Embodiments of the present invention relate to a complementary metal-oxide semiconductor (CMOS) image sensor and a method for fabricating the same. The CMOS image sensor and the method for fabricating the same in accordance with various embodiments of the present invention will be described in detail with reference to the accompanying drawings. Also, regarding the drawings, the illustrated thickness of layers and regions are exaggerated for definitude. When a first layer is referred to as being on a second layer or “on” a substrate, it could mean that the first layer is formed right on the second layer or the substrate, or it could also mean that a third layer may exit between the first layer and the substrate. Furthermore, the same or like reference numerals through out the various embodiments of the present invention represent the same or like elements in different drawings.
As a method for improving limitations related to reducing the size of a unit pixel in a typical CMOS image sensor, a spacing distance between a gate electrode of a drive transistor Dx and a gate electrode of a select transistor Sx is minimized to reduce the size of the unit pixel compared to a unit pixel of a typical CMOS image sensor, instead of forming a highly doped ion implantation region between the gate electrode of the drive transistor Dx and the gate electrode of the select transistor Sx. When only lightly doped drain (LDD) regions exist without the highly doped ion implantation regions, a resistance between the gate electrode of the drive transistor Dx and the gate electrode of the select transistor Sx may increase. Such increased resistance may be sufficiently compensated by reducing the spacing distance between the gate electrode of the drive transistor Dx and the gate electrode of the select transistor Sx for a certain distance.
Referring to
The size of the unit pixel may be decreased when compared to a typical CMOS image sensor by minimizing the spacing distance SP2 between the third gate electrode 117C of the drive transistor Dx and the fourth gate electrode 117D of the select transistor Sx. That is, the fourth gate electrode 117D of the select transistor Sx is moved toward the third gate electrode 117C of the drive transistor Dx. Thus, the spacing distance SP2 between the third and fourth gate electrodes 117C and 117D becomes smaller than a typical spacing distance SP1 (refer to
Moving and forming the fourth gate electrode 117D of the select transistor Sx toward the third gate electrode 117C of the drive transistor Dx may secure a marginal area by as much as the distance the third gate electrode 117C moved. The size of the photodiode may be increased by enlarging the photodiode using the secured marginal area. Consequently, according to the embodiment of the present invention, the size of the photodiode in the unit pixel may be increased to improve the fill factor while securing the unit pixel to have substantially the same area as the unit pixel in the typical CMOS image sensor.
A high-density pixel may be embodied according to the embodiment of the present invention by reducing the size of the unit pixel to a smaller size than the unit pixel of the typical CMOS image sensor. Thus, the scale of integration of the image sensor may be improved.
The highly doped ion implantation region is not formed in the substrate structure between the third gate electrode 117C of the drive transistor Dx and the fourth gate electrode 117D of the select transistor Sx. Thus, the number (or the area) of the highly doped ion implantation regions is decreased when compared to the unit pixel of the typical CMOS image sensor. Accordingly, the leakage current generated in the highly doped ion implantation regions may be decreased.
Referring to
A low concentration ion implantation process using N-type impurities is performed with a high ion implantation energy on a portion of the P− epitaxial layer 112 exposed on one side of the first gate electrode 117A of the transfer transistor Tx to form a N− diffusion layer 118.
A low concentration ion implantation process is performed on portions of the P− epitaxial layer 112 and the P− well 114 exposed on both sides of the third and fourth gate electrodes 117C and 117D of the drive transistor Dx and the select transistor Sx to form LDD regions 119. Although not illustrated, the LDD regions 119 may be formed in portions of the P− epitaxial layer 112 exposed on both sides of the first and second gate electrodes 117A and 117B of the transfer transistor Tx and the reset transistor Rx.
A low concentration ion implantation process using P-type impurities is performed with an ion implantation tilt angle to form halo regions 120 between the LDD regions 119. The halo regions 120 are lowly doped ion implantation regions.
Referring to
An etch-back process or a blanket etch process is performed to form spacers 121 on both sidewalls of the first to fourth gate electrodes 117A, 117B, 117C, and 117D. The spacers 121 between the third and fourth gate electrode 117C and 117D are formed in a mutually-coupled structure (a filled structure). At this time, the spacers 121 may include a single layer or multiple layers. For instance, the spacers 121 may include a single layer to simplify the process. The process may be further simplified by minimizing the spacing distance between the third and fourth gate electrodes 117C and 117D such that the spacers 112 including a single layer may fill between the third and fourth gate electrodes 117C and 117D. The spacers 121 may include an insulation material such as a nitride-based layer, an oxide-based layer, or an oxynitride-based layer.
Referring to
A high concentration ion implantation process using N-type impurities is performed to form a first highly doped ion implantation region 123A, a second highly doped ion implantation region 123B, and a third highly doped ion implantation region 123C in portions of the substrate structure between the first and second gate electrodes 117A and 117B, between the second and third gate electrodes 117B and 117C, and on one side of the fourth gate electrode 117D, respectively. At this time, the impurity ions may not be implanted into the substrate structure between the third and fourth gate electrodes 117C and 117D during the high concentration ion implantation process because the spacers 121 are thickly filled between the third and fourth gate electrodes 117C and 117D. Consequently, the highly doped ion implantation region is not formed in the substrate structure between the third and fourth gate electrodes 117C and 117D. Descriptions for subsequent processes are omitted herein because the subsequent processes are substantially the same as typical processes.
According to some embodiments of the present invention, the size of a unit pixel may be decreased when compared to a typical CMOS image sensor. According to other embodiments of the present invention, the size of a photodiode in a unit pixel may be increased to improve a fill factor while securing the unit pixel to have substantially the same area as a unit pixel in a typical CMOS image sensor. According to other embodiment of the present invention, a high-density pixel may be embodied by reducing the size of a unit pixel to a smaller size than a unit pixel of a typical CMOS image sensor. Thus, the scale of integration of the image sensor may be improved. According to other embodiments of the present invention, the number (or area) of highly doped ion implantation regions may be decreased when compared to a unit pixel of a typical CMOS image sensor. Accordingly, leakage current generated in the highly doped ion implantation regions may be decreased for the same amount. According to some embodiments of the present invention, an unnecessary region may be removed from highly doped ion implantation regions composing a unit pixel, and thus, the size of the unit pixel may be decreased by as much as the surface area occupied by the unnecessary region.
While the present invention has been described with respect to the specific embodiments, the embodiments have been illustrated for description, and not for limitation. In particular, although the embodiments describe the CMOS image sensor including the unit pixel composed of four transistors, the embodiments of the present invention may be applied to a CMOS image sensor including a unit pixel composed of three transistors. Furthermore, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-0047703 | May 2006 | KR | national |