The present invention relates to methods for fabricating integrated circuit structures.
Widespread use of mobile or low power electronics has created a need for high performance integrated circuits capable of operation at subvolt (<1 volt) levels. Many attempts have been made to develop new transistor architectures with high performance, low operating voltage, and low leakage. For example, there has been significant research regarding the use of silicon on insulator (SOI) and three dimensional fin (multigate) transistors. However, such integrated circuit designs are typically incompatible with much of the existing fabrication and design infrastructure.
Further exacerbating the problems regarding the fabrication of subvolt transistor devices is that many integrated circuit designs now call for a variety of devices to be formed therein. For example, it is not uncommon for a circuit design to include subvolt transistor devices to be concurrently formed with other devices on a same integrated circuit die, such as high power transistors and analog devices. In addition to these different devices having different requirements for performance, these devices are also typically associated with different fabrication conditions to achieve this performance. In some instances, these different fabrication conditions can conflict with each other. Accordingly, in order to ensure sufficient yield of operable devices in such cases, a compromise between the fabrication and performance of the subvolt devices and the other devices is typically required. For example, in many designs, the performance requirements are relaxed in order to allow selection of conditions that allow for the fabrication of the subvolt devices and other devices on a same substrate, conditions that are often suboptimal. As a result, even though there may be a high yield of operable devices, the performance of the subvolt device, the other devices, or both, may be degraded in such integrated circuit die.
Embodiments are described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the embodiments. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the embodiments. One having ordinary skill in the relevant art, however, will readily recognize that embodiments can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the embodiments. Embodiments are not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
Digital and analog transistors have been available in decreasing sizes over time, with transistor channel lengths that formerly were tens of thousands of nanometers being reduced a thousand-fold to a hundred nanometers or less in length. However, maintaining transistor quality and electrical characteristics for such downwardly scaled transistors is difficult at nanometer scales, and can even be more difficult for supporting circuits requiring low threshold voltage transistors. This is particularly true for mixed signal die that support both analog and digital transistors, and include a mixture of high and low voltage threshold voltage transistors.
One particular difficulty in such mixed signal die and other die (collectively “mixed device die”) including a combination of subvolt devices and other devices is the fabrication of the range of devices. That is, for transistors especially with gate lengths in the sub-nanometer range, it is not only generally difficult to provide a multitude of devices operating reliably and with low substrate leakages, but it can be particularly difficult to form such devices consistently across a substrate. One solution for supporting a range of transistor device types while providing acceptable performance of the devices is to configure the channels of the transistors to provide deeply depleted channel (DDC) transistors. The incorporation of DDC for forming a plurality of device types across multiple mixed die that operate in a substantially consistent manner.
DDC transistors are formed, for example, by implanting dopants into a well for the CMOS devices to form a heavily doped screen layer (1018 to 1020 atoms/cm3). This may be followed by an undoped or slightly doped (collectively “substantially undoped”) blanket epitaxial layer (<5×1017) deposited over the screen layer(s), extending across multiple die and transistor die blocks. Such a blanket epitaxial layer should be formed so as to reduce upward migration of scattered dopants emplaced during the screen layer implants. In some configurations, lightly doped threshold voltage (Vth) adjustment layers (between 5×1017 and 2×1019 atoms/cm3) can also be formed in or adjacent to the screen layer in order to allow finer adjustment of threshold voltage and control against unwanted leakage current. Preferably, conventional threshold voltage setting methods by way of channel implants or halo implants are not used in the fabrication of DDC transistors. However, other various embodiments exist.
Details regarding exemplary DDC transistor structures and manufacturing processes are more completely described in U.S. patent application Ser. No. 12/708,497 titled “ELECTRONIC DEVICES AND SYSTEMS, AND METHODS FOR MAKING AND USING THE SAME” and filed Feb. 18, 2010, U.S. patent application Ser. No. 12/971,884 titled “LOW POWER SEMICONDUCTOR TRANSISTOR STRUCTURE AND METHOD OF FABRICATION THEREOF” and filed Dec. 17, 2010, U.S. patent application Ser. No. 12/971,955 titled “TRANSISTOR WITH THRESHOLD VOLTAGE SET NOTCH AND METHOD OF FABRICATION THEREOF” and filed Dec. 17, 2010, U.S. patent application Ser. No. 12/895,785 titled “ADVANCED TRANSISTORS WITH THRESHOLD VOLTAGE SET DOPANT STRUCTURES” and filed Sep. 30, 2010, the disclosures of which are hereby incorporated by reference in their entirety, and U.S. patent application Ser. No. 12/895,813 titled “ADVANCED TRANSISTORS WITH PUNCH THROUGH SUPPRESSION” and filed Sep. 30, 2010.
For DDC devices, epitaxial layer thickness above the Vth setting layer and screen layer influences the threshold voltage setting of the device. Specifically, a thicker epitaxial layer tends to result in a lower Vth, while a thinner epitaxial layer tends result in a higher Vth. Although, screen implant conditions and Vth implant conditions, such as dose and energy, can also affect Vth value, the epitaxial layer thickness remains a modulator for the Vth value as well. If a process flow as described above is used, then, all DDC devices have substantially the same blanket epitaxial layer thickness. This method for implementation of DDC devices is effective to control fabrication costs for building working devices and circuits, but all devices sharing a common epitaxial layer thickness may be suboptimal for many of the devices. This is illustrated with respect to
For each type of DDC devices in
In view of the foregoing, the effects of selecting a single common epitaxial layer thickness can be observed. For example, the different dashed lines (A, B, C) in
In view of the potential difficulties in using a single epitaxial layer thickness adequate for multiple types of DDC devices in a mixed device die, the various embodiments described below are directed to a process flow for forming mixed DDC device die that addresses these difficulties by utilizing selective thinning of epitaxial layers. The term “selective thinning” as used herein with respect to epitaxial layers (or any other type of layer covering over the heavily doped regions of the DDC device) refers to any process that reduces a thickness of the epitaxial layer in a selected device or local portion of the mixed device die without a corresponding reduction of the thickness of the epitaxial layer in other portions of the die.
The selective thinning of the various embodiments provides a process flow, and devices therefrom, that improves DDC device and circuit benefits. Most notably, the various embodiments provide a way to achieve reliable Vth values for devices via selective etching without relying on modulation of screen implants, modulation or addition of other implants, or any combinations thereof. Locally removing as little as 1 nm of the epitaxial layer in a DDC device can result in a large (20-30 mV) shift in Vth. Accordingly, this allows significant adjustments in Vth by removing selected amounts preferably between 1 nm and 10 nm, such as between 1 nm and 5 nm, in lieu of adjusting implant conditions or other channel process parameters. Accordingly, the various embodiments enable the different devices in a mixed device die to be designed and fabricated with epitaxial layer thicknesses at or near their corresponding sweet spot (or other desired operation point), rather than forcing all devices to use a common epitaxial layer thickness. The results of such a process on the exemplary device configuration of
Although the various embodiments will be primarily described in terms of modifying Vth by adjusting epitaxial layer thickness through selecting thinning, the various embodiments are not limited in this regard. Rather, variations in epitaxial layer thickness strongly correlate to variations in other device characteristics, such as leakage current, subthreshold swing, and drain-induced barrier lowering, to name a few. Accordingly, while in some embodiments, the epitaxial layer thickness can be selected to target a specific Vth, in other embodiments, the epitaxial layer thickness can be selected to target specific values of other device characteristics.
Although at least some thinning of the epitaxial layer in both of the PMOS and NMOS areas can be performed concurrently, the present disclosure also contemplates that the thinning of each device type can also be performed separately. That is, thinning of epitaxial layers for PMOS is performed in one step and thinning of epitaxial layers for NMOS is performed in a different step. Once the epitaxial layer has been appropriately thinned in the various areas of the mixed device die, processing can then continue to form the devices on the resulting epitaxial layer. As a result, DDC devices are provided in each of the NMOS, PMOS, and analog device areas with epitaxial layer thicknesses in their respective sweet spots.
It should be noted that the present disclosure is not limited to selective thinning of epitaxial layers for NMOS, PMOS, and analog devices, nor is the disclosure limited to epitaxial layer per se. The present disclosure contemplates that there may be a layer of another type of material over a doped region, wherein the selective thinning of the material will modulates the effect of the doped region on the device. Selective thinning can be performed for any type of device on the mixed device die. Further, the present disclosure also contemplates that different devices can also have the same epitaxial layer thickness. Accordingly, the present disclosure contemplates embodiments including one or more selective thinning steps of processes depending on the number of different device types and the amount of overlap (or lack thereof) of their performance/epitaxial layer thickness ranges.
It should be further noted that although the example above contemplates selecting epitaxial layer thicknesses based on devices' respective sweet spots, the various embodiments are not limited in this regard. Indeed, the overall performance requirements of the mixed device die usually tolerate the epitaxial layers thickness falling into a different target from the sweet spot for at least some of the devices. The present disclosure contemplates embodiments in which selective thinning is utilized only for certain devices.
The setting of the Vth by way of selective thinning of the epitaxial layer can be performed as follows. First, the DDC devices are formed through the step of the formation of the screen/Vth setting doped region, that is, the step prior to the deposition of the epitaxial layer. The doping level is selected for the different devices, to set a Vth matched to a given epitaxial thickness. If ion implantation is used to dope the screen/Vth setting region, then the implant dose and energy levels are selected to achieve the desired doping concentration and implanted depth of the doped region. Then, the epitaxial layer is formed to a pre-selected thickness that corresponds to devices associated with the thickest epitaxial layer so as to set the Vth value for such devices. Then, for those devices requiring a thinner epitaxial layer to set the Vth value, then for those devices, the epitaxial layer is etched back to a targeted thinness amenable for achieving the desired Vth value. The selective thinning can be performed using any type of material removal process allowing for a degree of control of amount of material to be etched. In the various embodiments, a removal process can consist of a single step in which material is removed from the epitaxial layer, such as directly etching of the epitaxial layer using a dry etch process or a wet etch process. The selective etching of the epitaxial layer can happen either before or after STI formation, but needs to be completed before gate oxide formation.
Although a removal process in accordance with the various embodiments can be configured for removing all of the material in a single etch process step, the present disclosure contemplates utilizing other processes to provide a greater degree of control. In some embodiments, multiple steps are used. Multiple etch process steps that each remove a pre-defined amount of material can be used. In other embodiments a combination of a limited transformation process and an etch process can be utilized. In such a process, a portion of the epitaxial layer is first transformed. For example, the portion of the epitaxial layer to be removed is first amorphized, oxidized, or otherwise transformed into a material with different properties from the epitaxial layer, down to a selected depth. The transformation process can be selected so that the depth can be accurately selected and controlled. For example, the transformation process can be a self-limiting process that removes only a pre-defined amount of material, regardless of the length of the process. Thereafter, the transformed material is removed in a second step by way of selective etching of the transformed material. That is, a etch process is utilized that preferentially etches the transformed material over the material of the epitaxial layer.
The removal process used for selective thinning of a particular area of the substrate can depend on the amount of thinning and the amount of variability allowed for the thinned epitaxial layer. For example, a greater degree of control is warranted when reducing the epitaxial layer thickness by 1 nm as compared to 5 nm or 10 nm.
Some exemplary selective epitaxial layer removal processes are provided below. In all examples, the thickness areas that are to be shielded from the removal process are masked using an effective material, for instance, a photoresist layer, a hard mask, or combination thereof. The open areas are to be thinned by exposure to the removal process. In a first example, the removal process can consist of silicon oxidation and subsequent removal by etching, such as an in-situ steam generated oxide or chemical oxidation to form a native oxide layer followed by HF:H20 etch. In a second example, the process can consist of dry plasma etch using chemistries that effectively remove a predictable amount of silicon, for instance, fluorine-based chemistries. In a third example, a non-plasma, vapor-based etch can be used to remove a predictable amount of silicon, for instance, chlorine-based vapor. In still another example, a silicon wet etch can be used, such as one based on HNO3 and HF. However, the various embodiments are not limited to these removal processes and other processes are equally applicable.
In some embodiments, where the amount of selective thinning needs to be controlled precisely, a self-limiting process can be used. For example, a low temperature oxidation such as ISSG can be used, which can be self-limiting to stop at a selected thickness by proper recipe condition selection, followed by dry or wet oxide removal. Another technique could be a chemical oxidation process, such as SC1, followed by dry or wet oxide removal.
Now turning to
The NMOS screen layers can be formed via a process that includes formation of a patterned mask layer to prevent dopants from being implanted into other regions of the substrate. For example, as illustrated in
For instance, the process may begin with a Boron (B) well-implant at about 120 keV to 140 keV at a dose of about 1×1013 to 1×1015 atoms/cm2. A germanium (Ge) pre-amorphization implant may be used at an energy of about 20 keV to 60 keV at a dose of about 1×1013 to 1×1015 atoms/cm2, followed by a carbon (C) implant at about 2 keV to 7 keV at a dose of about 1×1013 to 1×1015 atoms/cm2, with recrystallization, to prevent movement of the Boron implanted atoms. The device implants include Boron anti-punchthrough at an energy of about 10 keV to 30 keV at a dose of about 5×1012 to 1×1014 atoms/cm2, as well as a blanket DDC Boron implant to simultaneously begin formation of the LVt, SVt and SRAM devices at an energy of about 2 keV to 10 keV at a dose of about 1×1013 to 1×1014 atoms/cm2. At the end of this initial set of implants, the dopants for the LVt devices will be in place, as indicated by the “LVT” regions in
In
Variations in energy, material, and dose for one or more of the implants discussed above may be applied depending on the specifications from the device design. Further, the implant conditions discussed above are presented solely for purposes of illustration and not by way of limitation. In the various embodiments, more or less implants can be used. Alternatively stated, other implants, other than those listed in
Once the implants for the NMOS regions are completed, all of the NMOS devices are covered over with a mask so that the doped regions for the PMOS regions can be formed. For example, as shown in
Then, additional patterned mask layers can be formed to cover devices to be protected to allow for additional screening implants to be performed for the more heavily concentrated devices, the SVT and SRAM, as illustrated in
After the implants are completed for the devices within the NMOS and PMOS regions, any remaining photoresist or other mask material and any remaining sacrificial oxide should be removed to expose the semiconducting surface including the implanted regions, as shown in
The selective thinning of the epitaxial layer for the NMOS devices can be performed as follows. First, as illustrated in
As noted above, a thinner epitaxial layer thickness is required for the NMOS devices. Accordingly, the patterned masking layer includes an opening over the NMOS regions, as shown in
In the exemplary process shown in
The present disclosure contemplates that as part of the process of forming devices in active area or regions of the semiconducting surface, some type of active area isolation is provided. For example, shallow trench isolation (STI) or any other types of active area isolation techniques can be used with the various embodiments, provided that care is taken to achieve or maintain the specified epitaxial layer thickness for the various devices. For example, as shown in
Although
Further,
As shown in
The present disclosure contemplates that the combination of epitaxial layer thicknesses and doped regions for the various devices in a mixed device die can be obtained in a variety of ways. One methodology is to determine the conditions using simulation tools. For example, a technology computer aided design (TCAD) program can be utilized to model the desired operation of the devices in the mixed device die. This modeling can be used to determine the proper epitaxial layer thicknesses and implant conditions for the Vth values for the various types of devices. Such fabrication conditions can be based on pre-defined target device characteristics and other considerations. For example, the simulation process can consider pre-defined doping conditions and criteria for differences in the epitaxial layer thickness. Further, such processes can be performed iteratively. In one exemplary embodiment, the simulation process can proceed as shown in
Thereafter, at step 406, the epitaxial layer thickness ranges for the various devices can be compared to each other to determine where they overlap and whether the overlap meets a pre-defined thickness overlap criteria. In other words, the epitaxial layer thickness range for one device type is compared to the epitaxial layer thickness ranges for each other type of device to determine whether there is sufficient overlap in the epitaxial layer thickness ranges to utilize a common epitaxial layer thickness for the one device type and one or more of the other device types in the mixed device dies. Once such comparisons are made, the method then proceeds to step 408.
At step 408, the comparison at step 406 is utilized to classify the device types into groups. That is, the device types are divided into groups of device types with epitaxial layer thickness ranges that all meet the overlap criteria with respect to each other. As an illustrative example, assume that the overlap criteria require at least some minimum overlap in the sweet spot range. Accordingly, applying this overlap criteria to the device types in
The present disclosure contemplates that in the event that a device type can potentially fall into two or more groups and a group for the device type can be selected based on additional criteria or rules. For example, an additional rule can specify selecting a group based on a higher degree of overlap. In another example, an additional rule can specify selecting a group so as to minimize the total number of groups. Any other criteria can also be applied without limitation.
Referring back to
Subsequent to step 410, the method 400 proceeds to step 412 where a final set of process conditions is identified, including an initial epitaxial layer thickness needed for the mixed device die, the number of selective epitaxial layer thinning steps needed, and any adjustments required for the implant conditions.
Finally, at step 414, additional masks or processes needed to support the process conditions at step 412 are identified and incorporated into the process flow. This step can include automatically adjusting the integrated circuit design to insert design blocks associated with areas in which epitaxial layer thinning is to occur.
Optionally, the design flow above can be modified to simplify the process flow. As noted above, the variation in epitaxial layer thickness can have a significant effect on at least Vth values for DDC devices. Accordingly, some of the implants utilized in more conventional process flows may not be needed if the desired device characteristics can be obtained based on a modulation of epitaxial layer thickness. Therefore, in some embodiments, the simulation process can be configured to determine whether selective thinning of the epitaxial layer can be performed in combination with one or more implant adjustments to reduce or eliminate the need for one or more implants. For example, the simulation can identify epitaxial layer thicknesses at which particular implants, such as halo or channel implants, can be eliminated. The simulation can further identify whether an adjustment of other implants, such as screen layer implants, would be needed in combination with selective thinning of the epitaxial layer. In some cases, this analysis can be performed regardless of whether or not the overlap criteria are met.
Another method is to base adjustments to the process flow, at least partially, on empirical data. That is, mixed device die can be manufactured using various conditions for both epitaxial layer thickness and implants. Thereafter, the conditions for each type of device can be selected based on the performance of the resulting devices and pre-defined target device characteristics for the different types of devices. If necessary, additional mask layers can be inserted if additional implants or selective etchings are needed. In such embodiments, the empirical data can be used to establish a model, a relationship, or other function correlating epitaxial layer thickness and device characteristics, such as Vth, for various implant conditions. Such relationships can be used directly to compute or calculate an epitaxial layer thickness (or reduction) needed to meet particular device characteristic targets. Alternatively, such relationships can be used to generate tables or other data for look-up purposes.
The design flow can also involve a determination of how to minimize the number of selective thinning steps. That is, it may be possible to provide a same epitaxial layer thickness for two different types of devices, where each is in their respective sweet spot. This can involve identifying whether one or more implants can be adjusted to shift the sweet spot for one or both types of devices. Alternatively, this can involve determining whether the target device characteristics for one or both of the devices are sufficiently flexible in order to consider a wider range of epitaxial layer thickness and implant adjustments.
Although the various embodiments have been primarily described with respect to designing devices with an amount of selective thinning in mind, the present disclosure contemplates other uses. In particular, the selective thinning of the various embodiments can also be of use during processing to reduce scrap and improve yield. Specifically, the selective thinning of the various embodiments can be used to adjust Vth (or other device characteristics) during processing due to fabrication error or process variation. For example, if the resulting doping concentrations in a substrate after active area implant (i.e., implants prior to gate formation) are expected to result in devices with Vth characteristics that are out of specification, such a substrate would normally be scrapped. This results in degraded yields and additional costs to the manufacturer. However, the present disclosure contemplates that the various embodiments can be utilized to salvage such substrates. In particular, if a reduction of the epitaxial layer thickness can be used to provide a sufficient adjustment of Vth to provide device in specification, then a selective thinning process in accordance with the various embodiments can be used to salvage such substrates. In such cases, a manufacturing facility can be equipped with additional mask levels for the circuit design that can be used to implement such corrections. For the actual processing, the amount of epitaxial layer thickness reduction can be computed or looked up for the particular process flow. Alternatively, any additional mask levels can be designed and manufactured as needed.
For ease of illustration, the various embodiments have been described primarily with respect to DDC devices. However, the various embodiments are not limited in this regard. Rather selective thinning of a semiconducting surface can be performed on non-DDC devices in a substantially similar manner. That is, the various embodiments are equally useful for adjusting any other type of mixed device die in which modulation of the thickness of a common semiconducting layer would benefit one or more device types on a mixed device die. Embodiments can be used on mixed device die including PMOS channels or analog devices defined using silicon germanium (SiGe) alloys devices or other heterostructures. For example, if a mixed device die includes different types of SiGe PMOS or SiGe analog devices, it may be beneficial, for purposes of performance, to provide some selective thinning of the SiGe rather than relying on a single thickness of SiGe for the different types of devices. However, the various embodiments are not limited in this regard and methods described herein can be used to modulate other types of semiconducting layers.
Further, although the selecting thinning of the various embodiments has been described with respect to a process including deposition of the epitaxial layer followed by selective etching or removal of the epitaxial layer to locally reduce epitaxial layer thickness, the various embodiments are not limited in this regard. The present disclosure contemplates that the selective Vth modulation can be achieved by way of targeting the devices that call for a thinner epitaxial layer and forming the epitaxial layer accordingly, then, use a selective epitaxial layer formation process to locally and selectively build-up the epitaxial layer thickness for those devices that call for thicker epitaxial layer. In particular embodiments, such a process can involve forming a first, blanket epitaxial layer, as described above. Thereafter, in areas requiring a thicker epitaxial layer (in order to target a lower Vth) at least one second epitaxial layer can be formed, by masking the areas to remain as-is and selectively growing an epitaxial layer in the open areas, to locally increase the thickness of the epitaxial layer to effect a reduced Vth. These selective epitaxial layer formation processes can therefore be used, alternatively or in combination with the selective etching processes described above, to achieve the desired modulation of epitaxial layer thickness and consequent Vth modulation of the various embodiments.
The examples shown here are not intended to limit the various embodiments. Rather they are presented solely for illustrative purposes. In particular, the following examples are provided to illustrate results supporting the various concepts described above.
The relationship between Vth and epitaxial layer thickness is illustrated in
A further example of the potential benefit using different epitaxial layer thicknesses for different DDC devices is illustrated in
As noted above, the variation in epitaxial layer thickness can also be used to adjust other device parameters. Examples of the effect of epitaxial layer thickness on such other device parameters is shown in
The foregoing examples illustrate the two significant advantages of the present invention. First, as noted above with respect to
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.
Although the embodiments have been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of an embodiment may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
This application is a divisional of U.S. Non-Provisional application Ser. No. 14/101,691 which is a continuation of U.S. Non-Provisional application Ser. No. 13/591,767, filed Aug. 22, 2012, which claims priority to U.S. Provisional Patent Application No. 61/526,635, filed Aug. 23, 2011 and entitled “Scaled CMOS Structures and Processes”, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3958266 | Athanas | May 1976 | A |
4000504 | Berger | Dec 1976 | A |
4021835 | Etoh | May 1977 | A |
4242691 | Kotani | Dec 1980 | A |
4276095 | Beilstein, Jr. | Jun 1981 | A |
4315781 | Henderson | Feb 1982 | A |
4518926 | Swanson | May 1985 | A |
4559091 | Allen | Dec 1985 | A |
4578128 | Mundt | Mar 1986 | A |
4617066 | Vasudev | Oct 1986 | A |
4662061 | Malhi | May 1987 | A |
4761384 | Neppl | Aug 1988 | A |
4780748 | Cunningham | Oct 1988 | A |
4819043 | Yazawa | Apr 1989 | A |
4885477 | Bird | Dec 1989 | A |
4908681 | Nishida | Mar 1990 | A |
4945254 | Robbins | Jul 1990 | A |
4956311 | Liou | Sep 1990 | A |
5034337 | Mosher | Jul 1991 | A |
5144378 | Hikosaka | Sep 1992 | A |
5156989 | Williams | Oct 1992 | A |
5156990 | Mitchell | Oct 1992 | A |
5166765 | Lee | Nov 1992 | A |
5208473 | Komori | May 1993 | A |
5294821 | Iwamatsu | Mar 1994 | A |
5298763 | Shen | Mar 1994 | A |
5369288 | Usuki | Nov 1994 | A |
5373186 | Schubert | Dec 1994 | A |
5384476 | Nishizawa | Jan 1995 | A |
5426328 | Yilmaz | Jun 1995 | A |
5444008 | Han | Aug 1995 | A |
5552332 | Tseng | Sep 1996 | A |
5559368 | Hu | Sep 1996 | A |
5608253 | Liu | Mar 1997 | A |
5622880 | Burr | Apr 1997 | A |
5624863 | Helm | Apr 1997 | A |
5625568 | Edwards | Apr 1997 | A |
5641980 | Yamaguchi | Jun 1997 | A |
5663583 | Matloubian | Sep 1997 | A |
5712501 | Davies | Jan 1998 | A |
5719422 | Burr | Feb 1998 | A |
5726488 | Watanabe | Mar 1998 | A |
5726562 | Mizuno | Mar 1998 | A |
5731626 | Eaglesham | Mar 1998 | A |
5736419 | Naem | Apr 1998 | A |
5753555 | Hada | May 1998 | A |
5754826 | Gamal | May 1998 | A |
5756365 | Kakumu | May 1998 | A |
5763921 | Okumura | Jun 1998 | A |
5780899 | Hu | Jul 1998 | A |
5847419 | Imai | Dec 1998 | A |
5856003 | Chiu | Jan 1999 | A |
5861334 | Rho | Jan 1999 | A |
5877049 | Liu | Mar 1999 | A |
5885876 | Dennen | Mar 1999 | A |
5889315 | Farrenkopf | Mar 1999 | A |
5895954 | Yasumura | Apr 1999 | A |
5899714 | Farrenkopf | May 1999 | A |
5918129 | Fulford, Jr. | Jun 1999 | A |
5923067 | Voldman | Jul 1999 | A |
5923987 | Burr | Jul 1999 | A |
5936868 | Hall | Aug 1999 | A |
5946214 | Heavlin | Aug 1999 | A |
5985705 | Seliskar | Nov 1999 | A |
5989963 | Luning | Nov 1999 | A |
6001695 | Wu | Dec 1999 | A |
6020227 | Bulucea | Feb 2000 | A |
6043139 | Eaglesham | Mar 2000 | A |
6060345 | Hause | May 2000 | A |
6060364 | Maszara | May 2000 | A |
6066533 | Yu | May 2000 | A |
6072217 | Burr | Jun 2000 | A |
6078082 | Bulucea | Jun 2000 | A |
6087210 | Sohn | Jul 2000 | A |
6087691 | Hamamoto | Jul 2000 | A |
6088518 | Hsu | Jul 2000 | A |
6091286 | Blauschild | Jul 2000 | A |
6096611 | Wu | Aug 2000 | A |
6103562 | Son | Aug 2000 | A |
6121153 | Kikkawa | Sep 2000 | A |
6147383 | Kuroda | Nov 2000 | A |
6153920 | Gossmann | Nov 2000 | A |
6157073 | Lehongres | Dec 2000 | A |
6175582 | Naito | Jan 2001 | B1 |
6184112 | Maszara | Feb 2001 | B1 |
6190979 | Radens | Feb 2001 | B1 |
6194259 | Nayak | Feb 2001 | B1 |
6198157 | Ishida | Mar 2001 | B1 |
6218892 | Soumyanath | Apr 2001 | B1 |
6218895 | De | Apr 2001 | B1 |
6221724 | Yu | Apr 2001 | B1 |
6229188 | Aoki | May 2001 | B1 |
6232164 | Tsai | May 2001 | B1 |
6235597 | Miles | May 2001 | B1 |
6238982 | Krivokapic | May 2001 | B1 |
6245618 | An | Jun 2001 | B1 |
6268640 | Park | Jul 2001 | B1 |
6271070 | Kotani | Aug 2001 | B2 |
6271551 | Schmitz | Aug 2001 | B1 |
6288429 | Iwata | Sep 2001 | B1 |
6297132 | Zhang | Oct 2001 | B1 |
6300177 | Sundaresan | Oct 2001 | B1 |
6313489 | Letavic | Nov 2001 | B1 |
6319799 | Ouyang | Nov 2001 | B1 |
6320222 | Forbes | Nov 2001 | B1 |
6323525 | Noguchi | Nov 2001 | B1 |
6326666 | Bernstein | Dec 2001 | B1 |
6335233 | Cho | Jan 2002 | B1 |
6358806 | Puchner | Mar 2002 | B1 |
6380019 | Yu | Apr 2002 | B1 |
6391752 | Colinge | May 2002 | B1 |
6426260 | Hshieh | Jul 2002 | B1 |
6426279 | Huster | Jul 2002 | B1 |
6432754 | Assaderaghi | Aug 2002 | B1 |
6444550 | Hao | Sep 2002 | B1 |
6444551 | Ku | Sep 2002 | B1 |
6449749 | Stine | Sep 2002 | B1 |
6461920 | Shirahata | Oct 2002 | B1 |
6461928 | Rodder | Oct 2002 | B2 |
6472278 | Marshall | Oct 2002 | B1 |
6482714 | Hieda | Nov 2002 | B1 |
6489224 | Burr | Dec 2002 | B1 |
6492232 | Tang | Dec 2002 | B1 |
6500739 | Wang | Dec 2002 | B1 |
6503801 | Rouse | Jan 2003 | B1 |
6503805 | Wang | Jan 2003 | B2 |
6506640 | Ishida | Jan 2003 | B1 |
6518623 | Oda | Feb 2003 | B1 |
6521470 | Lin | Feb 2003 | B1 |
6534373 | Yu | Mar 2003 | B1 |
6541328 | Whang | Apr 2003 | B2 |
6541829 | Nishinohara | Apr 2003 | B2 |
6548842 | Bulucea | Apr 2003 | B1 |
6551885 | Yu | Apr 2003 | B1 |
6552377 | Yu | Apr 2003 | B1 |
6573129 | Hoke | Jun 2003 | B2 |
6576535 | Drobny | Jun 2003 | B2 |
6600200 | Lustig | Jul 2003 | B1 |
6620671 | Wang | Sep 2003 | B1 |
6624488 | Kim | Sep 2003 | B1 |
6627473 | Oikawa | Sep 2003 | B1 |
6630710 | Augusto | Oct 2003 | B1 |
6660605 | Liu | Dec 2003 | B1 |
6662350 | Fried | Dec 2003 | B2 |
6667200 | Sohn | Dec 2003 | B2 |
6670260 | Yu | Dec 2003 | B1 |
6693333 | Yu | Feb 2004 | B1 |
6730568 | Sohn | May 2004 | B2 |
6737724 | Hieda | May 2004 | B2 |
6743291 | Ang | Jun 2004 | B2 |
6743684 | Liu | Jun 2004 | B2 |
6751519 | Satya | Jun 2004 | B1 |
6753230 | Sohn | Jun 2004 | B2 |
6760900 | Rategh | Jul 2004 | B2 |
6770944 | Nishinohara | Aug 2004 | B2 |
6787424 | Yu | Sep 2004 | B1 |
6797553 | Adkisson | Sep 2004 | B2 |
6797602 | Kluth | Sep 2004 | B1 |
6797994 | Hoke | Sep 2004 | B1 |
6808004 | Kamm | Oct 2004 | B2 |
6808994 | Wang | Oct 2004 | B1 |
6813750 | Usami | Nov 2004 | B2 |
6821825 | Todd | Nov 2004 | B2 |
6821852 | Rhodes | Nov 2004 | B2 |
6822297 | Nandakumar | Nov 2004 | B2 |
6831292 | Currie | Dec 2004 | B2 |
6835639 | Rotondaro | Dec 2004 | B2 |
6852602 | Kanzawa | Feb 2005 | B2 |
6852603 | Chakravarthi | Feb 2005 | B2 |
6881641 | Wieczorek | Apr 2005 | B2 |
6881987 | Sohn | Apr 2005 | B2 |
6891439 | Jaehne | May 2005 | B2 |
6893947 | Martinez | May 2005 | B2 |
6900519 | Cantell | May 2005 | B2 |
6901564 | Stine | May 2005 | B2 |
6916698 | Mocuta | Jul 2005 | B2 |
6917237 | Tschanz | Jul 2005 | B1 |
6927463 | Iwata | Aug 2005 | B2 |
6928128 | Sidiropoulos | Aug 2005 | B1 |
6930007 | Bu | Aug 2005 | B2 |
6930360 | Yamauchi | Aug 2005 | B2 |
6957163 | Ando | Oct 2005 | B2 |
6963090 | Passlack | Nov 2005 | B2 |
6995397 | Yamashita | Feb 2006 | B2 |
7002214 | Boyd | Feb 2006 | B1 |
7008836 | Algotsson | Mar 2006 | B2 |
7013359 | Li | Mar 2006 | B1 |
7015546 | Herr | Mar 2006 | B2 |
7015741 | Tschanz | Mar 2006 | B2 |
7022559 | Barnak | Apr 2006 | B2 |
7036098 | Eleyan | Apr 2006 | B2 |
7038258 | Liu | May 2006 | B2 |
7039881 | Regan | May 2006 | B2 |
7045456 | Murto | May 2006 | B2 |
7057216 | Ouyang | Jun 2006 | B2 |
7061058 | Chakravarthi | Jun 2006 | B2 |
7064039 | Liu | Jun 2006 | B2 |
7064399 | Babcock | Jun 2006 | B2 |
7071103 | Chan | Jul 2006 | B2 |
7078325 | Curello | Jul 2006 | B2 |
7078776 | Nishinohara | Jul 2006 | B2 |
7089513 | Bard | Aug 2006 | B2 |
7089515 | Hanafi | Aug 2006 | B2 |
7091093 | Noda | Aug 2006 | B1 |
7105399 | Dakshina-Murthy | Sep 2006 | B1 |
7109099 | Tan | Sep 2006 | B2 |
7119381 | Passlack | Oct 2006 | B2 |
7122411 | Mouli | Oct 2006 | B2 |
7127687 | Signore | Oct 2006 | B1 |
7132323 | Haensch | Nov 2006 | B2 |
7169675 | Tan | Jan 2007 | B2 |
7170120 | Datta | Jan 2007 | B2 |
7176137 | Perng | Feb 2007 | B2 |
7186598 | Yamauchi | Mar 2007 | B2 |
7189627 | Wu | Mar 2007 | B2 |
7199430 | Babcock | Apr 2007 | B2 |
7202517 | Dixit | Apr 2007 | B2 |
7208354 | Bauer | Apr 2007 | B2 |
7211871 | Cho | May 2007 | B2 |
7221021 | Wu | May 2007 | B2 |
7223646 | Miyashita | May 2007 | B2 |
7226833 | White | Jun 2007 | B2 |
7226843 | Weber | Jun 2007 | B2 |
7230680 | Fujisawa | Jun 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7256639 | Koniaris | Aug 2007 | B1 |
7259428 | Inaba | Aug 2007 | B2 |
7260562 | Czajkowski | Aug 2007 | B2 |
7294877 | Rueckes | Nov 2007 | B2 |
7297994 | Wieczorek | Nov 2007 | B2 |
7301208 | Handa | Nov 2007 | B2 |
7304350 | Misaki | Dec 2007 | B2 |
7307471 | Gammie | Dec 2007 | B2 |
7312500 | Miyashita | Dec 2007 | B2 |
7323754 | Ema | Jan 2008 | B2 |
7332439 | Lindert | Feb 2008 | B2 |
7348629 | Chu | Mar 2008 | B2 |
7354833 | Liaw | Apr 2008 | B2 |
7380225 | Joshi | May 2008 | B2 |
7398497 | Sato | Jul 2008 | B2 |
7402207 | Besser | Jul 2008 | B1 |
7402872 | Murthy | Jul 2008 | B2 |
7416605 | Zollner | Aug 2008 | B2 |
7427788 | Li | Sep 2008 | B2 |
7442971 | Wirbeleit | Oct 2008 | B2 |
7449733 | Inaba | Nov 2008 | B2 |
7462908 | Bol | Dec 2008 | B2 |
7469164 | Du-Nour | Dec 2008 | B2 |
7470593 | Rouh | Dec 2008 | B2 |
7485536 | Jin | Feb 2009 | B2 |
7487474 | Ciplickas | Feb 2009 | B2 |
7491988 | Tolchinsky | Feb 2009 | B2 |
7494861 | Chu | Feb 2009 | B2 |
7496862 | Chang | Feb 2009 | B2 |
7496867 | Turner | Feb 2009 | B2 |
7498637 | Yamaoka | Mar 2009 | B2 |
7501324 | Babcock | Mar 2009 | B2 |
7503020 | Allen | Mar 2009 | B2 |
7507999 | Kusumoto | Mar 2009 | B2 |
7514766 | Yoshida | Apr 2009 | B2 |
7521323 | Surdeanu | Apr 2009 | B2 |
7531393 | Doyle | May 2009 | B2 |
7531836 | Liu | May 2009 | B2 |
7538364 | Twynam | May 2009 | B2 |
7538412 | Schulze | May 2009 | B2 |
7562233 | Sheng | Jul 2009 | B1 |
7564105 | Chi | Jul 2009 | B2 |
7566600 | Mouli | Jul 2009 | B2 |
7569456 | Ko | Aug 2009 | B2 |
7586322 | Xu | Sep 2009 | B1 |
7592241 | Takao | Sep 2009 | B2 |
7595243 | Bulucea | Sep 2009 | B1 |
7598142 | Ranade | Oct 2009 | B2 |
7605041 | Ema | Oct 2009 | B2 |
7605060 | Meunier-Beillard | Oct 2009 | B2 |
7605429 | Bernstein | Oct 2009 | B2 |
7608496 | Chu | Oct 2009 | B2 |
7615802 | Elpelt | Nov 2009 | B2 |
7622341 | Chudzik | Nov 2009 | B2 |
7638380 | Pearce | Dec 2009 | B2 |
7642140 | Bae | Jan 2010 | B2 |
7644377 | Saxe | Jan 2010 | B1 |
7645665 | Kubo | Jan 2010 | B2 |
7651920 | Siprak | Jan 2010 | B2 |
7655523 | Babcock | Feb 2010 | B2 |
7673273 | Madurawe | Mar 2010 | B2 |
7675126 | Cho | Mar 2010 | B2 |
7675317 | Perisetty | Mar 2010 | B2 |
7678638 | Chu | Mar 2010 | B2 |
7681628 | Joshi | Mar 2010 | B2 |
7682887 | Dokumaci | Mar 2010 | B2 |
7683442 | Burr | Mar 2010 | B1 |
7696000 | Liu | Apr 2010 | B2 |
7704822 | Jeong | Apr 2010 | B2 |
7704844 | Zhu | Apr 2010 | B2 |
7709828 | Braithwaite | May 2010 | B2 |
7723750 | Zhu | May 2010 | B2 |
7737472 | Kondo | Jun 2010 | B2 |
7741138 | Cho | Jun 2010 | B2 |
7741200 | Cho | Jun 2010 | B2 |
7745270 | Shah | Jun 2010 | B2 |
7750374 | Capasso | Jul 2010 | B2 |
7750381 | Hokazono | Jul 2010 | B2 |
7750405 | Nowak | Jul 2010 | B2 |
7750682 | Bernstein | Jul 2010 | B2 |
7755144 | Li | Jul 2010 | B2 |
7755146 | Helm | Jul 2010 | B2 |
7759206 | Luo | Jul 2010 | B2 |
7759714 | Itoh | Jul 2010 | B2 |
7761820 | Berger | Jul 2010 | B2 |
7795677 | Bangsaruntip | Sep 2010 | B2 |
7808045 | Kawahara | Oct 2010 | B2 |
7808410 | Kim | Oct 2010 | B2 |
7811873 | Mochizuki | Oct 2010 | B2 |
7811881 | Cheng | Oct 2010 | B2 |
7818702 | Mandelman | Oct 2010 | B2 |
7821066 | Lebby | Oct 2010 | B2 |
7829402 | Matocha | Nov 2010 | B2 |
7831873 | Trimberger | Nov 2010 | B1 |
7846822 | Seebauer | Dec 2010 | B2 |
7855118 | Hoentschel | Dec 2010 | B2 |
7859013 | Chen | Dec 2010 | B2 |
7863163 | Bauer | Jan 2011 | B2 |
7867835 | Lee | Jan 2011 | B2 |
7883977 | Babcock | Feb 2011 | B2 |
7888205 | Herner | Feb 2011 | B2 |
7888747 | Hokazono | Feb 2011 | B2 |
7895546 | Lahner | Feb 2011 | B2 |
7897495 | Ye | Mar 2011 | B2 |
7906413 | Cardone | Mar 2011 | B2 |
7906813 | Kato | Mar 2011 | B2 |
7910419 | Fenouillet-Beranger | Mar 2011 | B2 |
7919791 | Flynn | Apr 2011 | B2 |
7926018 | Moroz | Apr 2011 | B2 |
7935984 | Nakano | May 2011 | B2 |
7941776 | Majumder | May 2011 | B2 |
7945800 | Gomm | May 2011 | B2 |
7948008 | Liu | May 2011 | B2 |
7952147 | Ueno | May 2011 | B2 |
7960232 | King | Jun 2011 | B2 |
7960238 | Kohli | Jun 2011 | B2 |
7968400 | Cai | Jun 2011 | B2 |
7968411 | Williford | Jun 2011 | B2 |
7968440 | Seebauer | Jun 2011 | B2 |
7968459 | Bedell | Jun 2011 | B2 |
7989900 | Haensch | Aug 2011 | B2 |
7994573 | Pan | Aug 2011 | B2 |
8004024 | Furukawa | Aug 2011 | B2 |
8012827 | Yu | Sep 2011 | B2 |
8029620 | Kim | Oct 2011 | B2 |
8039332 | Bernard | Oct 2011 | B2 |
8046598 | Lee | Oct 2011 | B2 |
8048791 | Hargrove | Nov 2011 | B2 |
8048810 | Tsai | Nov 2011 | B2 |
8051340 | Cranford, Jr. | Nov 2011 | B2 |
8053340 | Colombeau | Nov 2011 | B2 |
8063466 | Kurita | Nov 2011 | B2 |
8067279 | Sadra | Nov 2011 | B2 |
8067280 | Wang | Nov 2011 | B2 |
8067302 | Li | Nov 2011 | B2 |
8076719 | Zeng | Dec 2011 | B2 |
8097529 | Krull | Jan 2012 | B2 |
8103983 | Agarwal | Jan 2012 | B2 |
8105891 | Yeh | Jan 2012 | B2 |
8106424 | Schruefer | Jan 2012 | B2 |
8106481 | Rao | Jan 2012 | B2 |
8110487 | Griebenow | Feb 2012 | B2 |
8114761 | Mandrekar | Feb 2012 | B2 |
8119482 | Bhalla | Feb 2012 | B2 |
8120069 | Hynecek | Feb 2012 | B2 |
8129246 | Babcock | Mar 2012 | B2 |
8129797 | Chen | Mar 2012 | B2 |
8134159 | Hokazono | Mar 2012 | B2 |
8143120 | Kerr | Mar 2012 | B2 |
8143124 | Challa | Mar 2012 | B2 |
8143678 | Kim | Mar 2012 | B2 |
8148774 | Mori | Apr 2012 | B2 |
8163619 | Yang | Apr 2012 | B2 |
8169002 | Chang | May 2012 | B2 |
8170857 | Joshi | May 2012 | B2 |
8173499 | Chung | May 2012 | B2 |
8173502 | Yan | May 2012 | B2 |
8176461 | Trimberger | May 2012 | B1 |
8178430 | Kim | May 2012 | B2 |
8178959 | Lopez et al. | May 2012 | B2 |
8179530 | Levy | May 2012 | B2 |
8183096 | Wirbeleit | May 2012 | B2 |
8183107 | Mathur | May 2012 | B2 |
8185865 | Gupta | May 2012 | B2 |
8187959 | Pawlak | May 2012 | B2 |
8188542 | Yoo | May 2012 | B2 |
8196545 | Kurosawa | Jun 2012 | B2 |
8201122 | Dewey, III | Jun 2012 | B2 |
8214190 | Joshi | Jul 2012 | B2 |
8217423 | Liu | Jul 2012 | B2 |
8225255 | Ouyang | Jul 2012 | B2 |
8227307 | Chen | Jul 2012 | B2 |
8236661 | Dennard | Aug 2012 | B2 |
8239803 | Kobayashi | Aug 2012 | B2 |
8247300 | Babcock | Aug 2012 | B2 |
8255843 | Chen | Aug 2012 | B2 |
8258026 | Bulucea | Sep 2012 | B2 |
8266567 | El Yahyaoui | Sep 2012 | B2 |
8286180 | Foo | Oct 2012 | B2 |
8288798 | Passlack | Oct 2012 | B2 |
8299562 | Li | Oct 2012 | B2 |
8324059 | Guo | Dec 2012 | B2 |
20010014495 | Yu | Aug 2001 | A1 |
20020042184 | Nandakumar | Apr 2002 | A1 |
20030006415 | Yokogawa | Jan 2003 | A1 |
20030047763 | Hieda | Mar 2003 | A1 |
20030122203 | Nishinohara | Jul 2003 | A1 |
20030173626 | Burr | Sep 2003 | A1 |
20030183856 | Wieczorek | Oct 2003 | A1 |
20030215992 | Sohn | Nov 2003 | A1 |
20040075118 | Heinemann | Apr 2004 | A1 |
20040075143 | Bae | Apr 2004 | A1 |
20040084731 | Matsuda | May 2004 | A1 |
20040087090 | Grudowski | May 2004 | A1 |
20040126947 | Sohn | Jul 2004 | A1 |
20040175893 | Vatus | Sep 2004 | A1 |
20040180488 | Lee | Sep 2004 | A1 |
20050106824 | Alberto | May 2005 | A1 |
20050116282 | Pattanayak | Jun 2005 | A1 |
20050133819 | Kawasaki | Jun 2005 | A1 |
20050250289 | Babcock | Nov 2005 | A1 |
20050280075 | Ema | Dec 2005 | A1 |
20060022270 | Boyd | Feb 2006 | A1 |
20060049464 | Rao | Mar 2006 | A1 |
20060068555 | Zhu | Mar 2006 | A1 |
20060068586 | Pain | Mar 2006 | A1 |
20060071278 | Takao | Apr 2006 | A1 |
20060154428 | Dokumaci | Jul 2006 | A1 |
20060197158 | Babcock | Sep 2006 | A1 |
20060203581 | Joshi | Sep 2006 | A1 |
20060220114 | Miyashita | Oct 2006 | A1 |
20060223248 | Venugopal | Oct 2006 | A1 |
20070040222 | Van Camp | Feb 2007 | A1 |
20070117326 | Tan | May 2007 | A1 |
20070158790 | Rao | Jul 2007 | A1 |
20070212861 | Chidambarrao | Sep 2007 | A1 |
20070238253 | Tucker | Oct 2007 | A1 |
20080067589 | Ito | Mar 2008 | A1 |
20080108208 | Arevalo | May 2008 | A1 |
20080169493 | Lee | Jul 2008 | A1 |
20080169516 | Chung | Jul 2008 | A1 |
20080197439 | Goerlach | Aug 2008 | A1 |
20080227250 | Ranade | Sep 2008 | A1 |
20080237661 | Ranade | Oct 2008 | A1 |
20080258198 | Bojarczuk | Oct 2008 | A1 |
20080272409 | Sonkusale | Nov 2008 | A1 |
20090057746 | Sugll | Mar 2009 | A1 |
20090108350 | Cai | Apr 2009 | A1 |
20090134468 | Tsuchiya | May 2009 | A1 |
20090224319 | Kohli | Sep 2009 | A1 |
20090283842 | Hokazono | Nov 2009 | A1 |
20090302388 | Cai | Dec 2009 | A1 |
20090309140 | Khamankar | Dec 2009 | A1 |
20090311837 | Kapoor | Dec 2009 | A1 |
20090321849 | Miyamura | Dec 2009 | A1 |
20100012988 | Yang | Jan 2010 | A1 |
20100038724 | Anderson | Feb 2010 | A1 |
20100100856 | Mittal | Apr 2010 | A1 |
20100148153 | Hudait | Jun 2010 | A1 |
20100149854 | Vora | Jun 2010 | A1 |
20100155854 | Stahrenberg et al. | Jun 2010 | A1 |
20100187641 | Zhu | Jul 2010 | A1 |
20100207182 | Paschal | Aug 2010 | A1 |
20100270600 | Inukai | Oct 2010 | A1 |
20110059588 | Kang | Mar 2011 | A1 |
20110073961 | Dennard | Mar 2011 | A1 |
20110074498 | Thompson | Mar 2011 | A1 |
20110079860 | Verhulst | Apr 2011 | A1 |
20110079861 | Shifren | Apr 2011 | A1 |
20110095811 | Chi | Apr 2011 | A1 |
20110147828 | Murthy | Jun 2011 | A1 |
20110169082 | Zhu | Jul 2011 | A1 |
20110175170 | Wang | Jul 2011 | A1 |
20110180880 | Chudzik | Jul 2011 | A1 |
20110193164 | Zhu | Aug 2011 | A1 |
20110212590 | Wu | Sep 2011 | A1 |
20110230039 | Mowry | Sep 2011 | A1 |
20110242921 | Tran | Oct 2011 | A1 |
20110248352 | Shifren | Oct 2011 | A1 |
20110294278 | Eguchi | Dec 2011 | A1 |
20110309447 | Arghavani | Dec 2011 | A1 |
20120021594 | Gurtej | Jan 2012 | A1 |
20120034745 | Colombeau | Feb 2012 | A1 |
20120056275 | Cai | Mar 2012 | A1 |
20120065920 | Nagumo | Mar 2012 | A1 |
20120108050 | Chen | May 2012 | A1 |
20120132998 | Kwon | May 2012 | A1 |
20120138953 | Cai et al. | Jun 2012 | A1 |
20120146155 | Hoentschel | Jun 2012 | A1 |
20120167025 | Gillespie | Jun 2012 | A1 |
20120187491 | Zhu | Jul 2012 | A1 |
20120190177 | Kim | Jul 2012 | A1 |
20120223363 | Kronholz | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
0274278 | Jul 1988 | EP |
0312237 | Apr 1989 | EP |
0531621 | Mar 1993 | EP |
0683515 | Nov 1995 | EP |
0889502 | Jan 1999 | EP |
1450394 | Aug 2004 | EP |
59193066 | Nov 1984 | JP |
4186774 | Jul 1992 | JP |
8153873 | Jun 1996 | JP |
8288508 | Nov 1996 | JP |
2004087671 | Mar 2004 | JP |
794094 | Jan 2008 | KR |
2011062788 | May 2011 | WO |
WO2011062788 | May 2011 | WO |
Entry |
---|
Abiko et al., “A channel engineering combined with channel epitaxy optimization and TED suppression for 0.15um n-n Gate CMOS Technology”, Symposium on VLSI Technology Digest of Technical Papers (1995): 23-24. |
Banerjee et al., “Compensating non-optical effects using electrically-driven optical proximity correction”, Proc of SPIE (2009) 7275: 7275OE. |
Chau et al., “A 50nm depleted-substrate CMOS transistor (DST)”, IEEE International Electron Device Meeting (2001): 29.1.1-29.1.4. |
Cheng et al., “Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications”, Electron Devices Meeting (IEDM) (Dec. 2009). |
Cheng et al., “Fully depleted extremely thin SOI technology fabricated by a novel integrated scheme featuring implant-free, sero-silicon-loss and faceted raised source/drain”, Symposium on VLSI Technology Digest of Technical Papers (2009): 212-213. |
Drennan et al., “Implication of proximity effects for analog design”, Custom Integrated Circuits Conference (Sep. 2006): 169-176. |
Ducroquet et al., “Fully depleted silicon-on-insulator nMOSFETs with tensile strained high carbon content Si1-yCy channel”, ECS 210th Meeting. Abstract 1033. |
Ernst et al., “Nanoscaled MOSFET transistors on strained Si, SiGe, Ge Layers: Some integration and electrical properties features”, ECS Trans (2006) 3(7): 947-961. |
Goesele et al., “Diffusion engineering by carbon in silicon”, Mat Res Soc Symp. vol. 610. |
Hokazono et al., “Steep channel & halo profiles utilizing Boron-diffusion-barrier layers (Si:) for 32 nm node and beyond”, Symposium on VLSI Technology Digest of Technical Papers (2008): 112-113. |
Hokazono et al., “Steep channel profiles in n/pMOS controlled by Boron-doped SiC: Layers for continual bulk-CMOS scaling”, IEDM09-676 Symposium: 29.1.1-29.1.4. |
Holland et al., “A method to improve activation of implanted dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN. (9 pages). |
Hook et al., “Lateral ion implant straggle and mask proximity effect”, IEEE Transactions on Electron Devices (Sep. 2003) 50(9): 1946-1951. |
Hori et al., “A 0.1 um CMOS with a step channel profile formed by ultra high vacuum CVD and in-situ doped ions”, Proceeding of the International Electron Devices Meeting (Dec. 5, 1993): 909-911. |
Komaragiri et al., “Depletion-free poly gate electrode architecture for Sub 100 nanometer CMOS devices with high-K gate dielectrics”, IEEE IEDM Tech Dig, San Francisco, CA (Dec. 13-15, 2004): 833-836. |
Kotaki et al., “Novel bulk dynamic threshold voltage MOSFET (B-DTMOS) with isolation (SITOS) and gate to shallow-well contact (SSS-C) processes for ultra low power dual gate CMOS”, IEDM (1996): 459-462. |
Laveant, “Incorporation, diffusion and agglomeration of carbon in silicon”, Solid State Phenomena (2002) 82-84: 189-194. |
Matashuashi et al., “High-performance double-layer epitaxial-channel PMOSFET compatible with a single gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers (1996): 36-37. |
Noda et al., “An 0.1-μm delta-doped MOSFET fabricated with post-low-energy implanting selective epitaxy”, IEEE Transactions on Electron Devices (1998) 45(4): 809-814. |
Ohguro et al., “An 0.18-μm CMOS for mixed digital and analog application with zero-volt-VTH epitaxial-channel MOSFET's”, IEEE Transaction on Electron Devices (1999) 46(7): 1378-1383. |
Pinacho et al., “Carbon in silicon: Modeling of diffusion and clustering mechanisms”, Journal of Applied Physics (2002) 92(3): 1582-1588. |
Robertson et al., “The effect of impurities on diffusion and activation of ion implanted boron in silicon”, Mat Res Soc Symp (2000) 610: B5.8.1-B5.8.6. |
Samsudin et al., “Integrating intrinsic parameter fluctuation description into BSIMSOI to forecast sub-15um UTB SOI based 6T SRAM operation”, Solid-State Electronics 52: 86-93. |
Scholz et al., “Carbon-induced undersaturation of silicon self-interstitials”, Appl Phys Lett (1998) 72(2): 200-202. |
Scholz et al., “The contribution of vacancies to carbon out-diffusion in silicon”, Appl Phys Lett (1999) 74(3): 392-394. |
Shao et al., “Boron diffusion in silicon: The anomalies and control by point defect engineering”, Materials Science and Engineering R: Reports (Nov. 2012) 42(3-4): 65-114. |
Sheu et al., “Modeling the well-edge proximity effect in highly scaled MOSFETs”, IEEE Transactions on Electron Devices (Nov. 2006) 53(11): 2792-2798. |
Stolk et al., “Physical mechanism of transient enhanced dopant diffusion in ion-implanted silicon”, J Appl Phys (1997) 81(9): 6031-6050. |
Thompson et al., “MOS Scaling: Transistor challenges for the 21st Century”, Intel Technology Journal Q3 (1998): 1-19. |
Wann et al., “Channel profile optimization and device design for low-power high-performance dynamic-threshold MOSFET”, IEDM (1996): 113-116. |
Werner et al., “Carbon diffusion in silicon”, Applied Physics Letters (1998) 73(17): 2465-2467. |
Wong et al., “Nanoscale CMOS”, Proceedings of the IEEE. 87(4): 537-570. |
Yan et al., “Scaling the Si MOSFET: From bulk to SOI to bulk”, IEEE Transactions on Electron Devices (1992) 39(7): 1704-1710. |
Werner, P. et al., “Carbon Diffusion in Silicon,” Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998. |
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk,” IEEE Transactions on Electron Devices, vol. 39, No. 7', Jul. 1992. |
Abiko, H. et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and RED Suppression for 0.15μm n-n Gate CMOS Technology.” 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995. |
Chau, R. et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001. |
Ducroquet, F. et al. “Fully Depleted Silicon-On Insulator nMOSFETs with Tensile Strained High Carbon Content Sil-yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006. |
Ernst, T. et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961, 2006. |
Goesele, U. et al., “Diffusion Engineering by Carbon in Silicon”, Mat. Res. Soc. Symp. vol. 610, pp. 1-12, 2000. |
Hokazono, A. et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008. |
Hokazono, A. et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009. |
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, pp. 1-9, 2001. |
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996. |
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002. |
Noda, K. et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998. |
Ohguro, T. et al., “An 0.18-μm CMOS for Mixed Digital and Analog Applications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999. |
Pinacho, R. et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002. |
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000. |
Scholz, R. et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998. |
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999. |
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997. |
Thompson, S. et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19, 1998. |
Wann, C., et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic Threshold MOSFET”, IEDM 96, pp. 113-116, 1996. |
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, 2004. |
Samsudin, Ket al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93, 2006. |
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570, Apr. 1999. |
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE, 2009. |
Cheng, et al. “Extremely Thin Soi (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM), Dec. 2009. |
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pp. 212-213, 2009. |
Drennan, et al. “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006. |
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951, Sep. 2003. |
Hori, et al., “A 0.1 μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, Proceedsing of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911, Dec. 5, 1993. |
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37, 1996. |
Shao, et al., “Boron Diffusion in Silicon: The Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114, Nov. 1, 2003, Nov. 2012. |
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pp. 2792-2798, Nov. 2006. |
Number | Date | Country | |
---|---|---|---|
61526635 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14101691 | Dec 2013 | US |
Child | 14574896 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13591767 | Aug 2012 | US |
Child | 14101691 | US |