises a plurality of switch capacitor sets SW1, SW2 . . . SWN. The switch capacitor sets SW1, SW2 . . . SWN are parallel coupled between the oscillator outputs VCON and VCOP. As shown in
The second cross-coupled differential pair 50 is coupled between the oscillator outputs VCON and VCOP. The second cross-coupled differential pair 50 is formed by NMOS field effect transistors 510 and 520. The sources of the NMOS field effect transistor 510 and NMOS field effect transistor 520 are coupled to the drain of the NMOS field effect transistor 130 of the current control unit 10. The gate of the NMOS field effect transistor 510 and the drain of the NMOS field effect transistor 520 are coupled to the oscillator output VCON. The drain of the NMOS field effect transistor 510 and the gate of the NMOS field effect transistor 520 are coupled to the oscillator output VCOP.
The voltage control unit 60 is coupled between the shared node 330 of the inductor unit 30 and power voltage V2. The voltage control unit 60 is powered by the shared node 330 of the inductor unit 30 and power voltage V2. The voltage control unit 60 has a plurality of inverters or buffers 610, 620 . . . 630, corresponding to voltage control signals VC1, VC2 . . . VCN, for inverting signal phase of the voltage control signals VC1, VC2 . . . VCN. The inverted control signals VC1, VC2 . . . VCN are coupled to the bias points 414, 424 . . . 434 of the switch capacitor sets SW1, SW2 . . . SWN to control over the switch capacitor sets, respectively. The voltage control unit 60 is powered by the shared node 330 and the power voltage V2 such that the inverters 610, 620 . . . 630 are also powered by the shared node 330 and the power voltage V2.
Different operating frequency requires different capacitance value controlled by the ON/OFF status of the varactors of the capacitor units SW1, SW2 . . . SWN. According to the present invention, when a varactor is OFF, the potentials at two ends of the varactor are about the same, which can increase tuning range between the ON capacitance CON and the OFF capacitance COFF thereof. In addition, the inverters 610, 620 . . . 630 are all coupled and powered by the shared node 330 of the inductor unit 30 such that flicker noise from the oscillator outputs VCOP and VCON are about the same so as to eliminate phase noise.
The current control unit 10 comprises a current source 110, two PMOS field effect transistors 140 and 150. The drain and the gate of the PMOS field effect transistor 140 are coupled to the gate of the PMOS field effect transistor 150. The sources of the PMOS field effect transistors 140 and 150 are coupled to the power voltage V1. The current source 110 is coupled between the power voltage V2 and the drain of the PMOS field effect transistor 140 to offer a reference current IREF such that the current control unit 10 forms a current mirror.
The first cross-coupled differential pair 20, the inductor unit 30, the capacitor unit 40, and the second cross-coupled differential pair 50 are cascaded between the power voltage V2 and the current control unit 10. The cross-coupled differential pair 20 includes two PMOS field effect transistor 210 and 220. The source of the PMOS field effect transistor 210 and PMOS field effect transistor 220 are coupled to the drain of the PMOS field effect transistor 150 of the current unit control 10. The gate of the PMOS field effect transistor 210 and the drain of the PMOS field effect transistor 220 are coupled to the oscillator output VCON The drain of the PMOS field effect transistor 210 and the gate of the PMOS field effect transistor 220 are coupled to the oscillator output VCOP.
The inductor unit 30 is coupled between the oscillator outputs VCON and VCOP. The inductor unit 30 further includes two inductors 310 and 320 coupled to a shared node 330. Alternatively, the inductor unit 30 can be implemented by single inductor, where the shared node 330 is the location near the middle of the single inductor.
The capacitor unit 40 comprises a plurality of switch capacitor sets SW1, SW2 . . . SWN. The switch capacitor sets SW1, SW2 . . . SWN are parallel coupled between the oscillator outputs VCON and VCOP. As shown in
The second cross-coupled differential pair 50 is coupled between the oscillator outputs VCON and VCOP. The second cross-coupled differential pair 50 is formed by NMOS field effect transistor 510 and 520. The source of the NMOS field effect transistor 510 and NMOS field effect transistor 520 are coupled to the power voltage V2. The gate of the NMOS field effect transistor 510 and the drain of the NMOS field effect transistor 520 are coupled to the oscillator output VCON. The drain of the NMOS field effect transistor 510 and the gate of the NMOS field effect transistor 520 are coupled to the oscillator output VCOP.
The voltage control unit 60 is coupled between the shared node 330 of the inductor unit 30 and power voltage V1. The voltage control unit 60 is powered by the shared node 330 of the inductor unit 30 and the power voltage V1. The voltage control unit 60 has a plurality of inverters or buffers 610, 620 . . . 630, corresponding to voltage control signals VC1, VC2 . . . VCN, for inverting signal phase of the voltage control signals VC1, VC2 . . . VCN. The inverting control signals VC1, VC2 . . . VCN are coupled to the bias points 414, 424 . . . 434 of the switch capacitor sets SW1, SW2 . . . SWN to control over the switch capacitor sets, respectively. The voltage control unit 60 is powered by the shared node 330 and the power voltage V1 such that the inverters 610, 620 . . . 630 are also powered by the shared node 330 and the power voltage V1.
Different operating frequency requires different capacitance value controlled by the ON/OFF status of the varactors of the capacitor sets SW1, SW2 . . . SWN. According to the present invention, when a varactor is OFF, the potentials at two ends of the varactor is about the same, which increase tuning range between the ON capacitance CON and OFF capacitance COFF. In addition, the inverters 610, 620 . . . 630 are all coupled and powered by the shared node 330 of the inductor unit 30 such that flicker noise from the oscillator outputs VCOP and VCON are about the same so as to eliminate phase noise.
The above disclosed subject matter is to be considered illustrative and the appended claims are intended to cover all such modifications and other embodiments which fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest possible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Date | Country | Kind |
---|---|---|---|
096126292 | Jul 2007 | TW | national |