1. Field of the Invention
The present invention relates to a CMP conditioner for repairing loading of an polishing pad for a semiconductor substrate and for removing materials which have caused loading of the polishing pad, a method for arranging hard abrasive grains for use in a CMP conditioner, and a process for producing a CMP conditioner. The CMP conditioner is also called “CMP dresser” in the art.
2. Background Art
A polishing method called “CMP (chemical mechanical polishing)” has been proposed for polishing wafers. In CMP, chemical polishing action is superimposed on mechanical polishing action to realize a combination of ensuring of satisfactory removal rate with a defect-free polished object, and CMP has widely been used in the step of finish polishing a silicon wafer.
Further, in recent years, an increase in integration density of devices has led to the necessity of polishing the surface of a wafer or the surface of a semiconductor substrate, comprising an electric conductor/dielectric layer formed on a surface of a wafer, in a predetermined stage for the production of an integrated circuit. The semiconductor substrate is polished to remove surface defects such as high projections, scratches, and roughness. In general, this step is carried out during the formation of various elements and integrated circuits on a wafer. In this polishing step, as with the step of finish polishing a silicon wafer, a combination of a removal rate requirement with a defect-free requirement should be met. The introduction of chemical slurry can realize chemical and mechanical flattening of the surface of a semiconductor with higher polishing/removing speed and a defect-free state.
An example of the CMP step (process) is shown in
The polishing pad 102 is conditioned (dressed) with a CMP conditioner while allowing water or the chemical slurry 101 to flow on the polishing pad 102 to repair loading of the polishing pad 102 and to remove materials which have caused the loading of the polishing pad 102. The conditioning with a CMP conditioner is carried out, either after the completion of polishing of the semiconductor substrate 103, by abutting the CMP conditioner against the polishing pad 102, or, simultaneously with the start of polishing of the semiconductor substrate 103, by abutting the CMP conditioner against the polishing pad 102 at its position different from the position where the semiconductor substrate 103 is abutted against the polishing pad 102.
In the CMP conditioner used in the conventional conditioning (brushing) of the polishing pad, as shown in
In this case, however, whatever the diamond grains 202 are spread carefully, the distribution of the diamond grains 202 is disadvantageously such that the diamond grains 202 are sparsely present in some portion and are densely present in another portion. When this conditioner with uneven distribution of the diamond grains 202 is used, abrasive grains contained in the chemical slurry are disadvantageously likely to aggregate in a portion where the diamond grains 202 are densely present. This poses a severe problem that the aggregate of the abrasive grains is adhered to the polishing pad (102 in
Further, in the conventional CMP conditioner, since the slurry cannot be smoothly escaped, significant microscratching occurs. In order to improve the escape of the slurry, as shown in
In view of the above, the present invention has been made, and, in the first aspect of the present invention, an object is to suppress microscratching on the surface of a semiconductor substrate and, at the same time, to provide stable CMP conditioner properties.
According to the first aspect of the present invention, there is provided a CMP conditioner comprising: a support member; and a plurality of hard abrasive grains provided on a surface of the support member, characterized in that said plurality of hard abrasive grains are regularly arranged on the surface of the support member.
Another characteristic feature of the CMP conditioner according to the first aspect of the present invention is that said hard abrasive grains are arranged at respective lattice points of a unit lattice formed of a square on the surface of the support member.
A further characteristic feature of the CMP conditioner according to the first aspect of the present invention is that said hard abrasive grains are arranged at respective lattice points of a unit lattice formed of a regular triangle on the surface of the support member.
Another CMP conditioner according to the first aspect of the present invention comprises: a support member; and a plurality of hard abrasive grains provided on a surface of the support member, characterized in that the variation in density of the hard abrasive grains among regions having a given area where said hard abrasive grains are present is within ±50%.
Another characteristic feature of the CMP conditioner according to the first aspect of the present invention is that said hard abrasive grains are diamond grains.
A further characteristic feature of the CMP conditioner according to the first aspect of the present invention is that said diamond grains have been brazed in a single layer to said support member, formed of a metal and/or an alloy, with an alloy containing 0.5 to 20% by weight of at least one member selected from the group consisting of titanium, chromium, and zirconium and having a melting point of 650° C. to 1,200° C. to form a layer of a carbide of a metal selected from the group consisting of titanium, chromium, and zirconium at the interface between the diamond grains and the alloy.
A method for arranging hard abrasive grains for use in the CMP conditioner according to the first aspect of the present invention is characterized by comprising the steps of: positioning an arranging member in a thin plate form, provided with a plurality of regularly arranged through-holes, on an abrasive grain arrangement surface; and placing a hard abrasive grain in each through-hole of the arranging member.
Another characteristic feature of the method for arranging hard abrasive grains for use in the CMP conditioner according to the first aspect of the present invention is that the abrasive grain arrangement surface is a surface of a support member for constituting the CMP conditioner.
Another method for arranging hard abrasive grains for use in the another CMP conditioner according to the first aspect of the present invention is characterized by comprising the steps of: holding a plurality of hard abrasive grains, in a regularly arranged state, on a holding member; and transferring the hard abrasive grains held on the holding member onto the surface of a support member for constituting the CMP conditioner.
Another characteristic feature of the method for arranging hard abrasive grains for use in the another CMP conditioner according to the first aspect of the present invention is that said holding member has first bonding means for holding the hard abrasive grains and said support member has on its surface second bonding means which is different from said first bonding means in properties.
A process for producing the CMP conditioner according to the first aspect of the present invention is characterized by comprising the steps of: utilizing the method for arranging hard abrasive grains for use in the above CMP conditioner to arrange the hard abrasive grains on the surface of the support member; and then fixing the hard abrasive grains on the surface of the support member.
According to the first aspect of the present invention as described above, the problem of uneven distribution of hard abrasive grains can be solved. Therefore, the CMP conditioner does not lead to a fear that abrasive grains contained in the slurry aggregate in the dresser in its portion where hard abrasive grains are densely present.
In the second aspect of the present invention, an object is to provide stable CMP conditioner properties and, at the same time, to enable the escape of the slurry or the like at the time of polishing without forming escape grooves or the like, and to reduce microscratching.
According to the second aspect of the present invention, there is provided a CMP conditioner comprising: a support member; and a plurality of hard abrasive grains provided on the surface of the support member, characterized in that said plurality of hard abrasive grains are arranged on the surface of the support member regularly and so as for the density of the hard abrasive grains to decrease from the inner side of the support member toward the outer side of the support member.
Another CMP conditioner according to the second aspect of the present invention comprises: a support member; and a plurality of hard abrasive grains provided on a surface of said support member, characterized in that regions, where said plurality of hard abrasive grains are absent, are provided substantially radially on the surface of the support member.
A method for arranging hard abrasive grains for use in the CMP conditioner according to the second aspect of the present invention is characterized by comprising the steps of: positioning an arranging member in a thin plate form, provided with a plurality of through-holes arranged regularly and so as for the density of the through-holes to decrease from the inner side toward the outer side of the arranging member, on an abrasive grain arrangement surface; and placing a hard abrasive grain in each through-hole of the arranging member.
Another method for arranging hard abrasive grains for use in the CMP conditioner according to the second aspect of the present invention is characterized by comprising the steps of: positioning an arranging member in a thin plate form, in which regions free from a plurality of through-holes are provided substantially radially, on an abrasive grain arrangement surface; and placing a hard abrasive grain in each through-hole of the arranging member.
Still another method for arranging hard abrasive grains for use in the CMP conditioner according to the second aspect of the present invention is characterized by comprising the steps of: holding a plurality of hard abrasive grains, on a holding member, in such a state that the hard abrasive grains are arranged regularly and so as for the density of said hard abrasive grains to decrease from the inner side toward the outer side of the holding member; and transferring the hard abrasive grains held on the holding member onto the surface of a support member for constituting the CMP conditioner.
A further method for arranging hard abrasive grains for use in the CMP conditioner according to the second aspect of the present invention is characterized by comprising the steps of: holding a plurality of hard abrasive grains, on a holding member, in such a state that regions free from said plurality of hard abrasive grains are provided substantially radially; and transferring the hard abrasive grains held on the holding member onto the surface of a support member for constituting the CMP conditioner.
A process for producing the CMP conditioner according to the second aspect of the present invention is characterized by comprising the steps of: utilizing the method for arranging hard abrasive grains for use in the above CMP conditioner to arrange the hard abrasive grains on the surface of the support member; and then fixing the hard abrasive grains on the surface of the support member.
CMP Conditioner According to First Aspect of the Invention
Embodiments of the CMP conditioner for an polishing pad for a semiconductor substrate, the method for arranging hard abrasive grains for use in a CMP conditioner for an polishing pad for a semiconductor substrate, and the process for producing a CMP conditioner according to the first aspect of the present invention will be described with reference to the accompanying drawings.
The CMP conditioner will be first described in conjunction with
In
In the arrangement shown in
On the other hand, in the arrangement shown in
The method for arranging diamond grains 2 according to the second aspect of the present invention will be described with reference to
In the first method, as shown in
As shown in
As shown in
After the diamond grains 2 have been arranged on the surface of the support member 1 by the above method, brazing in a single layer is carried out to fix the diamond grains 2. In this brazing, the adhesive 4 coated onto the surface of the support member 1 is sublimated upon heating of the brazing material 3 and thus does not stay on the surface of the support member 1.
In the first method, a mesh woven out of wire may be used instead of the arranging plate 5. Specifically, individual openings of the mesh are used as the through-holes 6 referred to in the arranging plate 5, and diamond grains 2 are put into the openings to arrange the diamond grains on the surface of the support member 1.
In the second method, unlike the first method wherein the diamond grains 2 are arranged directly on the surface of the support member 1, diamond grains are once arranged on a holding member, such as a pressure-sensitive adhesive sheet, and the arranged diamond grains are then transferred onto the surface of the support member 1.
In the second method, as shown in
Diamond grains 2 are spread over the arranging plate 7. At that time, as described above in connection with the first method, for example, suitable vibration is applied to the arranging plate 7 so that the diamond grains 2 enter all the concaves 8. When the diamond grains 2 have entered all the concaves 8, excess diamond grains 2 present on the arranging plate 7 are removed, for example, by a brush 9.
A pressure-sensitive adhesive sheet 10 is then applied onto the surface of the arranging plate 7 on its concave 8 side. Next, as shown in
Thereafter, the pressure-sensitive adhesive sheet 10 with the diamond grains 2 held thereon is applied onto the surface of the support member 1 coated with an adhesive 4 so that the diamond-holding pressure-sensitive adhesive surface of the pressure-sensitive adhesive sheet 10 comes into contact with the adhesive 4. Therefore, as shown in
The removal of only the pressure-sensitive adhesive sheet 10 can be achieved, for example, by providing a difference in solubility between the adhesive in the pressure-sensitive adhesive sheet 10 and the adhesive 4 on the support member 1 side. In this case, in the state shown in
After the diamond grains 2 have been arranged on the surface of the support member 1 by the above method, brazing in a single layer is carried out to fix the diamond grains 2. In this brazing, the adhesive 4 coated onto the surface of the support member 1 is sublimated upon heating of the brazing material 3 and thus does not stay on the surface of the support member 1.
In the second method, concaves 8 are provided in the arranging plate 7. Alternatively, through-holes may be provided instead of the concaves 8. In this case, when the support member 1 shown in
According to the above embodiments of the present invention, since the diamond grains are regularly arranged, the distribution of the diamond grains is even. The use of the CMP conditioners according to the above embodiments does not cause such an unfavorable phenomenon that abrasive grains contained in a slurry aggregate in a portion where diamond grains are densely present. Therefore, microscratching of the surface of the semiconductor substrate can be minimized. Further, since the difference in properties among CMP conditioners can be eliminated, stable CMP conditioner properties can be provided.
In the above embodiments, diamond grains have been arranged as shown in
In the above embodiments of the present invention, diamond grains 2 have been used as the hard abrasive grains. Alternatively, other materials, for example, cubic boron nitride, boron carbide, silicon carbide, or aluminum oxide may be used as the hard abrasive grains.
In addition to brazing, for example, electrodeposition of nickel may be used for fixation of the diamond grains 2 onto the support member 1.
Fixation of the diamond grains by brazing will be described as a suitable one example of the method for the fixation of the diamond grains. An alloy containing 0.5 to 20% by weight of at least one member selected from titanium, chromium, and zirconium and having a melting point of 650° C. to 1,200° C. is preferably used as a brazing material. In this case, a carbide layer of this metal is formed at the interface between the diamond grains and the brazing alloy. The reason why the content of at least one member selected from titanium, chromium, and zirconium contained in the alloy as the brazing material is preferably 0.5 to 20% by weight is as follows. When the content of the metal is less than 0.5% by weight, the carbide layer of the metal is not formed at the interface between the diamond and the brazing alloy. On the other hand, when the content of the metal is 20% by weight, a carbide layer having satisfactory bonding strength can be formed.
The reason why the melting point of the brazing alloy is preferably 650° C. to 1,200° C. is that, when the brazing temperature is below 650° C., bonding strength cannot be ensured while, when the brazing temperature is above 1,200° C., the diamond is disadvantageously deteriorated.
The thickness of the brazing alloy is preferably 0.2 to 1.5 times that of the diamond grains. When the thickness of the brazing alloy is below the above lower limit value, the bonding strength between the diamond and the brazing alloy is lowered. On the other hand, when the thickness of the brazing alloy is above the upper limit of the above-defined range, the separation between the brazing material and the support member is likely to take place.
The diameter of the diamond grains is preferably in the range of 50 μm to 300 μm. Fine diamond grains having a diameter of less than 50 μm do not provide satisfactory polishing rate, are likely to aggregate, and are likely to come off from the support member. On the other hand, coarse diamond grains having a diameter of more than 300 μm cause large stress concentration at the time of polishing and are likely to come off from the support member.
As described above, according to the first embodiment of the present invention, the use of the CMP conditioner does not have any fear of abrasive grains contained in the slurry being aggregated in CMP conditioner in its portion where hard abrasive grains are densely present. As a result, microscratching of the surface of the semiconductor substrate can be minimized. Further, the difference in properties among CMP conditioners can be eliminated, and, thus, stable CMP conditioner properties can be achieved. Therefore, stable CMP mass production process can be realized.
CMP Conditioner According to Second Aspect of the Invention
Embodiments of the CMP conditioner for an polishing pad for a semiconductor substrate according to the second aspect of the present invention will be explained with reference to the accompanying drawings. For the method for arranging hard abrasive grains used in the CMP conditioner for an polishing pad for a semiconductor substrate, and the production of the CMP conditioner in this aspect of the present invention may be the same as the first and second methods in the first aspect of the present invention, except that an arranging plate 15 shown in
The CMP conditioner according to the second aspect of the present invention will be described with reference to
On the other hand, in the embodiment shown in
The size of actual diamond grains 12 is much smaller than that of the support member 11. In
In the second aspect of the present invention, the arrangement of the diamond grains 12 and the production of the CMP conditioner may be carried out as in the first and second methods described above in connection with the first aspect of the present invention, except that an arranging plate 15 shown in
As described above, in this embodiment, since the diamond grains 12 are regularly arranged, the difference in properties among CMP conditioners can be eliminated. Therefore, stable CMP conditioner properties can be realized. Further, in this embodiment, the diamond grains 12 are arranged substantially radially from the center of the support member 11 so that the density of the diamond grains decreases from the inner side of the support member 11 toward the outer side of the support member 11. Furthermore, regions, where the diamond grains 12 are absent, are ensured radially. By virtue of the adoption of this construction, at the time of polishing, the slurry can be escaped toward the outer side of the support member 11, contributing to reduced microscratching. Further, since the need to apply special working, to the support member 11, for escaping the slurry can be eliminated, labor and time and cost for working can be reduced.
As described above, according to the second aspect of the present invention, the difference in properties among CMP conditioners is eliminated, and stable CMP conditioner properties can be provided. Therefore, a stable CMP mass-production process can be realized. Further, since the slurry can be escaped at the time of polishing, microscratching can be reduced. Furthermore, since there is no need to apply special working, to the support member, for escaping the slurry, labor and time and cost for working can be reduced.
The following examples further illustrate but do not limit the first aspect of the present invention.
Diamond grains having a diameter of 150 to 210 μm were provided. A ferrite stainless steel support member was also provided. In order to fix the diamond grains to the support member, brazing in a single layer was carried out with a brazing metal of Ag—Cu-3Zr (melting point: 800° C.) by holding the assembly in a vacuum of 10−5 Torr at a brazing temperature of 850° C. for 30 min. Ten CMP conditioners were prepared for each of three types, type A (a conventional type where diamond grains had been manually spread), type B (arrangement in a check form shown in
For each CMP conditioner, an experiment on polishing was carried out for ten semiconductor wafers with a TEOS film. Specifically, for each of types A, B, and C, polishing was carried out for 100 wafers. Dressing was carried out for 2 min once for each one polishing.
Thereafter, for each type, one polished wafer was extracted from every 10 polished wafers in 100 polished wafers. That is, for each type, 10 polished wafers in total were extracted from the 100 polished wafers. For the 10 extracted polished wafers for each type, the number of microscratches was counted. As a result, when the number of microscratches, in the case where the CMP conditioner (dresser) of type A was used, was presumed to be 100, the relative value of the number of microscratches in the case where the CMP conditioner (dresser) of type B was used and the relative value of the number of microscratches in the case where the CMP conditioner (dresser) of type C was used, were 26 and 17, respectively.
These results show that, in the CMP conditioners of types B and C, as compared with the conventional CMP conditioner of type A, the number of microscratches on the surface of the wafer can be significantly reduced. Further, the difference in CMP conditioner properties among CMP conditioners is so small that a stable CMP mass-production process can be realized.
Number | Date | Country | Kind |
---|---|---|---|
2000-388994 | Dec 2000 | JP | national |
2001-262167 | Aug 2001 | JP | national |
This application is a divisional application under 35 U.S.C. §120 and 35 U.S.C. §121 of prior application Ser. No. 10/451,644 filed Jun. 19, 2003 now abandoned which is a 35 U.S.C. §371 of PCT/JP01/11209 filed Dec. 20, 2001, wherein PCT/JP01/11209 was filed and published in the Japanese language. The entire disclosure of prior application Ser. No. 10/451,644 which is a 35 U.S.C. §371 of PCT/JP01/11209 is considered part of this divisional application and is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4536195 | Ishikawa | Aug 1985 | A |
6093280 | Kirchner et al. | Jul 2000 | A |
6190240 | Kinoshita et al. | Feb 2001 | B1 |
6213856 | Cho et al. | Apr 2001 | B1 |
6368198 | Sung et al. | Apr 2002 | B1 |
6371838 | Holzapfel | Apr 2002 | B1 |
6439986 | Myoung et al. | Aug 2002 | B1 |
6517424 | Wielonski et al. | Feb 2003 | B2 |
6752708 | Kinoshita et al. | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
60-076965 | May 1985 | JP |
04-250978 | Sep 1992 | JP |
11-077535 | Mar 1999 | JP |
2000-052254 | Feb 2000 | JP |
2000-106353 | Apr 2000 | JP |
WO 9851448 | Nov 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20060160477 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10451644 | US | |
Child | 11385297 | US |